Advances in Clinical and Experimental Medicine
Ahead of print
doi: 10.17219/acem/157063
Publication type: original article
Language: English
License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)
Download citation:
Cite as:
Cheng Y. Hsa-circ-0000098 promotes the progression of hepatocellular carcinoma by regulation of miR-136-5p/MMP2 axis [published online as ahead of print on March 7, 2023]. Adv Clin Exp Med. 2023. doi:10.17219/acem/157063
Hsa-circ-0000098 promotes the progression of hepatocellular carcinoma by regulation of miR-136-5p/MMP2 axis
1 Department of Hepatobiliary Surgery, Xiantao First People’s Hospital, China
Abstract
Background. Many papers revealed the abnormal expression of circular RNA (circRNA), a kind of non-coding RNA, in mammals. However, the potential functional mechanisms are still unknown.
Objectives. In this paper, we aimed to elucidate the function and mechanisms of hsa-circ-0000098 in hepatocellular carcinoma (HCC).
Material and Methods. Bioinformatics was used to analyze the Gene Expression Omnibus (GEO) database (GSE97332) and predict the targeted gene site of miR-136-5p. The starBase online database was utilized to predict that MMP2 is the downstream target gene of miR-136-5p. The expression of hsa_circ_0000098, miR-136-5p and matrix metalloproteinase 2 (MMP2) in HCC tissues or cells was detected using quantitative real-time polymerase chain reaction (qRT-PCR) method. The migration and invasion abilities of processing cells were measured with transwell assay. The luciferase reporter assay was carried out to verify the targets of hsa_circ_0000098, MMP2 and miR-136-5p. The western blot assay was performed to detect the expression of MMP2, MMP9, E-cadherin, and N-cadherin.
Results. According to the analysis of GEO database of GSE97332, hsa_circ_0000098 had a prominent expression in HCC tissues. A continued analysis of relevant patients has verified that the high expression of hsa_circ_0000098 is present in HCC tissues with relative to poor prognosis. We also proved that the migration and invasion abilities of HCC cell lines can be inhibited by silencing hsa_circ_0000098. In view of the above findings, we continued to study the hsa_circ_0000098 mechanism of action in HCC. The study revealed that hsa_circ_0000098 can sponge miR-136-5p and then regulate MMP2, which is a downstream target gene of miR-136-5p, in order to promote HCC metastasis by regulation of miR-136-5p/MMP2 axis.
Conclusion. Our data showed that has_circ_0000098 facilitates the migration, invasion and malignant progression of HCC. On the other hand, we demonstrated that the mechanism of action of hsa_circ_0000098 in HCC might be due to the regulation of miR-136-5p/MMP2 axis.
Key words
hepatocellular carcinoma, MMP2, miR-136, hsa_circ_0000098
Graphical abstract

References (46)
- Zhang H, Deng T, Ge S, et al. Exosome circRNA secreted from adipocytes promotes the growth of hepatocellular carcinoma by targeting deubiquitination-related USP7. Oncogene. 2019;38(15):2844–2859. doi:10.1038/s41388-018-0619-z
- Ziogas IA, Tsoulfas G. Advances and challenges in laparoscopic surgery in the management of hepatocellular carcinoma. World J Gastrointest Surg. 2017;9(12):233–245. doi:10.4240/wjgs.v9.i12.233
- Ding H, Ye ZH, Wen DY, et al. Downregulation of miR-136-5p in hepatocellular carcinoma and its clinicopathological significance. Mol Med Rep. 2017;16(4):5393–5405. doi:10.3892/mmr.2017.7275
- Forner A, Bruix J. Hepatocellular carcinoma: Authors’ reply. Lancet. 2012;380(9840):470–471. doi:10.1016/S0140-6736(12)61286-0
- Sayiner M, Golabi P, Younossi ZM. Disease burden of hepatocellular carcinoma: A global perspective. Dig Dis Sci. 2019;64(4):910–917. doi:10.1007/s10620-019-05537-2
- Yin L, Cai Z, Zhu B, Xu C. Identification of key pathways and genes in the dynamic progression of HCC based on WGCNA. Genes (Basel). 2018;9(2):92. doi:10.3390/genes9020092
