Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.736
5-Year Impact Factor – 2.135
Index Copernicus  – 168.52
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

Ahead of print

doi: 10.17219/acem/159799

Publication type: review

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Cite as:


Bukłaho PA, Kiśluk J, Wasilewska N, Nikliński J. Molecular features as promising biomarkers in ovarian cancer [published online as ahead of print on March 15, 2023]. Adv Clin Exp Med. 2023. doi:10.17219/acem/159799

Molecular features as promising biomarkers in ovarian cancer

Patrycja Aleksandra Bukłaho1,A,B,D, Joanna Kiśluk1,E,F, Natalia Wasilewska1,D, Jacek Nikliński1,E,F

1 Department of Clinical Molecular Biology, Medical University of Bialystok, Poland

Abstract

Ovarian cancer (OC) is a global challenge for modern medicine, ranking 7th for incidence and the 8th most common cause of mortality from cancers in women. Ovarian cancer has a poor prognosis, characterized by high morbidity and mortality, with detection occurring more frequently in advanced stages. Further issues lie within the heterogeneous nature of this pathology, as well as in its ability to develop multidrug resistance. Therefore, there is a burgeoning need to introduce effective screening for the general population, especially in high-risk groups such as individuals with a family history of cancer. Achieving this would be greatly assisted by identifying new biomarkers in order to, in turn, develop targeted therapies for patients. Advances in molecular biology techniques that enable cancer genetic characterization offer hope for personalized medicine. This article reviews the current findings on the biology of OC at the molecular level. Such knowledge may prove to be crucial and constitute a starting point for the development of new options for the early detection, prevention and treatment of OC.

Key words

ovarian cancer, molecular markers, early detection, genetic testing, ovarian cancer screening

Graphical abstract


Graphical abstracts

References (71)

