Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.736
5-Year Impact Factor – 2.135
Index Copernicus  – 168.52
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

Ahead of print

doi: 10.17219/acem/155802

Publication type: meta-analysis

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Cite as:


Hu X, Pan L, Li W. Meta-analysis on the efficacy of the norepinephrine reuptake inhibitors reboxetine and atomoxetine for the treatment of schizophrenia and attention deficit hyperactivity disorder [published online as ahead of print on November 30, 2022]. Adv Clin Exp Med. 2023. doi:10.17219/acem/155802

Meta-analysis on the efficacy of the norepinephrine reuptake inhibitors reboxetine and atomoxetine for the treatment of schizophrenia and attention deficit hyperactivity disorder

Xiaojing Hu1,A,B,C, Lili Pan2,A,B,C, Wenjie Li1,D,E,F

1 Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, China

2 Department of Psychology, Taian Traditional Chinese Medicine Hospital, China

Abstract

Background. Norepinephrine transporter inhibitors that can alter the level of neurotransmitter in the brain are used to treat neurological disorders. However, a number of studies have reported their limited significance as a result of their slow onset of action and moderate efficacy.

Objectives. To determine the effects of norepinephrine reuptake inhibitors (NRIs), reboxetine and atomoxetine on schizophrenia and attention deficit hyperactivity disorder (ADHD).

Materials and methods. Relevant articles published between 2000 and 2022 were searched in the MEDLINE, CINAHL (via Ebsco), Web of Science and Scopus databases. Among the various NRIs, studies concerning the 2 potent drugs – reboxetine and atomoxetine – were selected for analysis. Odds ratios (ORs) with 95% confidence intervals (95% CIs) were estimated, along with the exploration of heterogeneity and publication bias, using RevMan software.

Results. A total of 14 eligible studies with a combined sample size of 970 patients were included. Using a random effects model, an OR of 0.55 (0.32–0.94), a Tau2 value of 0.23, a χ2 value of 12.31, 8 degrees of freedom (df), an I2 of 35%, a Z value of 2.19, and a p-value of 0.03 were recorded for reboxetine. Atomoxetine had an OR of 0.35 (0.13–0.97), a Tau2 value of 0.58, a χ2 value of 7.31, 4 df, an I2 of 45%, a Z value of 1.53, and a p-value of 0.04. All results were statistically significant with a low risk of publication bias, as was evident from the p-values >0.05 derived from the Egger’s test and the Begg’s test. These drugs provided comparable changes to control drugs in Hamilton Depression Rating Scale (HAM-D) scores, Positive and Negative Syndrome Scale (PANSS) scores and ADHD ratings. This confirms the efficacy of reboxetine for the treatment of schizophrenia and atomoxetine for the treatment of ADHD.

Conclusions. The present meta-analysis suggests that NRIs are efficacious and therefore they are potential candidate drugs for the treatment of schizophrenia and ADHD.

Key words: schizophrenia, neurological disorders, atomoxetine, attention deficit hyperactivity disorder, reboxetine

 

Introduction

Neurological disorders, including schizophrenia, attention deficit hyperactivity disorder (ADHD), depression, anxiety, and bipolar disorders, are very common medical ailments reported worldwide. These disorders are mainly associated with symptoms such as delusions, disorganized thinking, depression, abnormal social and motor behaviors, and hallucinations.1 Treatment of these neurological disorders is achieved through cognitive therapy, rehabilitation, psychoeducation, family therapy, behavioral therapy, and the use of a variety of antipsychotic and anti-tremor medicines.2 Among the various medications, drugs that can specifically alter the level of neurotransmitters in brain cells, such as dopamine reuptake inhibitors, gamma-aminobutyric acid reuptake inhibitors, and a variety of norepinephrine reuptake inhibitors (NRIs) are of much use.3 Norepinephrine reuptake inhibitors have the capacity to alter the activity of the norepinephrine transporter, which is a solute carrier protein that controls the movement of sodium and chloride ions. This mechanism of NRIs is dependent upon the reuptake of the neurotransmitters norepinephrine and dopamine, and therefore such drugs are potential candidates for the treatment of neurological disorders.4, 5, 6