- Ding J, Zhou W, Li X, Sun M, Ding J, Zhu Q. Tandem DNAzyme for double digestion: A new tool for circRNA suppression. Biol Chem. 2019;400(2):247–253. doi:10.1515/hsz-2018-0232
- Gao Y, Zhang J, Zhao F. Circular RNA identification based on multiple seed matching. Brief Bioinform. 2018;19(5):803–810. doi:10.1093/bib/bbx014
- Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–388. doi:10.1038/nature11993
- Wilusz JE, Sharp PA. A circuitous route to noncoding RNA. Science. 2013;340(6131):440–441. doi:10.1126/science.1238522
- Zhang H, Sheng C, Yin Y, et al. PABPC1 interacts with AGO2 and is responsible for the microRNA mediated gene silencing in high grade hepatocellular carcinoma. Cancer Lett. 2015;367(1):49–57. doi:10.1016/j.canlet.2015.07.010
- Suzuki H, Tsukahara T. A view of pre-mRNA splicing from RNase R resistant RNAs. Int J Mol Sci. 2014;15(6):9331–9342. doi:10.3390/ijms15069331
- Lin X, Chen Y. Identification of potentially functional circRNA-miRNA-mRNA regulatory network in hepatocellular carcinoma by integrated microarray analysis. Med Sci Monit Basic Res. 2018;24:70–78. doi:10.12659/MSMBR.909737
- Li X, Ding J, Wang X, Cheng Z, Zhu Q. NUDT21 regulates circRNA cyclization and ceRNA crosstalk in hepatocellular carcinoma. Oncogene. 2020;39(4):891–904. doi:10.1038/s41388-019-1030-0
- Xu S, Zhou L, Ponnusamy M, et al. A comprehensive review of circRNA: From purification and identification to disease marker potential. PeerJ. 2018;6:e5503. doi:10.7717/peerj.5503
- Han D, Li J, Wang H, et al. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology. 2017;66(4):1151–1164. doi:10.1002/hep.29270
- Zhang X, Luo P, Jing W, Zhou H, Liang C, Tu J. circSMAD2 inhibits the epithelial–mesenchymal transition by targeting miR-629 in hepatocellular carcinoma. Onco Targets Ther. 2018;11:2853–2863. doi:10.2147/OTT.S158008
- Li P, Chen S, Chen H, et al. Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta. 2015;444:132–136. doi:10.1016/j.cca.2015.02.018
- Li P, Chen H, Chen S, et al. Circular RNA 0000096 affects cell growth and migration in gastric cancer. Br J Cancer. 2017;116(5):626–633. doi:10.1038/bjc.2016.451
- Wang F, Nazarali AJ, Ji S. Circular RNAs as potential biomarkers for cancer diagnosis and therapy. Am J Cancer Res. 2016;6(6):1167–1176. PMID:27429839. PMCID:PMC4937728.
- Huang XB, Li J, Zheng L, et al. Bioinformatics analysis reveals potential candidate drugs for HCC. Pathol Oncol Res. 2013;19(2):251–258. doi:10.1007/s12253-012-9576-y
- Pinter M, Scheiner B, Peck-Radosavljevic M. Immunotherapy for advanced hepatocellular carcinoma: A focus on special subgroups. Gut. 2021;70(1):204–214. doi:10.1136/gutjnl-2020-321702
- Garrido A, Djouder N. Cirrhosis: A questioned risk factor for hepatocellular carcinoma. Trends Cancer. 2021;7(1):29–36. doi:10.1016/j.trecan.2020.08.005
- Lu L, Jiang J, Zhan M, et al. Targeting neoantigens in hepatocellular carcinoma for immunotherapy: A futile strategy? Hepatology. 2021;73(1):414–421. doi:10.1002/hep.31279
- Arnaiz E, Sole C, Manterola L, Iparraguirre L, Otaegui D, Lawrie CH. CircRNAs and cancer: Biomarkers and master regulators. Semin Cancer Biol. 2019;58:90–99. doi:10.1016/j.semcancer.2018.12.002
- Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333–338. doi:10.1038/nature11928
- Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20(11):675–691. doi:10.1038/s41576-019-0158-7
- Tsitsipatis D, Grammatikakis I, Driscoll RK, et al. AUF1 ligand circPCNX reduces cell proliferation by competing with p21 mRNA to increase p21 production. Nucleic Acids Res. 2021;49(3):1631–1646. doi:10.1093/nar/gkaa1246
- Patop IL, Wüst S, Kadener S. Past, present, and future of circRNAs. EMBO J. 2019;38(16):e100836. doi:10.15252/embj.2018100836
