Advances in Clinical and Experimental Medicine
Ahead of print
doi: 10.17219/acem/159531
Publication type: review
Language: English
License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)
Download citation:
Cite as:
Chodór-Rozwadowska KE, Sawicka M, Morawski S, Lenarczyk R, Kalarus Z, Kukulski T. Lead-related tricuspid regurgitation and ventricle dysfunction: Current management and future perspectives [published online as ahead of print on March 7, 2023]. Adv Clin Exp Med. 2023. doi:10.17219/acem/159531
Lead-related tricuspid regurgitation and ventricle dysfunction: Current management and future perspectives
1 Doctoral School, Division of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
2 Department of Cardiology, Silesian Centre for Heart Diseases, Zabrze, Poland
3 Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Silesian Centre for Heart Diseases, Zabrze, Poland
4 Department of Cardiology, Congenital Heart Diseases and Electrotherapy, Medical University of Silesia, Katowice, Poland
Abstract
The implantation of cardiac implantable electronic devices (CIEDs) may result in or worsen previously existing tricuspid regurgitation (TR). The prevelence of lead-related tricuspid regurgitation (LRTR) in patients with CIEDs is between 7.2% and 44.7% when the degree of worsening TR is not reported, or from 9.8% and 38% when it is diagnosed as worsening of TR severity by at least 2 grades after a CIED has been implanted. It has been suggested that a CIED lead positioned over or pinning a leaflet may be the main cause of TR in this patient population. The septal and posterior leaflets of the tricuspid valve have been reported to be the most affected by CIED leads. Severe LRTR is related to the development of heart failure (HF) or worsening of previously existing dysfunction; it is also associated with elevated mortality. However, there are no definitive predictors of LRTR development or standardized methods of treatment. Some studies have suggested that imaging-guided lead placement can reduce the occurrence of LRTR. This review summarizes current knowledge concerning the development, evaluation, consequences, and management of LRTR.
Key words
cardiac implantable electronic devices, lead-related tricuspid regurgitation, heart failure
Graphical abstract

References (75)
- Topilsky Y, Maltais S, Medina Inojosa J, et al. Burden of tricuspid regurgitation in patients diagnosed in the community setting. JACC Cardiovasc Imaging. 2019;12(3):433–442. doi:10.1016/j.jcmg.2018.06.014
- Paniagua D, Aldrich HR, Lieberman EH, Lamas GA, Agatston AS. Increased prevalence of significant tricuspid regurgitation in patients with transvenous pacemakers leads. Am J Cardiol. 1998;82(9):1130–1132. doi:10.1016/S0002-9149(98)00567-0
- Seo Y, Ishizu T, Nakajima H, Sekiguchi Y, Watanabe S, Aonuma K. Clinical utility of 3-dimensional echocardiography in the evaluation of tricuspid regurgitation caused by pacemaker leads. Circ J. 2008;72(9):1465–1470. doi:10.1253/circj.CJ-08-0227
- Arabi P, Özer N, Ateş AH, Yorgun H, Oto A, Aytemir K. Effects of pacemaker and implantable cardioverter defibrillator electrodes on tricuspid regurgitation and right sided heart functions. Cardiol J. 2015;22(6):637–644. doi:10.5603/CJ.a2015.0060
- Al-Bawardy R, Krishnaswamy A, Rajeswaran J, et al. Tricuspid regurgitation and implantable devices. Pacing Clin Electrophysiol. 2015;38(2):259–266. doi:10.1111/pace.12530
- Delling FN, Hassan ZK, Piatkowski G, et al. Tricuspid regurgitation and mortality in patients with transvenous permanent pacemaker leads. Am J Cardiol. 2016;117(6):988–992. doi:10.1016/j.amjcard.2015.12.038
- Rydlewska A, Ząbek A, Boczar K, Lelakowski J, Małecka B. Tricuspid valve regurgitation in the presence of endocardial leads: An underestimated problem. Postepy Kardiol Interwencyjnej. 2017;13(2):165–169. doi:10.5114/pwki.2017.68073