A variety of NRI drugs, including atomoxetine, reboxetine, viloxazine, and edivoxetine, are currently available for the treatment of neurological disorders (Figure 1). Indeed, a number of randomized controlled trials have suggested the potential benefits of reboxetine for the treatment of schizophrenia patients.7, 8, 9, 10, 11, 12, 13, 14, 15, 16 Similarly, the potential benefits of atomoxetine for the treatment of ADHD have been reported in randomized controlled trials.17, 18, 19, 20, 21 Salazar de Pablo et al. reported in their meta-analysis that these disorders are more prevalent in younger females.22 Meanwhile, Tanaka et al. reported in their review article that such neurological disorders arise due to neurodevelopmental defects or the alteration of normal brain development during early embryonic life.23 Such defects can be investigated using functional magnetic resonance imaging, as reported by Nyatega et al.24 Furthermore, these developmental defects led to higher levels of dissociative schizophrenia symptoms, as shown by Panov.25 Rog et al.26 reported in their study that altered fatty acid metabolism was responsible for schizophrenia, while Gaebler et al.27 demonstrated that vitamin D deficiency was responsible, and Correia et al.28 suggested that alterations in serum lipid levels as a major cause of schizophrenia. Therefore, NRIs that can alter the level of neurotransmitters are potential candidate drugs for these neurological disorders.29, 30 Additionally, De Crescenzo et al. contended that pharmacotherapy using noradrenergic agents was effective in the management of ADHD.31

Objectives

In this study, a meta-analysis was conducted to assess the efficacy of 2 NRI medications, reboxetine and atomoxetine, in the treatment of schizophrenia and ADHD, respectively.

Materials and methods

Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) normative recommendations were followed and the study protocol was registered at Shandong University, Jinan, China (registration No. SU#/
IRB/2021/554).

Search strategy

This meta-analysis was based on an extensive literature search of MEDLINE (via PubMed), CINAHL (via Ebsco), Scopus, and Web of Science databases. Studies published between the years 2000 and 2022 were searched using the following keywords: “neurological disorder”, “neurotransmitters”, “schizophrenia”, “systematic review”, ‘meta-analysis”, and “norepinephrine transporter inhibitors”. All of the included articles8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 were assessed using the PRISMA guidelines, and studies were selected randomly irrespective of the language, publication status or the type of study (prospective, retrospective, clinical trial). A demographic summary of the patients was designed, with consideration to the variables included in the searched studies.

To assess the efficacy and safety of NRIs, as well as their genetic variants, reboxetine and atomoxetine were selected for analysis. Event data from the selected studies were extracted. In the selected studies, patients of different age groups were treated with either reboxetine, atomoxetine or control drugs, and their Hamilton Depression Rating Scale (HAM-D) score, Positive and Negative Syndrome Scale (PANSS) score and metabolic parameters were observed. Statistical parameters, including diagnostic odds ratio (OR) with 95% confidence interval (95% CI) and heterogeneity of data of both drugs, were calculated with RevMan software v. 4.1 (https://training.cochrane.org/online-learning/core-software/revman). Data for both drugs were summarized using forest plots.

Two authors (XH and LP) scanned the relevant sources for related studies separately. Full-text articles of the studies were collected and abstracts were only used if they contained sufficient information for the review and meta-analysis. Obsolete references were excluded and useful studies were included as per the inclusion criteria. Event data with useful variables were collected by 2 researchers (XH and LP) independently.

Inclusion and exclusion criteria

Studies published between 2000 and 2022 that reported on the safety and efficacy of NRIs and their genetic variants for the treatment of schizophrenic patients were included. Mostly the full-text studies were included but some abstracts were also taken into account if had sufficient data, while studies with insufficient data, reporting the use of medicines other than NRIs, and those published before 2000, were excluded (Figure 2).

Evaluation of the analytical standard

Two reviewers (XH and LP) separately evaluated the methodological validity of the included studies and calculated the heterogeneity of the data. Author WL was responsible for resolving any disagreements between the authors XH and LP. The risk of bias of all the included studies was assessed and summarized using RevMan software.

Sources of heterogeneity

Investigated sources of heterogeneity included the use of full-text publication compared to abstracts, randomized controlled trials compared to retrospective studies, age group, number of patients, duration of treatment, scale of analysis, and comparison of St. John’s wort with different selective serotonin reuptake inhibitor controls.

