Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1 (5-Year IF – 2.0)
Journal Citation Indicator (JCI) (2023) – 0.4
Scopus CiteScore – 3.7 (CiteScore Tracker – 4.0)
Index Copernicus  – 171.00; MNiSW – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (PL)

Advances in Clinical and Experimental Medicine

2006, vol. 15, nr 5, September-October, p. 857–869

Publication type: review article

Language: Polish

Proteinazy Enterococcus faecalis i ich rola w patogenności tego drobnoustroju

Proteinases of Enterococcus faecalis and Their Role in Pathogenicity

Magdalena Kawalec1,, Aleksandra Jakubczak1,2,

1 Zakład Mikrobiologii Molekularnej, Zespół Nauk Mikrobiologicznych, Narodowy Instytut Zdrowia Publicznego w Warszawie

2 Instytut Mikrobiologii, Wydział Biologii Uniwersytetu Warszawskiego

Streszczenie

Poszukiwanie czynników zjadliwości patogenów oportunistycznych, do których zalicza się bakterie z rodzaju Enterococcus, może być kluczem do antybiotykoterapii i profilaktyki wywoływanych przez nie zakażeń w przyszłości. Analizując przebieg kolejnych etapów patogenezy bakteryjnej można zauważyć, że enzymy proteolityczne uczestniczą zarówno w kolonizacji, jak i inwazji oraz omijaniu barier immunologicznych gospodarza, doprowadzając w konsekwencji do zaburzenia homeostazy w jego organizmie. Istnieje zatem potrzeba identyfikacji proteinaz bakteryjnych, szczególnie u wirulentnych szczepów bakterii oportunistycznych, które wywołują trudne do leczenia zakażenia szpitalne. W niniejszej pracy szczegółowo omówiono żelatynazę (GelE) i proteinazę serynową (SprE) E. faecalis – dwa zewnątrzkomórkowe enzymy proteolityczne, których rola w patogenezie wydaje się znacząca.

Abstract

The studies on virulence factors of opportunistic pathogens, including enterococci, may play the key role in the search for the future antibiotic therapy and prophylaxis of infections. Analyzing step by step the conduct of the pathogenesis of bacterial infections one can realize that proteases are engaged in colonization, invasion, and eventual tricking of host’s immune system. Consequently, they are responsible for the break of homeostasis in host’s organism. Though, there is a need for identification of bacterial proteases, especially these produced by more virulent strains of opportunistic pathogens responsible for nosocomial infections. This review is to describe in details gelatinase (GelE) and serine proteinase (SprE) of E. faecalis, which are the two extracellular proteolytic activities with important role to play in enterococcal pathogenesis.

Słowa kluczowe

enterokoki, proteinazy bakteryjne, czynniki zjadliwości, patogenność, kolonizacja, zakażenie

Key words

enterococci, bacterial proteases, virulence factors, pathogenicity, colonisation, infection

References (66)