- Nakajima H, Seo Y, Ishizu T, et al. Features of lead-induced tricuspid regurgitation in patients with heart failure events after cardiac implantation of electronic devices: A three-dimensional echocardiographic study. Circ J. 2020;84(12):2302–2311. doi:10.1253/circj.CJ-20-0620
- Seo Y, Nakajima H, Ishizu T, et al. Comparison of outcomes in patients with heart failure with versus without lead-induced tricuspid regurgitation after cardiac implantable electronic devices implantations. Am J Cardiol. 2020;130:85–93. doi:10.1016/j.amjcard.2020.05.039
- Papageorgiou N, Falconer D, Wyeth N, et al. Effect of tricuspid regurgitation and right ventricular dysfunction on long-term mortality in patients undergoing cardiac devices implantation: >10-year follow-up study. Int J Cardiol. 2020;319:52–56. doi:10.1016/j.ijcard.2020.05.062
- Lee W, Fang H, Chen H, et al. Progressive tricuspid regurgitation and elevated pressure gradient after transvenous permanent pacemaker implantation. Clin Cardiol. 2021;44(8):1098–1105. doi:10.1002/clc.23656
- Riesenhuber M, Spannbauer A, Gwechenberger M, et al. Pacemaker lead-associated tricuspid regurgitation in patients with or without pre-existing right ventricular dilatation. Clin Res Cardiol. 2021;110(6):884–894. doi:10.1007/s00392-021-01812-3
- Kanawati J, Ng ACC, Khan H, et al. Long-term follow-up of mortality and heart failure hospitalisation in patients with intracardiac device-related tricuspid regurgitation. Heart Lung Circ. 2021;30(5):692–697. doi:10.1016/j.hlc.2020.08.028
- Kim JB, Spevack DM, Tunick PA, et al. The effect of transvenous pacemaker and implantable cardioverter defibrillator lead placement on tricuspid valve function: An observational study. J Am Soc Echocardiogr. 2008;21(3):284–287. doi:10.1016/j.echo.2007.05.022
- Mangieri A, Montalto C, Pagnesi M, et al. Mechanism and implications of the tricuspid regurgitation: From the pathophysiology to the current and future therapeutic options. Circ Cardiovasc Interv. 2017;10(7):e005043. doi:10.1161/CIRCINTERVENTIONS.117.005043
- Mediratta A, Addetia K, Yamat M, et al. 3D echocardiographic location of implantable device leads and mechanism of associated tricuspid regurgitation. JACC Cardiovasc Imaging. 2014;7(4):337–347. doi:10.1016/j.jcmg.2013.11.007
- Webster G, Margossian R, Alexander ME, et al. Impact of transvenous ventricular pacing leads on tricuspid regurgitation in pediatric and congenital heart disease patients. J Interv Card Electrophysiol. 2008;21(1):65–68. doi:10.1007/s10840-007-9183-0
- Klutstein M, Balkin J, Butnaru A, Ilan M, Lahad A, Rosenmann D. Tricuspid incompetence following permanent pacemaker implantation. Pacing Clin Electrophysiol. 2009;32(Suppl 1):S135–S137. doi:10.1111/j.1540-8159.2008.02269.x
- Alizadeh A, Sanati HR, Haji-Karimi M, et al. Induction and aggravation of atrioventricular valve regurgitation in the course of chronic right ventricular apical pacing. Europace. 2011;13(11):1587–1590. doi:10.1093/europace/eur198
- Addetia K, Maffessanti F, Mediratta A, et al. Impact of implantable transvenous device lead location on severity of tricuspid regurgitation. J Am Soc Echocardiogr. 2014;27(11):1164–1175. doi:10.1016/j.echo.2014.07.004
- Höke U, Auger D, Thijssen J, et al. Significant lead-induced tricuspid regurgitation is associated with poor prognosis at long-term follow-up. Heart. 2014;100(12):960–968. doi:10.1136/heartjnl-2013-304673
- Fanari Z, Hammami S, Hammami MB, Hammami S, Shuraih M. The effects of right ventricular apical pacing with transvenous pacemaker and implantable cardioverter defibrillator on mitral and tricuspid regurgitation. J Electrocardiol. 2015;48(5):791–797. doi:10.1016/j.jelectrocard.2015.07.002
