Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.736
5-Year Impact Factor – 2.135
Index Copernicus  – 168.52
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2006, vol. 15, nr 6, November-December, p. 1139–1147

Publication type: review article

Language: English

Fibronectin and Its Fragments in Health and Disease

Fibronektyna i jej fragmenty w zdrowiu i chorobie

Marcin Wójtowicz1,

1 Chair and Department of Chemistry and Immunochemistry, Silesian Piasts University of Medicine, Wrocław, Poland

Abstract

Fibronectin (FN) is a widespread glycoprotein of a human organism. A number of investigations on fibronectin, mainly in inflammatory processes, with emphasis on its degradation process and presence of fibronectin fragments, showed association between the presence of fibronectin fragments and inflammatory diseases related mainly to the pathologies of connective tissue. Considering the fact, that diseases affect a specific type of tissue with adjacent tissues, finding the specific fragments of degradated fibronectin is possible. Recognized fragments could be useful markers for disease diagnosis and monitoring. In this article few examples of diseases related to the presence of fibronectin fragments (FNf) were shown: pulmonitis, arthritis, infertility, tumors, ischaemic disease, gingivitis and glomerulonephritis.

Streszczenie

Fibronektyna (FN) jest glikoproteiną adhezyjną powszechnie występującą w ludzkim organizmie. Obserwacje dotyczące roli tego białka w procesach zapalnych oraz mechanizmów prowadzących do jej fragmentacji pozwoliły wykazać istniejącą zależność między obecnością fragmentów fibronektyny a niektórymi chorobami, głównie o etiologii zapalnej. Zależności tego rodzaju odnoszą się w znacznym stopniu do patologii dotyczących tkanki łącznej. Ponieważ procesy chorobowe nie zachodzą w tkankach w sposób izolowany i nie pozostają bez wpływu na otaczające struktury tkankowe, możliwe jest odnalezienie fragmentów zdegradowanej fibronektyny, które poddane analizie jakościowej stanowiłyby marker pomocny w diagnozowaniu i monitorowaniu chorób. W artykule omówiono przykłady kilku jednostek chorobowych, którym towarzyszyło pojawienie się fragmentów fibronektyny (FNf): zapalenie włókniste płuc, zmiany patologiczne w obrębie stawów, niepłodność, nowotwory, choroba niedokrwienna serca, choroby dziąseł oraz zapalenie kłębuszków nerek.

Key words

fibronectin, fibronectin fragments, diseases

Słowa kluczowe

fibronektyna, fragmenty fibronektyny, procesy chorobowe

References (38)