  1. Moellering RC, Jr: Emergence of Enterococcus as a significant pathogen. Clin Infect Dis 1992, 14, 1173–1176.
  2. Murray BE: Diversity among multidrug−resistant enterococci. Emerg Infect Dis 1998, 4, 37–47.
  3. Ruoff KL, de la Maza L, Murtagh MJ, Spargo JD, Ferraro MJ: Species identities of enterococci isolated from clinical specimens. J Clin Microbiol 1990, 28, 435–437.
  4. Leclercq R, Derlot E, Duval J, Courvalin P: Plasmid−mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N Engl J Med 1988, 319, 157–161.
  5. Woodford N: Epidemiology of the genetic elements responsible for acquired glycopeptide resistance in enterococci. Microb Drug Resist 2001, 7, 229–236.
  6. Depardieu F, Bonora MG, Reynolds PE, Courvalin P: The vanG glycopeptide resistance operon from Enterococcus faecalis revisited. Mol Microbiol 2003, 50, 931–948.
  7. Kawalec M, Gniadkowski M, Hryniewicz W: Outbreak of vancomycin−resistant enterococci in a hospital in Gdask, Poland, due to horizontal transfer of different Tn1546−like transposon variants and clonal spread of several strains. J Clin Microbiol 2000, 38, 3317–3322.
  8. Kawalec M, Gniadkowski M, Kedzierska J, Skotnicki A, Fiett J, Hryniewicz W: Selection of a teicoplaninresistant Enterococcus faecium mutant during an outbreak caused by vancomycin−resistant enterococci with the vanB phenotype. J Clin Microbiol 2001, 39, 4274–4282.
  9. Kawalec M, Gniadkowski M, Zaleska M, Ozorowski T, Konopka L, Hryniewicz W: Outbreak of vancomycin−resistant Enterococcus faecium of the phenotype VanB in a hospital in Warsaw, Poland: probable transmission of the resistance determinants into an endemic vancomycin−susceptible strain. J Clin Microbiol 2001, 39, 1781–1787.
  10. Kawalec M, Gniadkowski M, Zielinska U, Klos W, Hryniewicz W: Vancomycin−resistant Enterococcus faecium strain carrying the vanB2 gene variant in a Polish hospital. J Clin Microbiol 2001, 39, 811–815.
  11. Tenover FC, Weigel LM, Appelbaum PC, McDougal LK, Chaitram J, McAllister S, Clark N, Killgore G, O’Hara CM, Jevitt L, Patel JB, Bozdogan B: Vancomycin−resistant Staphylococcus aureus isolate from a patient in Pennsylvania. Antimicrob Agents Chemother 2004, 48, 275–280.
  12. Gilmore MS, Coburn S, Nallapareddy SR, Murray BE: Enterococcal Virulence. In: Gilmore MS, Clewell DB, Courvalin P, Dunny GM, Murray BE, Rice LB, eds. The Enterococci. Pathogenesis, Molecular Biology and Antibiotic Resistance. Washington, D.C, ASM PRESS, 2002, 301–354.
  13. Travis J, Potempa J, Maeda H: Are bacterial proteinases pathogenic factors? Trends Microbiol 1995, 3, 405–407.
  14. Travis J, Shieh BH, Potempa J: The functional role of acute phase plasma proteinase inhibitors. Tokai J Exp Clin Med 1988, 13, 313–320.
  15. Potempa J, Travis J: Proteinases as virulence factors in bacterial diseases and as potential targets for therapeutic intervension with proteinase inhibitors. In: van der Helm K, Korant BD, Cheronis JC, eds. Handbook of experimental pharmacology. Berlin, Springer Verlag, 2000, 159–188.
  16. Goguen JD, Hoe NP, Subrahmanyam YV: Proteases and bacterial virulence: a view from the trenches. Infect Agents Dis 1995, 4, 47–54.
  17. Dubin G: Extracellular proteases of Staphylococcus spp. Biol Chem 2002, 383, 1075–1086.
  18. Von Pawel−Rammingen U, Bjorck L: IdeS and SpeB: immunoglobulin−degrading cysteine proteinases of Streptococcus pyogenes. Curr Opin Microbiol 2003, 6, 50–55.
  19. Potempa J, Travis J: Porphyromonas gingivalis proteinases in periodontitis, a review. Acta Biochim Pol 1996, 43, 455–465.