Statistical analyses

Diagnostic ORs for both reboxetine and atomoxetine were calculated using the DerSimonian and Laird technique. For this, a 2 × 2 table was constructed and a meta-analysis was performed. Pooled diagnostic ORs were then calculated with their 95% CIs, and their respective forest plots were designed. To investigate heterogeneity, Tau2 value, χ2 test, Z value, and I2 index in random bivariate mode were calculated. To assess the risk of publication bias, the Deek’s funnel plot for both types of studies, using either reboxetine or atomoxetine, was designed using MedCalc software v. 20.118 (MedCalc Software Ltd., Ostend, Belgium). The risk of publication bias was assessed using Egger’s test and Begg’s test.

Results

Literature search results

A total of 1541 studies were found in different databases. Among these studies, 615 were excluded after reading their titles and abstracts, and 926 records were further examined. Moreover, 912 studies were excluded as 412 were animal studies, 204 were of a population of non-interest, 140 studies were of non-interest interventions, 21 were case reports, 33 were letters/responses to the editor, 50 were meta-analyses, 40 were systematic reviews, and 12 were excluded due to incomplete information. Key reasons for omission were inadequate evidence and inappropriate comparison criteria required to create 2 × 2 tables for review. Only 14 studies were selected for final screening and meta-analysis (Figure 2). Of the 14 studies included, 9 were related to the benefits of reboxetine and 5 were related to atomoxetine treatment.

Demographic details of the studies included in this meta-analysis are shown in Table 1. It describes authors of the study, year of publication, publishing journal, type of study, duration of study, total sample size, type and dosage of NRI used, control drug and its dosage, age and gender of patients, test scores analyzed, number of patients with positive outcomes, HAM-D scores, PANSS scores, metabolic parameters of patients, and p-values indicating statistical significance of the data. The risk of bias (Table 2) was assessed, summarized (Figure 3) and shown as a bar graph (Figure 4). Studies included in the analysis presented a low risk of bias, as is evident from the tables and graphs.

Fourteen clinical studies with a total of 970 schizophrenia patients were included, according to the inclusion criteria. The included studies encompassed adult patients of different age groups who were chosen randomly and treated with either placebo or NRIs. In both cases, reductions in HAM-D score and PANSS score, as well as changes in metabolic parameters were observed.

Meta-analysis results

Meta-analysis of the included studies using a random effects model indicated that they had a low risk of publication bias since both the Egger’s test and the Begg’s test p-values were > 0.05. Specifically, the Egger’s test gave a p-value of 0.25 and the Begg’s test gave a p-value of 0.11 (Figure 5). The analysis of reboxetine resulted in an OR value of 0.55 (0.32–0.94), a Tau2 value of 0.23, a χ2 value of 12.31, 8 degrees of freedom (df), I2 value of 35%, a Z value of 2.19, and a p-value of 0.03 (Figure 6). Similarly, atomoxetine produced an OR of 0.35 (0.13–0.97), with Tau2 value of 0.58, χ2 value of 7.31, 4 df, an I2 value of 45%, a Z value of 2.01, and a p-value of 0.04 (Figure 7). All results were statistically significant and heterogeneous.

Greater efficacy and safety of the NRIs reboxetine and atomoxetine were demonstrated for the treatment of schizophrenia and ADHD patients. Indeed, both drugs led to a larger change in the evaluated test scores, including HAM-D and PANSS, in comparison to the control drugs (Table 3 and Figure 8).

A statistical summary of the meta-analysis results is shown in Table 4. The pooled OR < 1 for both drugs suggests that they have comparable efficacy, and both have potential use in the treatment of schizophrenia and ADHD.

Combining all results of the meta-analysis, it is clear that reboxetine and atomoxetine are safe and as effective as comparable drugs. Indeed, these NRIs were effective in reducing HAM-D and PANSS scores, along with other clinical symptoms in schizophrenia patients. In fact, they have shown greater efficacy in comparison to control drugs and had fewer adverse side effects. Therefore, these drugs are a better alternative for the treatment of schizophrenia and ADHD.

Discussion

Neurological disorders such as schizophrenia and ADHD are serious health disorders that result in individuals becoming socially isolated, depressed, confused, unhappy, less organized, and sad. If left untreated, they can lead to more serious neurological issues such as borderline personality disorder, which can provoke suicide attempts.32, 33, 34, 35, 36 Studies suggest that fear conditioning, changes in the immune system and metabolic changes are also responsible for the development of these neurological disorders.37, 38, 39, 40 Therefore, these disorders need to be detected in a timely manner using various neuroimaging modalities41, 42, 43, 44 and should be treated using available strategies such as behavioral therapy, family therapy or with anti-psychotic medications.45, 46 Indeed, NRIs are widely applied in the treatment of mental disorders.