- Lee RC, Friedman SE, Kono AT, Greenberg ML, Palac RT. Tricuspid regurgitation following implantation of endocardial leads: Incidence and predictors. Pacing Clin Electrophysiol. 2015;38(11):1267–1274. doi:10.1111/pace.12701
- Seo J, Kim DY, Cho I, Hong GR, Ha JW, Shim CY. Prevalence, predictors, and prognosis of tricuspid regurgitation following permanent pacemaker implantation. PLoS One. 2020;15(6):e0235230. doi:10.1371/journal.pone.0235230
- Di Mauro M, Bezante GP, Di Baldassarre A, et al. Functional tricuspid regurgitation: An underestimated issue. Int J Cardiol. 2013;168(2):707–715. doi:10.1016/j.ijcard.2013.04.043
- Chorin E, Rozenbaum Z, Topilsky Y, et al. Tricuspid regurgitation and long-term clinical outcomes. Eur Heart J Cardiovasc Imaging. 2020;21(2):157–165. doi:10.1093/ehjci/jez216
- Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16(3):233–270. doi:10.1093/ehjci/jev014
- Lang RM, Badano LP, Tsang W, et al. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. J Am Soc Echocardiogr. 2012;25(1):3–46. doi:10.1016/j.echo.2011.11.010
- Deichl AS, Lacour P, Belyavskiy E, et al. Case report. Assessing the position of pacemaker leads via transthoracic echocardiography: Additional value of the subcostal en face view. Front Cardiovasc Med. 2021;8:697052. doi:10.3389/fcvm.2021.697052
- Trankle CR, Gertz ZM, Koneru JN, et al. Severe tricuspid regurgitation due to interactions with right ventricular permanent pacemaker or defibrillator leads. Pacing Clin Electrophysiol. 2018;41(7):845–853. doi:10.1111/pace.13369
- Cheng Y, Gao H, Tang L, Li J, Yao L. Clinical utility of three-dimensional echocardiography in the evaluation of tricuspid regurgitation induced by implantable device leads. Echocardiography. 2016;33(11):1689–1696. doi:10.1111/echo.13314
- Lin G, Nishimura RA, Connolly HM, Dearani JA, Sundt TM, Hayes DL. Severe symptomatic tricuspid valve regurgitation due to permanent pacemaker or implantable cardioverter-defibrillator leads. J Am Coll Cardiol. 2005;45(10):1672–1675. doi:10.1016/j.jacc.2005.02.037
- Pang BJ, Joshi SB, Lui EH, et al. Validation of conventional fluoroscopic and ECG criteria for right ventricular pacemaker lead position using cardiac computed tomography. Pacing Clin Electrophysiol. 2014;37(4):495–504. doi:10.1111/pace.12301
- Yu YJ, Chen Y, Lau CP, et al. Nonapical right ventricular pacing is associated with less tricuspid valve interference and long-term progress of tricuspid regurgitation. J Am Soc Echocardiogr. 2020;33(11):1375–1383. doi:10.1016/j.echo.2020.06.014
- Rajappan K. Permanent pacemaker implantation technique: Part II. Heart. 2009;95(4):334–342. doi:10.1136/hrt.2008.156372
- Polewczyk A, Kutarski A, Tomaszewski A, et al. Lead dependent tricuspid dysfunction: Analysis of the mechanism and management in patients referred for transvenous lead extraction. Cardiol J. 2013;20(4):402–410. doi:10.5603/CJ.2013.0099
- Henry M, Abutaleb A, Jeevanandam V, et al. Anatomic description of tricuspid apparatus interference from implantable intracardiac devices. JACC Cardiovasc Imaging. 2022;15(2):361–365. doi:10.1016/j.jcmg.2020.12.016
- Chang JD, Manning WJ, Ebrille E, Zimetbaum PJ. Tricuspid valve dysfunction following pacemaker or cardioverter-defibrillator implantation. J Am Coll Cardiol. 2017;69(18):2331–2341. doi:10.1016/j.jacc.2017.02.055
- Occhetta E, Bortnik M, Magnani A, et al. Prevention of ventricular desynchronization by permanent para-Hisian pacing after atrioventricular node ablation in chronic atrial fibrillation: A crossover, blinded, randomized study versus apical right ventricular pacing. J Am Coll Cardiol. 2006;47(10):1938–1945. doi:10.1016/j.jacc.2006.01.056
- Lewicka-Nowak E, Dabrowska-Kugacka A, Tybura S, et al. Right ventricular apex versus right ventricular outflow tract pacing: Prospective, randomised, long-term clinical and echocardiographic evaluation. Kardiol Pol. 2006;64(10):1082–1091; discussion 1092–1093. PMID:17089240.
