Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1 (5-Year IF – 2.0)
Journal Citation Indicator (JCI) (2023) – 0.4
Scopus CiteScore – 3.7 (CiteScore Tracker 3.3)
Index Copernicus  – 161.11; MNiSW – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2006, vol. 15, nr 6, November-December, p. 971–978

Publication type: editorial article

Language: English

Adhesion Molecules, Cytokines and Endothelial Dysfunction in Atherosclerosis

Molekuły adhezyjne, cytokiny i zaburzenie funkcji śródbłonka w miażdżycy

Kinga Musiał1,, Danuta Zwolińska1,

1 Department of Pediatric Nephrology, Silesian Piasts University of Medicine in Wrocław, Poland

Abstract

The aim of this review is to present current knowledge of atherosclerosis. Recent investigations point to chronic inflammation as a key player in the functional impairment of the endothelium. Enhanced cell migration and diapedesis lead to monocyte recruitment and their change into macrophages, thus initiating atherosclerotic plaque formation. The involvement of adhesion molecules, interleukins, growth factors, and enzymes in the adhesion cascade is tightly connected with dyslipidemia and the overproduction of reactive oxygen species. The latter may be a causative factor for the propagation of endothelial damage due to pleiotropic activities, including the impact on lipid metabolism, adhesion cascade functioning, cytokine activity, and nitric oxide bioavailability. The over−activity of pro−atherogenic agents results in a vicious circle of tissue destruction. These self−perpetuating reactions progressively impair the function of vessels, resulting in lumen occlusion, local ischemia, and clinical complications. Therefore, clarifying the mechanisms responsible for atherosclerosis seems to be the key target for future investigations.

Streszczenie

Celem pracy jest przedstawienie obecnego stanu wiedzy na temat miażdżycy. Badania ostatnich lat wskazują na rolę przewlekłego procesu zapalnego jako kluczowego czynnika zaburzającego funkcję śródbłonka. Nasilona migracja i diapedeza komórek prowadzi do gromadzenia monocytów i przekształcania w makrofagi, co jest początkiem procesu tworzenia blaszki miażdżycowej. Udział molekuł adhezyjnych, interleukin, czynników wzrostu i enzymów w kaskadzie adhezji jest ściśle związany z zaburzeniami gospodarki lipidowej i wydzielaniem wolnych rodników tlenowych. Procesy wolnorodnikowe mogą powodować postępującą destrukcję śródbłonka przez wielokierunkowe oddziaływania, m.in. na metabolizm lipidów, kaskadę adhezji, aktywność cytokin i biodostępność tlenku azotu. Wzmożona aktywność czynników proaterogennych uruchamia błędne koło niszczenia tkanek. Nieodwracalne reakcje stopniowo zaburzają funkcję naczyń, powodując zwężenie ich światła, niedokrwienie i powikłania. Wyjaśnienie mechanizmów odpowiedzialnych za rozwój miażdżycy wymaga więc dalszych badań.

Key words

adhesion molecules, cytokines, nitric oxide, reactive oxygen species, endothelium

Słowa kluczowe

molekuły adhezyjne, cytokiny, tlenek azotu, wolne rodniki tlenowe, śródbłonek

References (40)