As Maletic et al. reported in their systematic review, alpha-adrenergic receptors play an important role in the aberrant regulation of arousal and cognition in schizophrenia.47 Similarly, Mäki-Marttunen et al. noted the importance of the locus coeruleus-norepinephrine system in cognition and the pathophysiology of schizophrenia.48 A study conducted by Navarra et al. reported on the potential benefits of atomoxetine for reducing clinical symptoms in an animal model of schizophrenia.49 Furthermore, Locher et al. presented potential benefits of NRIs for the treatment of these psychiatric disorders in children.50 Additionally, Outhred et al.,51 Ruhé et al.,52 Rubia et al.,53 and Papakostas et al.54 showed that NRIs are efficacious in the treatment of neurological disorders.

Similar to the available literature, current systematic review and meta-analysis also has low risk of bias of and demonstrated that reboxetine and atomoxetine have significant ORs and favorable statistical parameters for the treatment of schizophrenia and ADHD. Indeed, comparable pooled OR values were 0.55 (0.32–0.94) for reboxetine and 0.35 (0.13–0.97) for atomoxetine. Both of these values are significant as they are less than 1. The results were heterogeneous and significant (p < 0.05) and there was a low risk of publication bias. These results are predictive of the potential benefits of atomoxetine and reboxetine for the treatment of neurological disorders and favor their use as beneficial drug candidates.

Limitations

Limitations of the present study include the variability of NRIs and control drugs used for the treatment of schizophrenia and ADHD patients. Also, the calculation of different scores including HAM-D scores, PANSS scores and metabolic parameters, using varying analytical tests performed by different persons, increased the risk of false-negative results. Furthermore, the data could be impacted to some extent by the fact that several analyzed studies did not report on the comparable efficacy of NRIs with conventional drugs. Data from other relevant studies on the efficacy of NRIs for the treatment of schizophrenia and ADHD could have also included more results to guide the use of NRIs more precisely. Additionally, detailed data on patient’s case history, physical examination, social well-being, and pathological tests would make the results of the studies more useful in planning the treatment.

Conclusions

For the treatment of neurological disorders such as schizophrenia and ADHD, various medications that can block the activity of selective neurotransmitters are currently in use. The current study was designed to conduct a meta-analysis on the efficacy of the NRIs reboxetine and atomoxetine for the treatment of schizophrenia and ADHD, respectively. On the basis of the statistically significant findings and alleviation clinical symptoms in patients with the use of these drugs, we recommend the use of these NRIs for the treatment of these medical disorders.

Data availability statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Tables


Table 1. Demographic summary of included studies

Study ID and year

Journal title

Type of study

Norepinephrine transporter inhibitor studied

Total number of patients

Duration of study

Age of patient [years]

Evaluation of results

Gender

Drug dose

Evaluated HAM-D and PANSS scores

Positive outcome

p-value

Schutz and Berk8 2001

International Clinical Psycho­pharmacology

double-blind study

reboxetine

30

6 weeks

25–40

change in the baseline PANSS score

1 M/14 F

reboxetine (4–10 mg/day)

15.8 ±7.29

12/15

0.7556

1 M/14 F

placebo (10 mg day)

14.1 ±5.68

11/15

Versiani et al.9 2002

Journal of Clinical Psychiatry

double-blind study

reboxetine

75

8 weeks

18–65

change in the baseline PANSS score

12 M/25 F

reboxetine (10 mg day)

5.2

31/38

<0.05

13 M/25 F

placebo (10 mg day)