- Addetia K, Harb SC, Hahn RT, Kapadia S, Lang RM. Cardiac implantable electronic device lead-induced tricuspid regurgitation. JACC Cardiovasc Imaging. 2019;12(4):622–636. doi:10.1016/j.jcmg.2018.09.028
- Orban M, Orban M, Hausleiter J, Braun D. Tricuspid regurgitation and right ventricular dysfunction after cardiac device implantation: Is it time for intra-procedural TEE-guided lead implantation? Int J Cardiol. 2020;321:131–132. doi:10.1016/j.ijcard.2020.07.010
- Gmeiner J, Sadoni S, Orban M, et al. Prevention of pacemaker lead-induced tricuspid regurgitation by transesophageal echocardiography guided implantation. JACC Cardiovasc Interv. 2021;14(23):2636–2638. doi:10.1016/j.jcin.2021.08.042
- Saito M, Iannaccone A, Kaye G, Negishi K, Kosmala W, Marwick TH. Effect of right ventricular pacing on right ventricular mechanics and tricuspid regurgitation in patients with high-grade atrioventricular block and sinus rhythm (from the Protection of Left Ventricular Function During Right Ventricular Pacing study). Am J Cardiol. 2015;116(12):1875–1882. doi:10.1016/j.amjcard.2015.09.041
- Mutlak D, Aronson D, Lessick J, Reisner SA, Dabbah S, Agmon Y. Functional tricuspid regurgitation in patients with pulmonary hypertension: Is pulmonary artery pressure the only determinant of regurgitation severity? Chest. 2009;135(1):115–121. doi:10.1378/chest.08-0277
- Cork DP, McCullough PA, Mehta HS, et al. The economic impact of clinically significant tricuspid regurgitation in a large, administrative claims database. J Med Econ. 2020;23(5):521–528. doi:10.1080/13696998.2020.1718681
- Wang N, Fulcher J, Abeysuriya N, et al. Tricuspid regurgitation is associated with increased mortality independent of pulmonary pressures and right heart failure: A systematic review and meta-analysis. Eur Heart J. 2019;40(5):476–484. doi:10.1093/eurheartj/ehy641
- Vahanian A, Beyersdorf F, Praz F, et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease: Developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Rev Esp Cardiol (Engl Ed). 2022;75(6):524. doi:10.1016/j.rec.2022.05.006
- Brescia AA, Ward ST, Watt TMF, et al. Outcomes of guideline-directed concomitant annuloplasty for functional tricuspid regurgitation. Ann Thorac Surg. 2020;109(4):1227–1232. doi:10.1016/j.athoracsur.2019.07.035
- Glikson M, Nielsen JC, Kronborg MB, et al. 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. Eur Heart J. 2021;42(35):3427–3520. doi:10.1093/eurheartj/ehab364
- Wong W, Chen S, Chou A, et al. Late outcomes of valve repair versus replacement in isolated and concomitant tricuspid valve surgery: A nationwide cohort study. J Am Heart Assoc. 2020;9(8):e015637. doi:10.1161/JAHA.119.015637
- Fender EA, Zack CJ, Nishimura RA. Isolated tricuspid regurgitation: Outcomes and therapeutic interventions. Heart. 2018;104(10):798–806. doi:10.1136/heartjnl-2017-311586
- Tonko JB, Rinaldi CA. Non-traditional implantable cardioverter-defibrillator configurations and insertion techniques: A review of contemporary options. Europace. 2022;24(2):181–192. doi:10.1093/europace/euab178
- Shivamurthy P, Miller MA, El-Eshmawi A, et al. Leadless pacemaker implantation under direct visualization during valve surgery. J Thorac Cardiovasc Surg. 2022;163(5):1818–1825. doi:10.1016/j.jtcvs.2020.07.092
- Lurz P, von Bardeleben RS, Weber M, et al. Transcatheter edge-to-edge repair for treatment of tricuspid regurgitation. J Am Coll Cardiol. 2021;77(3):229–239. doi:10.1016/j.jacc.2020.11.038
- Nickenig G, Weber M, Schueler R, et al. 6-month outcomes of tricuspid valve reconstruction for patients with severe tricuspid regurgitation. J Am Coll Cardiol. 2019;73(15):1905–1915. doi:10.1016/j.jacc.2019.01.062
- Fam NP, von Bardeleben RS, Hensey M, et al. Transfemoral transcatheter tricuspid valve replacement with the EVOQUE system: A multicenter, observational, first-in-human experience. JACC Cardiovasc Interv. 2021;14(5):501–511. doi:10.1016/j.jcin.2020.11.045
- Taramasso M, Benfari G, van der Bijl P, et al. Transcatheter versus medical treatment of patients with symptomatic severe tricuspid regurgitation. J Am Coll Cardiol. 2019;74(24):2998–3008. doi:10.1016/j.jacc.2019.09.028