  20. Lahteenmaki K, Kukkonen M, Korhonen TK: The Pla surface protease/adhesin of Yersinia pestis mediates bacterial invasion into human endothelial cells. FEBS Lett 2001, 504, 69–72.
  21. Doring G, Maier M, Muller E, Bibi Z, Tummler B, Kharazmi A: Virulence factors of Pseudomonas aeruginosa. Antibiot Chemother 1987, 39, 136–148.
  22. Travis J, Potempa J: Bacterial proteinases as targets for the development of second−generation antibiotics. Biochim Biophys Acta 2000, 1477, 35–50.
  23. McGavin MJ, Zahradka C, Rice K, Scott JE: Modification of the Staphylococcus aureus fibronectin binding phenotype by V8 protease. Infect Immun 1997, 65, 2621–2628.
  24. Potempa J, Banbula A, Travis J: Role of bacterial proteinases in matrix destruction and modulation of host responses. Periodontol 2000 2000, 24, 153–192.
  25. Paulsen IT, Banerjei L, Myers GS, Nelson KE, Seshadri R, Read TD, Fouts DE, Eisen JA, Gill SR, Heidelberg JF, Tettelin H, Dodson RJ, Umayam L, Brinkac L, Beanan M, Daugherty S, DeBoy RT, Durkin S, Kolonay J, Madupu R, Nelson W, Vamathevan J, Tran B, Upton J, Hansen T, Shetty J, Khouri H, Utterback T, Radune D, Ketchum KA, Dougherty BA, Fraser CM: Role of mobile DNA in the evolution of vancomycinresistant Enterococcus faecalis. Science 2003, 299, 2071–2074.
  26. Coque TM, Patterson JE, Steckelberg JM, Murray BE: Incidence of hemolysin, gelatinase, and aggregation substance among enterococci isolated from patients with endocarditis and other infections and from feces of hospitalized and community−based persons. J Infect Dis 1995, 171, 1223–1229.
  27. Roberts JC, Singh KV, Okhuysen PC, Murray BE: Molecular epidemiology of the fsr locus and of gelatinase production among different subsets of Enterococcus faecalis isolates. J Clin Microbiol 2004, 42, 2317–2320.
  28. Bleiweis AS, Zimmerman LN: Properties of Proteinase from Streptococcus Faecalis Var. Liquefaciens. J Bacteriol 1964, 88, 653–659.
  29. Makinen PL, Clewell DB, An F, Makinen KK: Purification and substrate specificity of a strongly hydrophobic extracellular metalloendopeptidase (“gelatinase”) from Streptococcus faecalis (strain 0G1−10). J Biol Chem 1989, 264, 3325–3334.
  30. Makinen PL, Makinen KK: The Enterococcus faecalis extracellular metalloendopeptidase (EC 3.4.24.30; coccolysin) inactivates human endothelin at bonds involving hydrophobic amino acid residues. Biochem Biophys Res Commun 1994, 200, 981–985.
  31. Waters CM, Antiporta MH, Murray BE, Dunny GM: Role of the Enterococcus faecalis GelE protease in determination of cellular chain length, supernatant pheromone levels, and degradation of fibrin and misfolded surface proteins. J Bacteriol 2003, 185, 3613–3623.
  32. Sannomiya P, Craig RA, Clewell DB, Suzuki A, Fujino M, Till GO, Marasco WA: Characterization of a class of nonformylated Enterococcus faecalis−derived neutrophil chemotactic peptides: the sex pheromones. Proc Natl Acad Sci USA 1990, 87, 66–70.
  33. Mori M, Sakagami Y, Narita M, Isogai A, Fujino M, Kitada C, Craig RA, Clewell DB, Suzuki A: Isolation and structure of the bacterial sex pheromone, cAD1, that induces plasmid transfer in Streptococcus faecalis. FEBS Lett 1984, 178, 97–100.
  34. Dunny GM: Genetic functions and cell−cell interactions in the pheromone−inducible plasmid transfer system of Enterococcus faecalis. Mol Microbiol 1990, 4, 689–696.
  35. Su YA, Sulavik MC, He P, Makinen KK, Makinen PL, Fiedler S, Wirth R, Clewell DB: Nucleotide sequence of the gelatinase gene (gelE) from Enterococcus faecalis subsp. liquefaciens. Infect Immun 1991, 59, 415–420.