  1. Stary HC, Chandler AB, Glagov S, Guyton JR, Insull W Jr., Rosenfeld ME, Schaffer SA, Schwartz CJ, Wagner WD, Wissler RW: A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. Areport from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb 1994, 14, 840–856.
  2. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W Jr., Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RW: A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1995, 92, 1355–1374.
  3. Dardik A, Chen L, Frattini J, Asada H, Aziz F, Kudo FA, Sumpio BE: Differential effects of orbital and laminar shear stress on endothelial cells. J Vasc Surg 2005, 41, 869–880.
  4. Carlos TM, Harlan JM: Leukocyte−Endothelial Adhesion Molecules. Blood 1994, 84, 2068–2101.
  5. Kim MB, Sarelius IH: Role of shear forces and adhesion molecule distribution on P−selectin−mediated leukocyte rolling in postcapillary venules. Am J Physiol Heart Circ Physiol 2004, 287, H2705–H2711.
  6. Aiello RJ, Bourassa PAK, Lindsey S, Weng W, Natoli E, Rollins BJ, Milos PM: Monocyte chemoattractant protein−1 accelerates atherosclerosis in apolipoprotein E−deficient mice. Arterioscler Thromb Vasc Biol 1999, 19, 1518–1525.
  7. Parenti A, Bellik L, Brogelli L, Filippi S, Ledda F: Endogenous VEGF−A is responsible for mitogenic effects of MCP−1 on vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2004, 286, H1978–H1984.
  8. Lesnik P, Haskell CA, Charo IF: Decreased atherosclerosis in CX3CR1–/– mice reveals a role for fractalkine in atherogenesis. J Clin Invest 2003, 111, 333–340.
  9. Gerszten RE, Garcia−Zapeda EA, Lim YC, Yoshida M, Ding HA, Gimbrone MA Jr., Luster AD, Luscinskas FW, Rosenzweig A: MCP−1 and IL−8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 1999, 398, 718–723.
  10. Mause SF, von Hundelshausen P, Zernecke A, Koenen RR, Weber C: Platelet microparticles. A transcellular delivery system for RANTES−promoting monocyte recruitment on endothelium. Arterioscler Thromb Vasc Biol 2005, 25, 1512–1518.
  11. Raab M, Daxecker H, Markovic S, Karimi A, Griesmacher A, Mueller MM: Variation of adhesion molecule expression on human umbilical vein endothelial cells upon multiple cytokine application. Clin Chim Acta 2002, 321, 11–16.
  12. Hashimoto H, Kitigawa K, Kuwabara K, Hougaku H, Ohtsuki T, Matsumoto M, Hori M: Circulating adhesion molecules are correlated with ultrasonic assessment of carotid plaques. Clin Sci 2003, 104, 521–527.
  13. Kondo K, Kitigawa K, Nagai Y, Yamagami H, Hashimoto H, Hougaku H, Hori M: Associations of soluble intercellular adhesion molecule−1 with carotid atherosclerosis progression. Atherosclerosis 2005, 179, 155–160.
  14. Hwang SJ, Ballantyne CM, Sharrett AR, Smith LC, Davis CE, Gotto AM, Boerwinkle E: Circulating adhesion molecules VCAM−1, ICAM−1, and E−selectin in carotid atherosclerosis and incident coronary heart disease cases. The Atherosclerosis Risk In Communities (ARIC) Study. Circulation 1997, 96, 4219–4225.
  15. Bochner BS, Klunk DA, Sterbinsky SA, Coffman RL, Schleimer RP: IL−13 selectively induces vascular cell adhesion molecule−1 expression in human endothelial cells. J Immunol 1995, 154, 799–803.
  16. Davenport P, Tipping PG: The role of interleukin−4 and interleukin−12 in the progression of atherosclerosis in apolipoprotein E−deficient mice. Am J Pathol 2003, 163, 1117–1125.
  17. Lee YW, Eum SY, Chen KC, Hennig B, Toborek M: Gene expression profile in interleukin−4−stimulated human vascular endothelial cells. Mol Med 2004, 10, 19–27.
  18. Yamagishi SI, Edelstein D, Du XL, Kaneda Y, Guzman M, Brownlee M: Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein−1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A. J Biol Chem 2001, 276, 25096–25100.
  19. Chen H, Montagnani M, Funahashi T, Shimomura I, Quon MJ: Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem 2003, 278, 45021–45026.
  20. Brown MS, Goldstein JL: A receptor−mediated pathway for cholesterol homeostasis. Science 1986, 232, 34–47.
  21. Lam MCW, Tan KCB, Lam KSL: Glycoxidized low−density lipoprotein regulates the expression of scavenger receptors in THP−1 macrophages. Atherosclerosis 2004, 177, 313–320.