- Gasparini S, Licursi V, Presutti C, Mannironi C. The secret garden of neuronal circRNAs. Cells. 2020;9(8):1815. doi:10.3390/cells9081815
- Huang G, Liang M, Liu H, et al. CircRNA hsa_circRNA_104348 promotes hepatocellular carcinoma progression through modulating miR-187-3p/RTKN2 axis and activating Wnt/β-catenin pathway. Cell Death Dis. 2020;11(12):1065. doi:10.1038/s41419-020-03276-1
- Liu Z, Yu Y, Huang Z, et al. CircRNA-5692 inhibits the progression of hepatocellular carcinoma by sponging miR-328-5p to enhance DAB2IP expression. Cell Death Dis. 2019;10(12):900. doi:10.1038/s41419-019-2089-9
- Yu J, Yang M, Zhou B, et al. CircRNA-104718 acts as competing endogenous RNA and promotes hepatocellular carcinoma progression through microRNA-218-5p/TXNDC5 signaling pathway. Clin Sci (Lond). 2019;133(13):1487–1503. doi:10.1042/CS20190394
- Shiu TY, Lin HH, Shih YL, et al. CRNDE-h transcript/miR-136-5p axis regulates interleukin enhancer binding factor 2 expression to promote hepatocellular carcinoma cell proliferation. Life Sci. 2021;284:119708. doi:10.1016/j.lfs.2021.119708
- Yuan Q, Cao G, Li J, Zhang Y, Yang W. MicroRNA-136 inhibits colon cancer cell proliferation and invasion through targeting liver receptor homolog-1/Wnt signaling. Gene. 2017;628:48–55. doi:10.1016/j.gene.2017.07.031
- Niu J, Li Z, Li F. Overexpressed microRNA-136 works as a cancer suppressor in gallbladder cancer through suppression of JNK signaling pathway via inhibition of MAP2K4. Am J Physiol Gastrointest Liver Physiol. 2019;317(5):G670–G681. doi:10.1152/ajpgi.00055.2019
- Fayyad-Kazan M, ElDirani R, Hamade E, et al. Circulating miR-29c, miR-30c, miR-193a-5p and miR-885-5p: Novel potential biomarkers for HTLV-1 infection diagnosis. Infect Genet Evol. 2019;74:103938. doi:10.1016/j.meegid.2019.103938
- Xiong Y, Kotian S, Zeiger MA, Zhang L, Kebebew E. miR-126-3p inhibits thyroid cancer cell growth and metastasis, and is associated with aggressive thyroid cancer. PLoS One. 2015;10(8):e0130496. doi:10.1371/journal.pone.0130496
- Al Rawi N, Elmabrouk N, Abu Kou R, Mkadmi S, Rizvi Z, Hamdoon Z. The role of differentially expressed salivary microRNA in oral squamous cell carcinoma: A systematic review. Arch Oral Biol. 2021;125:105108. doi:10.1016/j.archoralbio.2021.105108
- Dong H, Jian P, Yu M, Wang L. Silencing of long noncoding RNA LEF1-AS1 prevents the progression of hepatocellular carcinoma via the crosstalk with microRNA-136-5p/WNK1. J Cell Physiol. 2020;235(10):6548–6562. doi:10.1002/jcp.29503
- He W, Zhu X, Tang X, Xiang X, Yu J, Sun H. Circ_0027089 regulates NACC1 by targeting miR-136-5p to aggravate the development of hepatitis B virus-related hepatocellular carcinoma. Anticancer Drugs. 2022;33(1):e336–e348. doi:10.1097/CAD.0000000000001211
- Das S, De S, Sengupta S. Post-transcriptional regulation of MMP2 mRNA by its interaction with miR-20a and nucleolin in breast cancer cell lines. Mol Biol Rep. 2021;48(3):2315–2324. doi:10.1007/s11033-021-06261-9
- Dorandish S, Williams A, Atali S, et al. Regulation of amyloid-β levels by matrix metalloproteinase-2/9 (MMP2/9) in the media of lung cancer cells. Sci Rep. 2021;11(1):9708. doi:10.1038/s41598-021-88574-0
- Khalil HH, Osman HA, Teleb M, et al. Engineered s-triazine-based dendrimer-honokiol conjugates as targeted MMP-2/9 inhibitors for halting hepatocellular carcinoma. ChemMedChem. 2021;16(24):3701–3719. doi:10.1002/cmdc.202100465
- Li Y, Zhang T, Qin S, et al. Investigational drugs in HIV: Pros and cons of entry and fusion inhibitors (review). Mol Med Rep. 2019;19(3):1987–1995. doi:10.3892/mmr.2019.9838
- Kim CW, Hwang KA, Choi KC. Anti-metastatic potential of resveratrol and its metabolites by the inhibition of epithelial-mesenchymal transition, migration, and invasion of malignant cancer cells. Phytomedicine. 2016;23(14):1787–1796. doi:10.1016/j.phymed.2016.10.016