  36. Gold OG, Jordan HV, van Houte J: The prevalence of enterococci in the human mouth and their pathogenicity in animal models. Arch Oral Biol 1975, 20, 473–477.
  37. Vasil ML: Pseudomonas aeruginosa: biology, mechanisms of virulence, epidemiology. J Pediatr 1986, 108, 800–805.
  38. Kuhnen E, Richter F, Richter K, Andries L: Establishment of a typing system for group D streptococci. Zentralbl Bakteriol Mikrobiol Hyg [A] 1988, 267, 322–330.
  39. Coque JJ, Liras P, Martin JF: Genes for a beta−lactamase, a penicillin−binding protein and a transmembrane protein are clustered with the cephamycin biosynthetic genes in Nocardia lactamdurans. Embo J 1993, 12, 631–639.
  40. Vergis EN, Shankar N, Chow JW, Hayden MK, Snydman DR, Zervos MJ, Linden PK, Wagener MM, Muder RR: Association between the presence of enterococcal virulence factors gelatinase, hemolysin, and enterococcal surface protein and mortality among patients with bacteremia due to Enterococcus faecalis. Clin Infect Dis 2002, 35, 570–575.
  41. Singh KV, Qin X, Weinstock GM, Murray BE: Generation and testing of mutants of Enterococcus faecalis in a mouse peritonitis model. J Infect Dis 1998, 178, 1416–1420.
  42. Garsin DA, Sifri CD, Mylonakis E, Qin X, Singh KV, Murray BE, Calderwood SB, Ausubel FM: A simple model host for identifying Gram−positive virulence factors. Proc Natl Acad Sci U S A 2001, 98, 10892–10897.
  43. Sifri CD, Mylonakis E, Singh KV, Qin X, Garsin DA, Murray BE, Ausubel FM, Calderwood SB: Virulence Effect of Enterococcus faecalis Protease Genes and the Quorum−Sensing Locus fsr in Caenorhabditis elegans and Mice. Infect Immun 2002, 70, 5647–5650.
  44. Engelbert M, Mylonakis E, Ausubel FM, Calderwood SB, Gilmore MS: Contribution of gelatinase, serine protease, and fsr to the pathogenesis of Enterococcus faecalis endophthalmitis. Infect Immun 2004, 72, 3628–3633.
  45. Qin X, Singh KV, Weinstock GM, Murray BE: Effects of Enterococcus faecalis fsr genes on production of gelatinase and a serine protease and virulence. Infect Immun 2000, 68, 2579–2586.
  46. Recsei P, Kreiswirth B, O’Reilly M, Schlievert P, Gruss A, Novick RP: Regulation of exoprotein gene expression in Staphylococcus aureus by agr. Mol Gen Genet 1986, 202, 58–61.
  47. Nakayama J, Cao Y, Horii T, Sakuda S, Akkermans AD, de Vos WM, Nagasawa H: Gelatinase biosynthesisactivating pheromone: a peptide lactone that mediates a quorum sensing in Enterococcus faecalis. Mol Microbiol 2001, 41, 145–154.
  48. Nakayama J, Kariyama R, Kumon H: Description of a 23.9−kilobase chromosomal deletion containing a region encoding fsr genes which mainly determines the gelatinase−negative phenotype of clinical isolates of Enterococcus faecalis in urine, Appl Environ Microbiol 2002, 68, 3152–3155.
  49. Qin X, Singh KV, Weinstock GM, Murray BE: Characterization of fsr, a regulator controlling expression of gelatinase and serine protease in Enterococcus faecalis OG1RF. J Bacteriol 2001, 183, 3372–3382.
  50. Singh KV, Nallapareddy SR, Nannini EC, Murray BE: Fsr−independent production of protease(s) may explain the lack of attenuation of an Enterococcus faecalis fsr mutant versus a gelE−sprE mutant in induction of endocarditis. Infect Immun 2005, 73, 4888–4894.
  51. Mylonakis E, Engelbert M, Qin X, Sifri CD, Murray BE, Ausubel FM, Gilmore MS, Calderwood SB: The Enterococcus faecalis fsrB gene, a key component of the fsr quorum−sensing system, is associated with virulence in the rabbit endophthalmitis model. Infect Immun 2002, 70, 4678–4681.