3.2

19/37

Müller et al.10 2006

Molecular Psychiatry

prospective study

reboxetine

40

6 weeks

23–65

reduction in the HAM-D score

8 M/12 F

4–10 mg reboxetine plus placebo

12.1 ±8.3

8/20

<0.0001

12 M/8 F

10 mg reboxetine plus 400 mg celecoxib

7.9 ±7.1

10/20

Brunnauer et al.11 2008

Journal of Clinical Psychiatry

randomized clinical study

reboxetine

40

2 years

40–60

reduction in the HAM-D score

11 M/9 F

reboxetine 4.5 mg/day

24.2 ±6.7

16/20

<0.01

11 M/9 F

mirtazapine 30 mg/day

22.6 ±6.5

15/20

Poyurovsky et al.12 2009

Israel Journal of Psychiatry and Related Science

double-blind, placebo-controlled study

reboxetine

33

3 years

20–50

HAM-D score

10 M/6 F

reboxetine 4 mg/day

10.31 ±3.34

11/17

0.92

11 M/6 F

olanzapine 10 mg/day

10.18 ±4.65

11/16

Cohen-Yavin et al.13 2009

Clinical Neuro­pharmacology

open controlled trial

reboxetine

27

8 weeks

6–16

total DAS score

16 M

reboxetine 2–8 mg/day

15.6 ±11.7

11/16

<0.005

11 M

methylphenidate 10–20 mg/day

13.4 ±13.1

11/11

Amrami-Weizman et al.14 2013

Psycho­pharmacology

double-blind, placebo-controlled study

reboxetine

54

6 weeks

20–40

change in serum insulin level (microIU/mL)

17 M/12 F

olanzapine/reboxetine 4 mg bid

2.76 ±33.37

27/25

<0.05

13 M/12 F

olanzapine/placebo (10 mg day)

0.83 ±13.79

19/29

Usall et al.15 2014

Journal of Clinical Psychiatry

double-blind study

reboxetine

90

6 months

35–55

change in the baseline PANSS score

18 M/5 F

citalopram 4.5 mg/day

73.13 ±10.31

17/23

0.6511

27 M/7 F

reboxetine 6 mg/day

72.06 ±15.15

24/33

22 M/11 F

placebo 6 mg/day

75.06 ±18.62

23/34

Shoja Shafti et al.16 2015

Therapeutic Advances in Psycho­pharmacology

double-blind study

reboxetine

50

12 weeks

2–43

reduction in the HAM-D score

25 M

25 patients received reboxetine 4 mg/day

5.36 ±1.83

19/25

<0.01

25 M

25 patients received placebo 4 mg/day

1.69 ±6.02

6/25

Michelson et al.17 2002

American Journal of Psychiatry

randomized, placebo-controlled study

atomoxetine

170

6 weeks

6–16

reduction in the ADHD rating scale

60 M/25 F

atomoxetine, 40 mg/day

12.8 ±12.4

68/85

<0.001

60 M/25 F

placebo 40 mg/day

5.0 ±10.4

66/85

Friedman et al.18 2008

Journal of Clinical Psycho­pharmacology

pilot placebo-controlled clinical trial

atomoxetine

20

8 weeks

above 18

change in the baseline PANSS score

10 (6 M/4 F)

atomoxetine, 40 mg/day

4.7 ±5.1

8/10

0.15

10 (5 M/5 F)

placebo 40 mg/day

4.4 ±8.9

6/10

Takahashi et al.19 2009

Journal of Child and Adolescent Psycho­pharmacology

randomized, double-blind, placebo-controlled study

atomoxetine

245

8 weeks

6–18

ADHD rating scale

52 M/10 F

atomoxetine 0.5 mg per day

38 ±61.3

61/62

0.01

52 M/10 F

placebo (10 mg day)

37 ±59.7

60/62

Ball et al.20 2011

Clinical Schizophrenia & Related Psychoses

double-blind controlled trial

atomoxetine

36

2 weeks

35–60 years

SAS total scores

13 M/6 F

atomoxetine 40 mg/day

1.2 ±1.7

13/17

0.02

12 M/5 F

placebo 40 mg/day

1.1 ±1.1

5/18

Pourshams et al.21 2020

Clinical Schizophrenia & Related Psychoses

randomized controlled clinical study

atomoxetine

60

2 years

21–39 years

change in baseline PANSS score

16 M/14 F

atomoxetine, 40 mg/day

62.33 ±9.37

30/30

0.002

17 M/13 F

placebo 40 mg/day

52.16 ±8.33

25/30

PANSS – Positive and Negative Syndrome Scale; HAM-D – Hamilton Depression Rating Scale; DAS – Depression, Anxiety and Stress score; ADHD – attention deficit hyperactivity disorder; SAS – Social Adjustment Score.
Table 2. Risk assessment for included studies

Study ID and year

Schutz and Berk8 2001

Versiani et al.9 2002

Müller et al.10 2006

Brunnauer et al.11 2008

Poyurovsky et al.12 2009

Cohen-Yavin et al.13 2009

Amrami-Weizman et al.14 2013

Usall et al.15 2014

Shoja Shafti et al.16 2015

Michelson et al.17 2002

Friedman et al.18 2008

Takahashi et al.19 2009

Ball et al.20 2011

Pourshams et al.21 2020

Was a consecutive or random sample of patients enrolled?

