Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1 (5-Year IF – 2.0)
Journal Citation Indicator (JCI) (2023) – 0.4
Scopus CiteScore – 3.7 (CiteScore Tracker – 4.0)
Index Copernicus  – 171.00; MNiSW – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2006, vol. 15, nr 5, September-October, p. 777–787

Publication type: original article

Language: English

The Development of Laboratory Rats Fed with Fresh and Oxidized Fats and the Influence of Bioflavinoids from the Radix of Scutellaria baicalensis on Lipid Metabolism

Rozwój szczurów laboratoryjnych karmionych paszą ze świeżymi i utlenionymi tłuszczami i wpływ bioflawonoidów z korzenia tarczycy bajkalskiej na metabolizm tłuszczów

Bożena Regulska−Ilow1,, Jadwiga Biernat1,, Rafał Ilow1,, Przemysław Kowalski2,, Halina Grajeta1,, Eliza Lamer−Zarawska3,

1 Department of Food Science and Nutrition, Silesian Piasts University of Medicine in Wrocław, Poland

2 Department of Pathological Anatomy, Silesian Piasts University of Medicine in Wrocław, Poland

3 Department of Pharmaceutical Botany, Silesian Piasts University of Medicine in Wrocław, Poland

Abstract

Background. The overall daily food intake of humans always includes some oxidized fats, which form during culinary processes. It is possible to prevent the unhealthy effects of oxidation products by introducing anti−oxidants into the diet, for example bioflavonoids.
Objectives. Assessing the influence of an extract from the root of Scutellaria baicalensis on the development of rats and on the indicators of fat metabolism under conditions of oxidative stress caused by consumed oxidized fats.
Material and Methods. Using rats fed a diet with an 8% fat content and a 0.5% cholesterol supplement, the influence of bioflavinoids from Scutellaria baicalensis root on body mass and total lipid (TL), triglyceride (TG), total cholesterol (TCH), HDL−cholesterol (HDL−CH), and phospholipid concentrations in the serum and liver were assessed. Histopathological analyses of liver tissue samples were also performed. The source of pro−oxidants in the rats’ diet was either oxidized sunflower oil or oxidized lard. The four−week experiment involved 80 male Buffalo rats, of which 40 received a 0.075% root extract as a supplement to their diet.
Results. In the groups of rats on diets containing oxidized fats, the extract had a statistically significant influence on the atherogenic index, calculated according to the formula: (TCH – HDL−CH)/HDL−CH. In the group fed with oxidized lard, the extract also influenced the increase in the total cholesterol concentration in the serum. The TCH and phospholipid concentrations in the serum were reduced by the extract and the rate of body mass increase rose in the rats fed on a diet containing fresh sunflower oil. Lower concentrations of TCH (1.30 ± 0.2 mmol/l) and TG (0.85 ± 0.2 mmol/l) were observed in the serum of rats fed a diet containing oxidized oil compared with controls (1.87 ± 0.4 and 1.41 ± 0.3 mmol/l, respectively). A similar situation was observed for TCH in the serum of rats fed on a diet containing oxidized lard (1.26 ± 0.2 mmol/l) compared with controls (1.56 ± 0.2 mmol/l).
Conclusion. The bioflavonoids did not display a hepatoprotective activity in rats given fodder containing oxidized fats; this was evident in the relative increase in liver mass seen in these animals. We also found that fodder containing lard, especially oxidized lard, had a negative influence on the liver in rats. This was confirmed in histopathological analyses.

Streszczenie

Wprowadzenie. W całodziennych racjach pokarmowych człowieka stale są obecne tłuszcze utlenione powstające w wyniku procesów kulinarnych. Niekorzystnym skutkom działania produktów utlenienia w organizmie można zapobiegać przez wprowadzenie do diety antyoksydantów, np. bioflawonoidów.
Cel pracy. Ocena wpływu ekstraktu z korzenia tarczycy bajkalskiej na rozwój zwierząt, wskaźniki przemian tłuszczowych w warunkach stresu oksydacyjnego wywołanego utlenionymi tłuszczami spożywczymi.
Materiał i metody. W grupach szczurów karmionych paszami z 8% zawartością tłuszczu i 0,5% dodatkiem cholesterolu, oceniono wpływ bioflawonoidów z korzenia tarczycy bajkalskiej na: przyrosty masy ciała, stężenie lipidów całkowitych (TL), triglicerydów (TG), cholesterolu ogólnego (TCH), HDL−cholesterolu (HDL−CH) i fosfolipidów w surowicy i wątrobie. Wykonano także histopatologiczne badanie wycinków tkanki wątrobowej. Źródłem prooksydantów w diecie były utlenione: olej słonecznikowy lub smalec. Czterotygodniowe doświadczenie przeprowadzono na 80 szczurach, samcach, rasy Buffalo, z których połowa otrzymywała 0,075% dodatek ekstraktu do paszy.
Wyniki. W grupach zwierząt na diecie z utlenionymi tłuszczami dodatek ekstraktu powodował istotny statystycznie wzrost współczynnika aterogenności, obliczonego według wzoru: (TCH – HDL−CH)/HDL−CH. W grupie karmionej smalcem utlenionym powodował także wzrost stężenia cholesterolu całkowitego w osoczu. Ekstrakt obniżał w osoczu stężenie TCH i fosfolipidów i zwiększał przyrost masy ciała szczurów karmionych paszą ze świeżym olejem słonecznikowym. Obserwowano mniejsze stężenie TCH (1,30 ± 0,2 mmol/l) i TG (0,85 ± 0,2 mmol/l) w osoczu zwierząt karmionych utlenionym olejem w stosunku do kontroli odpowiednio (1,87 ± 0,4; 1,41 ± 0,3 mmol/l), a także TCH w osoczu szczurów na diecie ze smalcem utlenionym (1,26 ± 0,2 mmol/l) w stosunku do kontroli (1,56 ± 0,2 mmol/l).
Wnioski. Bioflawonoidy nie wykazywały działania hepatoprotekcyjnego u zwierząt karmionych paszą z utlenionymi tłuszczami, co miało swój wyraz w zwiększeniu względnej masy wątroby. Stwierdzono także niekorzystny wpływ paszy ze smalcem, zwłaszcza utlenionym, na wątrobę zwierząt. Potwierdziły to wyniki badań histopatologicznych.