  52. Hancock LE, Perego M: The Enterococcus faecalis fsr two−component system controls biofilm development through production of gelatinase. J Bacteriol 2004, 186, 5629–5639.
  53. Mohamed JA, Huang W, Nallapareddy SR, Teng F, Murray BE: Influence of origin of isolates, especially endocarditis isolates, and various genes on biofilm formation by Enterococcus faecalis. Infect Immun 2004, 72, 3658–3663.
  54. Hubble TS, Hatton JF, Nallapareddy SR, Murray BE, Gillespie MJ: Influence of Enterococcus faecalis proteases and the collagen−binding protein, Ace, on adhesion to dentin. Oral Microbiol Immunol 2003, 18, 121–126.
  55. Gomes BP, Pinheiro ET, Gade−Neto CR, Sousa EL, Ferraz CC, Zaia AA, Teixeira FB, Souza−Filho FJ: Microbiological examination of infected dental root canals. Oral Microbiol Immunol 2004, 19, 71–76.
  56. Peciuliene V, Balciuniene I, Eriksen HM, Haapasalo M: Isolation of Enterococcus faecalis in previously rootfilled canals in a Lithuanian population. J Endod 2000, 26, 593–595.
  57. Nallapareddy SR, Qin X, Weinstock GM, Hook M, Murray BE: Enterococcus faecalis adhesin, ace, mediates attachment to extracellular matrix proteins collagen type IV and laminin as well as collagen type I. Infect Immun 2000, 68, 5218–5224.
  58. Yamaguchi T, Nishifuji K, Sasaki M, Fudaba Y, Aepfelbacher M, Takata T, Ohara M, Komatsuzawa H, Amagai M, Sugai M: Identification of the Staphylococcus aureus etd pathogenicity island which encodes a novel exfoliative toxin, ETD, and EDIN−B. Infect Immun 2002, 70, 5835–5845.
  59. Ohara−Nemoto Y, Ikeda Y, Kobayashi M, Sasaki M, Tajika S, Kimura S: Characterization and molecular cloning of a glutamyl endopeptidase from Staphylococcus epidermidis. Microb Pathogen 2002, 33, 33–41.
  60. Qin X: Identification and characterization of virulence factors in Enterococcus faecalis [PhD Dissertation]. The University of Texas Health Science Center at Houston, 2000.
  61. Kawalec M, Potempa J, Moon JL, Travis J, Murray BE: Molecular diversity of a putative virulence factor: purification and characterization of isoforms of an extracellular serine glutamyl endopeptidase of Enterococcus faecalis with different enzymatic activities. J Bacteriol 2005, 187, 266–275.
  62. Kawalec M, Potempa J, Moon JL, Travis J, Murray BE: Purification and Characterization of Isoforms of the Extracellular Serine Glutamylendopeptidase SprE of Enterococcus faecalis. abstr. # B−820. 43rd ICAAC, 2003, Chicago. American Society for Microbiology.
  63. Kawalec M, Jakubczak A, Torres E, Blanke SR, Potempa J, Murray BE: Recombinant extracellular serine glutamyl endopeptidase SprE of Enterococcus faecalis mimics the native enzyme and is toxic for human cells in vitro. 2nd International ASM−FEMS Conference on Enterococci, 2005 August 28–31, 2005, Helingor, Denmark. American Society of Microbiology; 1752 N Street, N. W.; Washington, DC 20036–2904.
  64. Wise RJ, Barr PJ, Wong PA, Kiefer MC, Brake AJ, Kaufman RJ: Expression of a human proprotein processing enzyme: correct cleavage of the von Willebrand factor precursor at a paired basic amino acid site. Proc Natl Acad Sci USA 1990, 87, 9378–9382.
  65. Singh Y, Klimpel KR, Goel S, Swain PK, Leppla SH: Oligomerization of anthrax toxin protective antigen and binding of lethal factor during endocytic uptake into mammalian cells. Infect Immun 1999, 67, 1853–1859.
  66. Sabat A, Kosowska K, Poulsen K, Kasprowicz A, Sekowska A, van Den Burg B, Travis J, Potempa J: Two allelic forms of the aureolysin gene (aur) within Staphylococcus aureus. Infect Immun 2000, 68, 973–976.