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Did the study avoid inappropriate exclusions?

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Did all patients receive the same reference standard?

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Were all patients included in the analysis?

N

N

N

N

N

N

N

N

N

N

N

N

N

N

Was the sample frame appropriate to address the target population?

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Were study participants sampled in an appropriate way?

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Were the study subjects and the setting described in detail?

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Were valid methods used for the identification of the condition?

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Was the condition measured in a standard, reliable way for all participants?

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Was there appropriate statistical analysis?

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Table 3. Comparison of norepinephrine transporter inhibitor drugs with control drugs

Study ID and year

Evaluation of results

Norepinephrine transporter inhibitors

Control

Reboxetine

Schutz and Berk8 2001

change in the baseline PANSS score

15.8 ±7.29

14.1 ±5.68

Versiani et al.9 2002

change in the baseline PANSS score

5.2

3.2

Müller et al.10 2006

reduction in the HAM-D score

12.1 ±8.3

7.9 ±7.1

Brunnauer et al.11 2008

reduction in the HAM-D score

24.2 ±6.7

22.6 ±6.5

Poyurovsky et al.12 2009

HAM-D score

10.31 ±3.34

10.18 ±4.65

Cohen-Yavin et al.13 2009

total DAS score

15.6 ±11.7

13.4 ±13.1

Amrami-Weizman et al.14 2013

change in serum insulin level (microIU/mL)

2.76 ±33.37

0.83 ±13.79

Usall et al.15 2014

change in the baseline PANSS score

73.13 ±10.31

72.06 ±15.15

Shoja Shafti et al.16 2015

reduction in the HAM-D score

5.36 ±1.83

1.69 ±6.02

Atomoxetine

Michelson et al.17 2002

reduction in the ADHD rating scale

12.8 ±12.4

5.0 ±10.4

Friedman et al.18 2008

change in the baseline PANSS score

4.7 ±5.1

4.4 ±8.9

Takahashi et al.19 2009

ADHD rating scale

38 ±61.3

37 ±59.7

Ball et al.20 2011

SAS total scores

1.2 ±1.7

1.1 ±1.1

Pourshams et al.21 2020

change in the baseline PANSS score

62.33 ±9.37

52.16 ±8.33

PANSS – Positive and Negative Syndrome Scale; HAM-D – Hamilton Depression Rating Scale; DAS – Depression, Anxiety and Stress score; ADHD – attention deficit hyperactivity disorder; SAS – Social Adjustment Score.
Table 4. Statistical summary of included studies

Reboxetine: study ID and year

Odds ratio# (95% CI)

Atomoxetine: study ID and year

Odds ratio# (95% CI)

Brunnauer et al.11 2008

0.75 (0.17–3.33)

Ball et al.20 2011

0.12 (0.03–0.54)

Müller et al.10 2006

0.67 (0.19–2.33)

Friedman et al.18 2008

0.38 (0.05–2.77)

Poyurovsky et al.12 2009

1.20 (0.28–5.12)

Michelson et al.17 2002

0.87 (0.42–1.81)

Schutz and Berk8 2001

0.69 (0.12–3.79)

Pourshams et al.21 2020

0.80 (0.00–1.44)

Shoja Shafti et al.16 2015

0.10 (0.03–0.37)

Takahashi et al.19 2009

0.49 (0.04–5.57)

Usall et al.15 2014

0.78 (0.27–2.24)

Versiani et al.9 2002

0.24 (0.08–0.68)

Amrami-Weizman et al.14 2013

0.89 (0.29–2.79)

Cohen-Yavin et al.13 2009

1.00 (0.22–4.46)

Total (95% CI)

0.55 (0.32–0.94)

Total (95% CI)

0.35 (0.13–0.97)

# Odds ratio is calculated using the Mantel–Haenszel (M–H) method with random effects; 95% CI – 95% confidence interval.

Figures


Fig. 1. Study details
Fig. 2. Flow diagram for the selection of the studies based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines
Fig. 3. Risk of bias summary
Fig. 4. Risk of bias graph
Fig. 5. Funnel plot for publication bias
95% CI – 95% confidence interval.
Fig. 6. Funnel plot for reboxetine
95% CI – 95% confidence interval; df – degrees of freedom; M–H – Mantel–Haenszel method.
Fig. 7. Forest plot for the odds ratio of atomoxetine
95% CI – 95% confidence interval; df – degrees of freedom; M–H – Mantel–Haenszel method.
Fig. 8. Improvement in symptoms with norepinephrine reuptake inhibitors (NRIs) compared to controls