  1. Johansson S, Svineng G, Wennerberg K, Armulik A, Lohikangas L: Fibronectin−integrin interactions. Front Biosci 1997, 2, 126–146.
  2. Pankov R, Yamada KM: Fibronectin at a glance. J Cell Sci 2002, 115, 3861–3863.
  3. Xu J, Clark RA: Extracellular matrix alters PDGF regulation of fibroblast integrins. J Cell Biol 1996, 132, 239–249.
  4. Kątnik−Prastowska I, Przybysz M: Wielofunkcyjnośc fibronektyny. Postępy Hig Med Dośw 2001, 55, 5, 699–713.
  5. Burton−Wurster N, Gendelman R, Chen H, Gu D, Tetreault JW, Lust G, Schwarzbauer JE, Macleod J: The cartilage−specific (V-C) – fibronectin isoform exists primarily in homodimeric and monomeric configurations. J Biochem 1999, 341, 555–651.
  6. Johnson KJ, Sage H, Briscoe G, Erickson HP: The compact conformation of fibronectin is determined by intramolecular ionic interactions. J Biol Chem 1999, 274, No. 22, 15473–15479.
  7. Miekka SI: Heat−induced fragmentation of human plasma fibronectin. Act Biochim Biophys 1983, 748, 374–380.
  8. Fukai F, Ohtaki M, Furii N, Yajima H, Ishii T, Nishizawa Y, Miyazaki K, Katayama T: Release of biological activities from quiescent fibronectin by a conformational change and limited proteolysis by matrix metalloproteinases. Biochemistry 1995, 34, 11453–11459.
  9. Homandberg GA: Potential regulation of cartilage metabolism in osteoarthritis by fibronectin fragments. Front Biosci 1999, 4, 713–730.
  10. Steffensen B, Xu X, Martin PA, Zardenetaaab G: Human fibronectin and MMP−2 collagen binding domains compete forcollagen binding sites and modify cellular activation of MMP−2. Matrix Biol 2002, 21, 399–414.
  11. Beumer S, Heijnen−Snyder GJ, Ijsseldijk MJW, de Groot PG, Sigma JJ: Fibronectin in an extracellular matrix of cultured endothelial cells supports platelet adhesion via its ninth type III repeat. A comparison with platelet adhesion to isolated fibronectin. Arterioscler Thromb Vasc Biol 2000, 20, 16–25.
  12. Romberger DJ: Fibronectin. Int J Biochem Cell Biol 1997, 29, 939–943.
  13. Aota S, Nomizu M, Yamada KM: The short amino acid sequence Pro−His−Ser−Arg−Asn in human fibronectin enhances cell−adhesive function. J Biol Chem 1994, 269, 24756–24761.
  14. Schedin P, Strange R, Mitrenga T, Wolfe P, Kaeck M: Fibronectin fragments induce MMP activity in mouse mammary epithelial cells: evidence for a role in mammary tissue remodeling. J Cell Sci 2000, 113, 795–806.
  15. Ichihara−Tanaka K, Titani K, Sekiguchi K: Role of the carboxyl−terminal Fib2 domain in fibronectin matrix assembly. J Cell Sci 1995, 108, 907–915.
  16. Quade BJ, McDonald JA: Fibronectin’s amino−terminal matrix assembly site is located within the 29−kDa amino−terminal domain containing five type I repeats. J Biol Chem 1988, 263, 19602–19609.
  17. Sottile J, Mosher DF: Assembly of fibronectin molecules with mutations or deletions of the carboxyl−terminal type I module. Biochemistry 1993, 32, 1641–1647.
  18. Skorstengaard K, Holtet T, Etzerodt M, Thogersen HC: Collagen−binding recombinant fibronectin fragments containing type II domains. FEBS Lett 1994, 343, 47–50.
  19. Kishore R, Samuel M, Yahiya Khan M, Hand J, Frenz DA, Newman SA: Interaction of the NH 2−terminal domain of fibronectin with heparin, Role of the V−loops of the type I module. J Biol Chem 1997, 272, 17078–17085.
  20. Cardin AD, Weintraub HJ: Arteriosclerosis 1989, 9, 21–32.
  21. Ingham KC, Brew SA, Migliorini MM, Busby TF: Binding of heparin by type III domains and peptides from the carboxy terminal hep−2 region of fibronectin. Biochemistry 1993, 32, 12548–12553.
  22. Watanabe K, Takahashi H, Habu Y, Kamiya−Yoshiburo N, Kamiya S, Nakamura H, Ishii T, Katayama T, Miyazaki K, Fukai F: Interaction with heparin and matrix metalloproteinase 2 cleavage expose cryptic anti−adhesive site of fibronectin. Biochemistry 2000, 39, 7138–7144.
  23. Moyano JV, Maqueda A, Albar JP, Garcia−Pardo A: A synthetic peptide from the heparin−binding domain III (repeats III4−5) of fibronectin promotes stress−fibre and focal−adhesion formation in melanoma cells. J Biochem 2003, 15, 565–571.
  24. Malemud CJ: Fundamental pathways in osteoarthritis: an overview. Front Biosci 1999, 4, 659–661.
  25. Homandberg GA, Meyers R, Williams JM: Intraarticular injection of fibronectin fragments causes severe depletion of cartilage proteoglycans in vivo. J Rheumatol 1993, 20, 1378–1382.
  26. Stanton H, Ung L, Fosang AJ: The 45 kDa collagen−binding fragment of fibronectin induces matrix metalloproteinase−13 synthesis by chondrocytes and aggrecan degradation by aggrecanases. J Biochem 2002, 364, 181–190.
  27. Homandberg GA, Hui F: Association of proteoglycan degradation with catabolic cytokine and stromelysin release from cartilage cultured with fibronectin fragments. Arch Biochem Biophys 1996, 334, 325–331.
  28. Posthumus MD, Limburg PC, Swetra J, Cats HA, Steward RE, van Leeuwen MA, van Rijswijk MH: Serum levels of matrix metalloproteinase 3 in relation to the development of radiological damage in patients with early rheumatoid arthritis. Rheumatology 1999, 38, 1081–1087.
  29. Lopez−Armada MJ, Gonzalez E, Gomez−Guerrero C, Egido J: The 80−kDa fibronectin fragment increases the production of fibronectin and tumour necrosis factor−alpha (TNFα) in cultured mesangial cells. Clin Exp Immunol 1997, 107, 398–403.
  30. Yi M, Ruoslahti E: A fibronectin fragment inhibits tumor growth, angiogenesis, and metastasis. Proc Natl Acad Sci USA 2001, 98, 620–624.
  31. Lilja H, Oldbring J, Rannevik G, Laurell CB: Seminal vesicle−secreted proteins and their reactions during gelation and liquefaction of human semen. J Clin Invest 1987, 80, 281–285.
  32. Kątnik−Prastowska I,, Przybysz M, Chełmońska−Soyta A: Fibronectin fragments in human seminal plasma. Acta Biochim Pol 2005, 52, 557–560.
  33. Trial J, Baughn RE, Wagant JN, McIntyre,BW, Birdsall HH, Youker KA, Evans A, Entman ML, Rossen RD: Fibronectin fragments modulate monocyte VLA−5 expression and monocyte migration. J Clin Invest 1999, 104, 419–430.
  34. White ES, Thannickal VJ, Carskadon SL, Dickie EG, Livant DL, Markwart S, Toews GB, Arenberg DA: Integrin α4β1 regulates migration across basement membranes by lung fibroblasts. A role for phosphatase and tensin homologue deleted on chromosome 10. Am J Resp Crit Care Med 2003, 168, 436–442.
  35. Lantz MS, Allen RD, Duck LW, Blume JL, Switalski LM, Hook M: Identification of Porphyromonas gingivalis components that mediate its interactions with fibronectin. J Bacteriol 1991, 173, 4263–4270.
  36. Winkler JR, Jon SR, Kramer RH, Hoover CI, Murray PA: Attachment of oral bacteria to a basement membrane−like matrix and to purified matrix proteins. Infect Immun 1987, 5, 2721–2726.
  37. Pellat B, Planchenault T, Pellerin C, Keil−Diouha V: A comparison of fibronectinolytic activities of oral bacteria. J Biol Buccale 1989, 17, 255–262.
  38. Smalley JW, Birss AJ, Shuttleworth CA: The degradation of type I collagen and human plasma fibronectin bythe trypsin−like enzyme and extracellular membrane vesicles of Bacteroides gingivalis W50. Arch Oral Biol 1988, 33, 323–329.