  1. Reid F. World Ovarian Cancer Coalition Atlas 2020. World Ovarian Cancer Coalition; 2020. https://worldovariancancercoalition.org/wp-content/uploads/2020/10/2020-World-Ovarian-Cancer-Atlas_FINAL.pdf. Accessed May 9, 2022.
  2. Roett MA, Evans P. Ovarian cancer: An overview. Am Fam Physician. 2009;80(6):609–616. PMID:19817326.
  3. Rooth C. Ovarian cancer: Risk factors, treatment and management. Br J Nurs. 2013;22(17):S23–S30. doi:10.12968/bjon.2013.22.Sup17.S23
  4. Kujawa K, Lisowska K. Ovarian can­cer: From biology to clinic [in Polish]. Postepy Hig Med Dosw (online). 2015;69:1275–1290. https://phmd.pl/api/files/view/116449.pdf. Accessed May 9, 2022.
  5. Fairfield K, Willett W, Rosner B, Manson J, Speizer F, Hankinson S. Obesity, weight gain, and ovarian cancer. Obstet Gynecol. 2002;100(2):288–296. doi:10.1016/S0029-7844(02)02053-7
  6. Varol U, Kucukzeybek Y, Alacacioglu A, et al. BRCA genes: BRCA1 and BRCA 2. J BUON. 2018;23(4):862–866. PMID:30358186.
  7. Foong KW, Bolton H. Obesity and ovarian cancer risk: A systematic review. Post Reprod Health. 2017;23(4):183–198. doi:10.1177/2053369117709225
  8. Mavaddat N, Peock S, Frost D, et al. Cancer risks for BRCA1 and BRCA2 mutation carriers: Results from prospective analysis of EMBRACE. J Natl Cancer Inst. 2013;105(11):812–822. doi:10.1093/jnci/djt095
  9. Moslehi R, Chu W, Karlan B, et al. BRCA1 and BRCA2 mutation analysis of 208 Ashkenazi Jewish women with ovarian cancer. Am J Hum Genet. 2000;66(4):1259–1272. doi:10.1086/302853
  10. Kim J, Park E, Kim O, et al. Cell origins of high-grade serous ovarian cancer. Cancers (Basel). 2018;10(11):433. doi:10.3390/cancers10110433
  11. Coetzee SG, Shen HC, Hazelett DJ, et al. Cell-type-specific enrichment of risk-associated regulatory elements at ovarian cancer susceptibility loci. Hum Mol Genet. 2015;24(13):3595–3607. doi:10.1093/hmg/ddv101
  12. Casey L, Singh N. Ovarian high-grade serous carcinoma: Assessing pathology for site of origin, staging and post-neoadjuvant chemotherapy changes. Surg Pathol Clin. 2019;12(2):515–528. doi:10.1016/j.path.2019.01.007
  13. Desai A, Xu J, Aysola K, et al. Epithelial ovarian cancer: An overview. World J Transl Med. 2014;3(1):1–8. doi:10.5528/wjtm.v3.i1.1
  14. Takaya H, Nakai H, Takamatsu S, Mandai M, Matsumura N. Homologous recombination deficiency status-based classification of high-grade serous ovarian carcinoma. Sci Rep. 2020;10(1):2757. doi:10.1038/s41598-020-59671-3
  15. Hollis RL, Meynert AM, Churchman M, et al. Enhanced response rate to pegylated liposomal doxorubicin in high grade serous ovarian carcinomas harbouring BRCA1 and BRCA2 aberrations. BMC Cancer. 2018;18(1):16. doi:10.1186/s12885-017-3981-2
  16. Wada M, Kukita A, Sone K, et al. Epigenetic modifier SETD8 as a therapeutic target for high-grade serous ovarian cancer. Biomolecules. 2020;10(12):1686. doi:10.3390/biom10121686
  17. Kroeger PT, Drapkin R. Pathogenesis and heterogeneity of ovarian cancer. Curr Opin Obstet Gynecol. 2017;29(1):26–34. doi:10.1097/GCO.0000000000000340
  18. Lheureux S, Braunstein M, Oza AM. Epithelial ovarian cancer: Evolution of management in the era of precision medicine. CA Cancer J Clin. 2019;69(4):280–304. doi:10.3322/caac.21559
  19. Lee S, Zhao L, Rojas C, et al. Molecular analysis of clinically defined subsets of high-grade serous ovarian cancer. Cell Rep. 2020;31(2):107502. doi:10.1016/j.celrep.2020.03.066
  20. Silwal-Pandit L, Langerød A, Børresen-Dale AL. TP53 mutations in breast and ovarian cancer. Cold Spring Harb Perspect Med. 2017;7(1):a026252. doi:10.1101/cshperspect.a026252
  21. Mehrgou A, Akouchekian M. The importance of BRCA1 and BRCA2 genes mutations in breast cancer development. Med J Islam Repub Iran. 2016;30:369. PMID:27493913.
  22. Madariaga A, Lheureux S, Oza A. Tailoring ovarian cancer treatment: Implications of BRCA1/2 mutations. Cancers (Basel). 2019;11(3):416. doi:10.3390/cancers11030416
  23. Berchuck A, Heron KA, Carney ME, et al. Frequency of germline and somatic BRCA1 mutations in ovarian cancer. Clin Cancer Res. 1998;4(10):2433–2437. PMID:9796975.
  24. Ballabio S, Craparotta I, Paracchini L, et al. Multisite analysis of high-grade serous epithelial ovarian cancers identifies genomic regions of focal and recurrent copy number alteration in 3q26.2 and 8q24.3. Int J Cancer. 2019;145(10):2670–2681. doi:10.1002/ijc.32288
  25. Dugo M, Devecchi A, De Cecco L, et al. Focal recurrent copy number alterations characterize disease relapse in high grade serous ovarian cancer patients with good clinical prognosis: A pilot study. Genes (Basel). 2019;10(9):678. doi:10.3390/genes10090678