  22. Melian A, Geng YJ, Sukhova GK, Libby P, Porcelli SA: CD1 expression in human atherosclerosis. A potential mechanism for T cell activation by foam cells. Am J Pathol 1999, 155, 775–786.
  23. Tupin E, Nicoletti A, Elhage R, Rudling M, Ljunggren HG, Hansson GK, Pulsson Berne G: CD1d−dependent activation of NKT cells aggravates atherosclerosis. J Exp Med 2004, 199, 417–422.
  24. Li Y, Schwabe RF, Devries−Seimon T, Yao PM, Gerbod−Giannone MC, Tall AR, Davis RJ, Flavell R, Brenner DA, Tabas I: Free cholesterol−loaded macrophages are an abundant source of Tumor Necrosis Factoralpha and Interleukin−6. Model of NF−kappa Band MAP kinase−dependent inflammation in advanced atherosclerosis. J Biol Chem 2005, 280, 21763–21772.
  25. Lee H, Lin CI, Liao JJ, Lee YW, Yang HY, Lee CY, Hsu HY, Wu HL: Lysophospholipids increase ICAM−1 expression in HUVEC through a Giand NF−κB−dependent mechanism. Am J Physiol Cell Physiol 2004, 287, C1657–C1666.
  26. Fei GZ, Huang YH, Swedenborg J, Frostegård J: Oxidized LDL modulates immune-activation by an IL-12 dependent mechanism. Atherosclerosis 2003, 169, 77–85. Endothelium in Atherosclerosis 977
  27. Wang X, Adhikari N, Li Q, Hall JL: LDL receptor−related protein LRP6 regulates proliferation and survival through the Wnt cascade in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2004, 287, H2376–H2383.
  28. Sainsbury CAR, Sattar N, Connell JMC, Hillier C, Petrie JR: Non−estrified fatty acids impair endotheliumdependent vasodilation in rat mesenteric resistance vessels. Clin Sci 2004, 107, 625–629.
  29. Koga T, Kwan P, Zubik L, Ameho C, Smith D, Meydani M: Vitamin E supplementation suppresses macrophage accumulation and endothelial cell expression of adhesion molecules in the aorta of hypercholesterolemic rabbits. Atherosclerosis 2004, 176, 265–272.
  30. Heltianu C, Costache G, Gafencu A, Diaconu M, Bodeanu M, Cristea C, Azibi K, Poenaru L, Simionescu M: Relationship of eNOS gene variants to diseases that have in common an endothelial cell dysfunction. J Cell Mol Med 2005, 9, 135–142.
  31. Vergnani L, Hatrik S, Ricci F, Passaro A, Manzoli N, Zuliani G, Brovkovych V, Fellin R, Malinski T: Effect of native and oxidized low−density lipoprotein on endothelial nitric oxide and superoxide production: key role of L−arginine availability. Circulation 2000, 101, 1261–1266.
  32. Ito A, Tsao PS, Adimoolam S, Kimoto M, Ogawa T, Cooke JP: Novel mechanism for endothelial dysfunction: dysregulation of dimethylarginine dimethylaminohydrolase. Circulation 1999, 99, 3092–3095.
  33. O’Donnell VB, Chumley PH, Hogg N, Bloodsworth A, Darley−Usmar VM, Freemen BA: Nitric oxide inhibition of lipid peroxidation: kinetics of reaction with lipid peroxyl radicals and comparison with α−tocopherol. Biochemistry 1997, 36, 15216–15223.
  34. Cyrus T, Witztum JL, Rader DJ, Tangirala R, Fazio S, Linton MF, Funk CD: Disruption of the 12/15−lipoxygenase gene diminishes atherosclerosis in apo E−deficient mice. J Clin Invest 1999, 103, 1487–1488.
  35. Conrad DJ, Kühn H, Mulkins M, Highland E, Sigal E: Specific inflammatory cytokines regulate the expression of human monocyte 15−lipoxygenase. Proc Natl Acad Sci USA 1992, 89, 217–221.
  36. O’Donnell VB, Coles B, Lewis MJ, Crews BC, Marnett LJ, Freeman BA: Catalytic consumption of nitric oxide by prostaglandin H synthase−1 regulates platelet function. J Biol Chem 2000, 275, 38239–38244.
  37. Eiserich JP, Baldus S, Brennan ML, Ma W, Zhang C, Tousson A: Myeloperoxidase, a leukocyte−derived vascular NO oxidase. Science 2002, 296, 2391–2394.
  38. Ichikawa T, Liang J, Kitajima S, Koike T, Wang X, Sun H, Morimoto M, Shikama H, Watanabe T, Yamada N, Fan J: Macrophage−derived lipoprotein lipase increases aortic atherosclerosis in cholesterol−fed Tg rabbits. Atherosclerosis 2005, 179, 87–95.
  39. Taniyama Y, Fuse H, Satomi T, Tozawa R, Yasuhara Y, Shimakawa K, Shibata S, Hattori M, Nakata M, Taketomi S: Loss of lysophospholipase 3 increases atherosclerosis in apolipoprotein E−deficient mice. Biochem Biophys Res Commun 2005, 29, 104–110.
  40. Reilly MP, Lehrke M, Wolfe ML, Rohatgi A, Lazar MA, Rader DJ: Resistin is an inflammatory marker of atherosclerosis in humans. Circulation 2005, 111, 932–939.