Key words

Scutellaria baicalensis radix, oxidized fats, rats, lipids, histopathological analyses

Słowa kluczowe

korzeń tarczycy bajkalskiej, tłuszcze utlenione, szczury, lipidy, badania histopatologiczne

References (20)

  1. Williams MJA, Sutherland WHF, McCormick MP, De Jong SA, Walker RJ, Wilkins GT: Impaired endothelial function following a meal rich in used cooking fat. J Am Coll Cardiol 1999, 33, 1050–1055.
  2. Hayam I, Cogan U, Mokady S: Dietary oxidized oil and the activity of antioxidant enzymes and lipoprotein peroxidation in rats. Nutr Res 1995, 15, 1037–1044.
  3. Andrikopoulos NK, Antonopoulou S, Kaliora AC: Oleuropein inhibits LDL oxidation induced by cooking oil frying by−products and platelet agregation induced by platelet−activating factor. Lebensm Wiss Technol 2002, 35, 479–484.
  4. Aherne SA, O’Brien NM: Dietary flavonols: chemistry, food content and metabolism. Nutrition 2002, 18, 75–81.
  5. Ross JA, Kasum CM: Dietary flavonoids: bioavailability, metabolic effects and safety. Ann Rev Nutr 2002, 22, 19–34.
  6. Dragland S, Senoo H, Wake K, Holte K, Blomhof R: Several culinary and medicinal herbs are important sources of dietary antioxidants. J Nutr 2003, 133, 1286–1290.
  7. Report of the American Institute of Nutrition ad hoc Committee on Standards for Nutritional Studies. J Nutr 1977, 107,1340–1348.
  8. Ziemlański Ś, Panczenko−Kresowska B, Budzyńska−Topolewska J, Żelazkiewicz K, Kołakowska A: Effect of variously oxidized marine fish fat on guinea pig organism. Acta Alimentaria Polonica 1992, 17/31, 159–169.
  9. Kołakowska A, Szczygielski M, Głowacka D: Losses in n−3 PUFAs during oxidation of fish lipids. Pol J Food Nutr Sci 1998, 7/48, 41–49.
  10. Paul S, Mittal GS: Dynamics of fat/oil degradation during frying based on optical properties. J Food Engineering 1996, 30, 389–403.
  11. Daniewski M, Pawlicka M, Filipek A, Jacórzyński B, Mielniczuk E, Balas J, Domina P: Assessment of quality control tests for frying fat of french fries. Pol J Human Nutr Metab 2001, 28, 132–139.
  12. Kawahara S, Inone K, Hayashi T, Masuda Y, Ito T: Lipids easy to accumulate in the liver and lipids hard to accumulate in it. Nutr Res 1997, 17, 1013–1023.
  13. Ellis J, Hoover−Plow J: Monounsaturated canola oil reduces fat deposition in growing female rats fed a high or low fat diet. Nutr Res 2002, 22, 609–621.
  14. Aoyama T, Fukui K, Taniguchi K, Nagaoka S, Yamamoto T, Hashimoto Y: Absorption and metabolism of lipids in rats depend on fatty acid isomeric position J Nutr 1996, 126, 225–231.
  15. Kubow S: Review: The influence of positional distribution of fatty acids in native, interestrified and structurespecific lipids on lipoprotein metabolism and atherogenesis. Nutr Bioch 1996, 7, 530–541.
  16. Weber N, Klein E, Mukherjee KD: Stereospecific incorporation of palmitoyl, oleoyl and linoleoyl moieties into adipose tissue triacylglycerols of rats results in constant sn−1: sn−2: sn−3 in rats fed rapeseed, olive, conventional or high oleic sunflower oils, but not in those fed coriander oil. J Nutr 2003, 133, 435–441.
  17. Decker EA: The role of stereospecific saturated fatty acid positions on lipid nutrition. Nutr Rev 1996, 54, 108–110.
  18. Juśkiewicz J, Zduńczyk Z, Wróblewska M, Oszmiański J, Hernandez T: The response of rats to feeding with diets containing grapefruit flavonoid extract. Food Res Int 2002, 35, 201–205.
  19. Gao Z, Xu H, Xiaojun Ch, Hao Ch: Antioxidant status and mineral contents in tissues of rutin and baicalin fed rats. Life Sci 2003, 73, 1599–1607.
  20. Lu Y, Lo Ych: Effect of deep frying oil given with and without dietary cholesterol on lipid metabolism in rats. Nutr Res 1995, 15, 1783–1792.