  26. Wu JWY, Dand S, Doig L, et al. T-cell receptor therapy in the treatment of ovarian cancer: A mini review. Front Immunol. 2021;12:672502. doi:10.3389/fimmu.2021.672502
  27. Kossaï M, Leary A, Scoazec JY, Genestie C. Ovarian cancer: A heterogeneous disease. Pathobiology. 2018;85(1–2):41–49. doi:10.1159/000479006
  28. Marí-Alexandre J, Pellín-Carcelén A, Agababyan C, et al. Interplay between microRNAs and oxidative stress in ovarian conditions with a focus on ovarian cancer and endometriosis. Int J Mol Sci. 2019;20(21):5322. doi:10.3390/ijms20215322
  29. Gorski JW, Ueland FR, Kolesar JM. CCNE1 amplification as a predictive biomarker of chemotherapy resistance in epithelial ovarian cancer. Diagnostics (Basel). 2020;10(5):279. doi:10.3390/diagnostics10050279
  30. Stronach EA, Paul J, Timms KM, et al. Biomarker assessment of HR deficiency, tumor BRCA1/2 mutations, and CCNE1 copy number in ovarian cancer: Associations with clinical outcome following platinum monotherapy. Mol Cancer Res. 2018;16(7):1103–1111. doi:10.1158/1541-7786.MCR-18-0034
  31. Lisio MA, Fu L, Goyeneche A, Gao ZH, Telleria C. High-grade serous ovarian cancer: Basic sciences, clinical and therapeutic standpoints. Int J Mol Sci. 2019;20(4):952. doi:10.3390/ijms20040952
  32. The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–615. doi:10.1038/nature10166
  33. Zeng M, Kwiatkowski NP, Zhang T, et al. Targeting MYC dependency in ovarian cancer through inhibition of CDK7 and CDK12/13. Elife. 2018;7:e39030. doi:10.7554/eLife.39030
  34. Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV. MYC, metabolism, and cancer. Cancer Discov. 2015;5(10):1024–1039. doi:10.1158/2159-8290.CD-15-0507
  35. Chen P, Zuo N, Wu C, et al. MECOM promotes supporting cell proliferation and differentiation in cochlea. J Otol. 2022;17(2):59–66. doi:10.1016/j.joto.2021.11.002
  36. Kamieniak MM, Rico D, Milne RL, et al. Deletion at 6q24.2-26 predicts longer survival of high-grade serous epithelial ovarian cancer patients. Mol Oncol. 2015;9(2):422–436. doi:10.1016/j.molonc.2014.09.010
  37. Andrews L, Mutch DG. Hereditary ovarian cancer and risk reduction. Best Pract Res Clin Obstet Gynaecol. 2017;41:31–48. doi:10.1016/j.bpobgyn.2016.10.017
  38. Si M, Zhang J, Cao J, et al. Integrated analysis to identify molecular biomarkers of high-grade serous ovarian cancer. Onco Targets Ther. 2019;12:10057–10075. doi:10.2147/OTT.S228678
  39. Millstein J, Budden T, Goode EL, et al. Prognostic gene expression signature for high-grade serous ovarian cancer. Ann Oncol. 2020;31(9):1240–1250. doi:10.1016/j.annonc.2020.05.019
  40. Li Y, Jaiswal SK, Kaur R, et al. Differential gene expression identifies a transcriptional regulatory network involving ER-alpha and PITX1 in invasive epithelial ovarian cancer. BMC Cancer. 2021;21(1):768. doi:10.1186/s12885-021-08276-8
  41. Schwarz RF, Ng CKY, Cooke SL, et al. Spatial and temporal heterogeneity in high-grade serous ovarian cancer: A phylogenetic analysis. PLoS Med. 2015;12(2):e1001789. doi:10.1371/journal.pmed.1001789
  42. Govindarajan M, Wohlmuth C, Waas M, Bernardini MQ, Kislinger T. High-throughput approaches for precision medicine in high-grade serous ovarian cancer. J Hematol Oncol. 2020;13(1):134. doi:10.1186/s13045-020-00971-6
  43. Jiménez-Sánchez A, Cybulska P, Mager KL, et al. Unraveling tumor–immune heterogeneity in advanced ovarian cancer uncovers immunogenic effect of chemotherapy. Nat Genet. 2020;52(6):582–593. doi:10.1038/s41588-020-0630-5
  44. Freimund AE, Beach JA, Christie EL, Bowtell DDL. Mechanisms of drug resistance in high-grade serous ovarian cancer. Hematol Oncol Clin North Am. 2018;32(6):983–996. doi:10.1016/j.hoc.2018.07.007
  45. Cornelison R, Llaneza D, Landen C. Emerging therapeutics to overcome chemoresistance in epithelial ovarian cancer: A mini-review. Int J Mol Sci. 2017;18(10):2171. doi:10.3390/ijms18102171
  46. Natanzon Y, Goode EL, Cunningham JM. Epigenetics in ovarian cancer. Semin Cancer Biol. 2018;51:160–169. doi:10.1016/j.semcancer.2017.08.003
  47. Sun Y, Guo F, Bagnoli M, et al. Key nodes of a microRNA network associated with the integrated mesenchymal subtype of high-grade serous ovarian cancer. Chin J Cancer. 2015;34(1):28–40. doi:10.5732/cjc.014.10284
  48. Matthews BG, Bowden NA, Wong-Brown MW. Epigenetic mechanisms and therapeutic targets in chemoresistant high-grade serous ovarian cancer. Cancers (Basel). 2021;13(23):5993. doi:10.3390/cancers13235993