- Taramasso M, Gavazzoni M, Pozzoli A, et al. Outcomes of TTVI in patients with pacemaker or defibrillator leads: Data from the TriValve registry. JACC Cardiovasc Interv. 2020;13(5):554–564. doi:10.1016/j.jcin.2019.10.058
- Polewczyk A, Jacheć W, Nowosielecka D, et al. Lead dependent tricuspid valve dysfunction-risk factors, improvement after transvenous lead extraction and long-term prognosis. J Clin Med. 2021;11(1):89. doi:10.3390/jcm11010089
- Nazmul MN, Cha YM, Lin G, Asirvatham SJ, Powell BD. Percutaneous pacemaker or implantable cardioverter-defibrillator lead removal in an attempt to improve symptomatic tricuspid regurgitation. Europace. 2013;15(3):409–413. doi:10.1093/europace/eus342
- Zaidi SMJ, Sohail H, Satti DI, et al. Tricuspid regurgitation in His bundle pacing: A systematic review. Ann Noninvasive Electrocardiol. 2022;27(6):e12986. doi:10.1111/anec.12986
- Beurskens NEG, Tjong FVY, de Bruin-Bon RHA, et al. Impact of leadless pacemaker therapy on cardiac and atrioventricular valve function through 12 months of follow-up. Circ Arrhythm Electrophysiol. 2019;12(5):e007124. doi:10.1161/CIRCEP.118.007124
- Haeberlin A, Bartkowiak J, Brugger N, et al. Evolution of tricuspid valve regurgitation after implantation of a leadless pacemaker: A single center experience, systematic review, and meta‐analysis. J Cardiovasc Electrophysiol. 2022;33(7):1617–1627. doi:10.1111/jce.15565
- Kobara S, Okamura A, Kato M, Ogura K, Nishimura M, Yamamoto K. Severe tricuspid regurgitation with chordae tendinae rupture after leadless pacemaker implantation. Circ J. 2022;86(5):880. doi:10.1253/circj.CJ-21-0860
- Garza Ovalle O, Liebelt J, Garza Ovalle A, Kaufman A, Alexander J, Metzl M. Utility of a leadless pacemaker as a backup to left ventricle-only pacing in a patient with prior device-related severe tricuspid regurgitation. J Innov Cardiac Rhythm Manag. 2019;10(7):3733–3736. doi:10.19102/icrm.2019.100706
- Stocker TJ, Hertell H, Orban M, et al. Cardiopulmonary hemodynamic profile predicts mortality after transcatheter tricuspid valve repair in chronic heart failure. JACC Cardiovasc Interv. 2021;14(1):29–38. doi:10.1016/j.jcin.2020.09.033
- Kavsur R, Hupp H, Sugiura A, et al. Pulmonary capillary wedge pressure (PCWP) as prognostic indicator in patients undergoing transcatheter valve repair (TTVR) of severe tricuspid regurgitation. Int J Cardiol. 2020;318:32–38. doi:10.1016/j.ijcard.2020.06.031
- Färber G, Marx J, Scherag A, et al. Risk stratification for isolated tricuspid valve surgery assisted using the Model for End-Stage Liver Disease score [published online as ahead of print onn March 12, 2022]. J Thorac Cardiovasc Surg. 2022. doi:10.1016/j.jtcvs.2021.11.102
- Leibowitz DW, Rosenheck S, Pollak A, Geist M, Gilon D. Transvenous pacemaker leads do not worsen tricuspid regurgitation: A prospective echocardiographic study. Cardiology. 2000;93(1–2):74–77. doi:10.1159/000007005
- Kucukarslan N, Kirilmaz A, Ulusoy E, et al. Tricuspid insufficiency does not increase early after permanent implantation of pacemaker leads. J Card Surg. 2006;21(4):391–394. doi:10.1111/j.1540-8191.2006.00251.x
- Schleifer JW, Pislaru SV, Lin G, et al. Effect of ventricular pacing lead position on tricuspid regurgitation: A randomized prospective trial. Heart Rhythm. 2018;15(7):1009–1016. doi:10.1016/j.hrthm.2018.02.026
- Zoghbi WA, Adams D, Bonow RO, et al. Recommendations for noninvasive evaluation of native valvular regurgitation: A report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr. 2017;30(4):303–371. doi:10.1016/j.echo.2017.01.007
- Otto CM, Nishimura RA, Bonow RO, et al. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol. 2021;77(4):e25–e197. doi:10.1016/j.jacc.2020.11.018
- Lancellotti P, Tribouilloy C, Hagendorff A, et al. Recommendations for the echocardiographic assessment of native valvular regurgitation: An executive summary from the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2013;14(7):611–644. doi:10.1093/ehjci/jet105