  49. Ivan C, Hu W, Bottsford-Miller J, et al. Epigenetic analysis of the Notch superfamily in high-grade serous ovarian cancer. Gynecol Oncol. 2013;128(3):506–511. doi:10.1016/j.ygyno.2012.11.029
  50. Li J, Zhang Y, Gao Y, et al. Downregulation of HNF1 homeobox B is associated with drug resistance in ovarian cancer. Oncol Rep. 2014;32(3):979–988. doi:10.3892/or.2014.3297
  51. Chapman-Rothe N, Curry E, Zeller C, et al. Chromatin H3K27me3/H3K4me3 histone marks define gene sets in high-grade serous ovarian cancer that distinguish malignant, tumour-sustaining and chemo-resistant ovarian tumour cells. Oncogene. 2013;32(38):4586–4592. doi:10.1038/onc.2012.477
  52. Dong R, Liu X, Zhang Q, et al. miR-145 inhibits tumor growth and metastasis by targeting metadherin in high-grade serous ovarian carcinoma. Oncotarget. 2014;5(21):10816–10829. doi:10.18632/oncotarget.2522
  53. Liu Z, Gersbach E, Zhang X, et al. miR-106a represses the Rb tumor suppressor p130 to regulate cellular proliferation and differentiation in high-grade serous ovarian carcinoma. Mol Cancer Res. 2013;11(11):1314–1325. doi:10.1158/1541-7786.MCR-13-0131
  54. Barnes BM, Nelson L, Tighe A, et al. Distinct transcriptional programs stratify ovarian cancer cell lines into the five major histological subtypes. Genome Med. 2021;13(1):140. doi:10.1186/s13073-021-00952-5
  55. Pierson WE, Peters PN, Chang MT, et al. An integrated molecular profile of endometrioid ovarian cancer. Gynecol Oncol. 2020;157(1):55–61. doi:10.1016/j.ygyno.2020.02.011
  56. Rosen DG, Yang G, Liu G, Mercado-Uribe I, Chang B, Xiao XS. Ovarian cancer: Pathology, biology, and disease models. Front Biosci (Landmark Ed). 2009;14(6):2089–2102. doi:10.2741/3364
  57. Krzystyniak J, Ceppi L, Dizon DS, Birrer MJ. Epithelial ovarian cancer: The molecular genetics of epithelial ovarian cancer. Ann Oncol. 2016;27(Suppl 1):i4–i10. doi:10.1093/annonc/mdw083
  58. McConechy MK, Ding J, Senz J, et al. Ovarian and endometrial endometrioid carcinomas have distinct CTNNB1 and PTEN mutation profiles. Mod Pathol. 2014;27(1):128–134. doi:10.1038/modpathol.2013.107
  59. Romero I, Leskelä S, Mies BP, Velasco AP, Palacios J. Morphological and molecular heterogeneity of epithelial ovarian cancer: Therapeutic implications. EJC Suppl. 2020;15:1–15. doi:10.1016/j.ejcsup.2020.02.001
  60. Ji JX, Wang YK, Cochrane DR, Huntsman DG. Clear cell carcinomas of the ovary and kidney: Clarity through genomics. J Pathol. 2018;244(5):550–564. doi:10.1002/path.5037
  61. Leskela S, Romero I, Cristobal E, et al. Mismatch repair deficiency in ovarian carcinoma: Frequency, causes, and consequences. Am J Surg Pathol. 2020;44(5):649–656. doi:10.1097/PAS.0000000000001432
  62. Cheasley D, Wakefield MJ, Ryland GL, et al. The molecular origin and taxonomy of mucinous ovarian carcinoma. Nat Commun. 2019;10(1):3935. doi:10.1038/s41467-019-11862-x
  63. Babaier A, Ghatage P. Mucinous cancer of the ovary: Overview and current status. Diagnostics (Basel). 2020;10(1):52. doi:10.3390/diagnostics10010052
  64. Goulding EA, Simcock B, McLachlan J, Griend R, Sykes P. Low-grade serous ovarian carcinoma: A comprehensive literature review. Aust N Z J Obstet Gynaecol. 2020;60(1):27–33. doi:10.1111/ajo.13105
  65. Hunter SM, Anglesio MS, Ryland GL, et al. Molecular profiling of low grade serous ovarian tumours identifies novel candidate driver genes. Oncotarget. 2015;6(35):37663–37677. doi:10.18632/oncotarget.5438
  66. Della Pepa C, Tonini G, Santini D, et al. Low grade serous ovarian carcinoma: From the molecular characterization to the best therapeutic strategy. Cancer Treat Rev. 2015;41(2):136–143. doi:10.1016/j.ctrv.2014.12.003
  67. Nash Z, Menon U. Ovarian cancer screening: Current status and future directions. Best Pract Res Clin Obstet Gynaecol. 2020;65:32–45. doi:10.1016/j.bpobgyn.2020.02.010
  68. Wentzensen N, Berg CD. Population testing for high penetrance genes: Are we there yet? J Natl Cancer Inst. 2018;110(7):687–689. doi:10.1093/jnci/djx282
  69. Nebgen DR, Lu KH, Bast RC. Novel approaches to ovarian cancer screening. Curr Oncol Rep. 2019;21(8):75. doi:10.1007/s11912-019-0816-0
  70. Fostira F, Papadimitriou M, Papadimitriou C. Current practices on genetic testing in ovarian cancer. Ann Transl Med. 2020;8(24):1703. doi:10.21037/atm-20-1422
  71. Mosele F, Remon J, Mateo J, et al. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: A report from the ESMO Precision Medicine Working Group. Ann Oncol. 2020;31(11):1491–1505. doi:10.1016/j.annonc.2020.07.014