References (54)

  1. Oud MJ, Meyboom-de Jong B. Somatic diseases in patients with schizophrenia in general practice: Their prevalence and health care. BMC Fam Pract. 2009;10(1):32. doi:10.1186/1471-2296-10-32
  2. Keith SJ, Kane JM. Partial compliance and patient consequences in schizophrenia: Our patients can do better. J Clin Psychiatry. 2003;64(11):1308–1315. doi:10.4088/JCP.v64n1105
  3. Shuler K. Approaches to improve adherence to pharmacotherapy in patients with schizophrenia. Patient Prefer Adherence. 2014;8:701–714. doi:10.2147/PPA.S59371
  4. Sinkeviciute I, Begemann M, Prikken M, et al. Efficacy of different types of cognitive enhancers for patients with schizophrenia: A meta-analysis. NPJ Schizophr. 2018;4(1):22. doi:10.1038/s41537-018-0064-6
  5. Schlessinger A, Geier E, Fan H, et al. Structure-based discovery of prescription drugs that interact with the norepinephrine transporter, NET. Proc Natl Acad Sci U S A. 2011;108(38):15810–15815. doi:10.1073/pnas.1106030108
  6. Zhou J. Norepinephine transporter inhibitors and their therapeutic potential. Drugs Fut. 2004;29(12):1235. doi:10.1358/dof.2004.029.12.855246
  7. Kishi T, Mukai T, Matsuda Y, Moriwaki M, Iwata N. Efficacy and safety of noradrenalin reuptake inhibitor augmentation therapy for schizophrenia: A meta-analysis of double-blind randomized placebo-controlled trials. J Psychiatr Res. 2013;47(11):1557–1563. doi:10.1016/j.jpsychires.2013.07.003
  8. Schutz G, Berk M. Reboxetine add on therapy to haloperidol in the treatment of schizophrenia: A preliminary double-blind randomized placebo-controlled study. Int Clin Psychopharmacol. 2001;16(5):275–278. doi:10.1097/00004850-200109000-00004
  9. Versiani M, Cassano G, Perugi G, et al. Reboxetine, a selective norepinephrine reuptake inhibitor, is an effective and well-tolerated treatment for panic disorder. J Clin Psychiatry. 2002;63(1):31–37. doi:10.4088/JCP.v63n0107
  10. Müller N, Schwarz MJ, Dehning S, et al. The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: Results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol Psychiatry. 2006;11(7):680–684. doi:10.1038/sj.mp.4001805
  11. Brunnauer A, Laux G, David I, Fric M, Hermisson I, Moller HJ. The impact of reboxetine and mirtazapine on driving simulator performance and psychomotor function in depressed patients. J Clin Psychiatry. 2008;69(12):1880–1886. doi:10.4088/JCP.v69n1205
  12. Poyurovsky M, Faragian S, Fuchs C, Pashinian A. Effect of the selective norepinephrine reuptake inhibitor reboxetine on cognitive dysfunction in schizophrenia patients: An add-on, double-blind placebo-controlled study. Isr J Psychiatry Relat Sci. 2009;46(3):213–220. PMID: 20039523
  13. Cohen-Yavin I, Yoran-Hegesh R, Strous RD, Kotler M, Weizman A, Spivak B. Efficacy of reboxetine in the treatment of attention-deficit/hyperactivity disorder in boys with intolerance to methylphenidate: An open-label, 8-week, methylphenidate-controlled trial. Clin Neuropharmacol. 2009;32(4):179–182. doi:10.1097/WNF.0b013e318183796d
  14. Amrami-Weizman A, Maayan R, Gil-Ad I, et al. The effect of reboxetine co-administration with olanzapine on metabolic and endocrine profile in schizophrenia patients. Psychopharmacology (Berl). 2013;230(1):23–27. doi:10.1007/s00213-013-3199-1
  15. Usall J, López-Carrilero R, Iniesta R, et al. Double-blind, placebo-controlled study of the efficacy of reboxetine and citalopram as adjuncts to atypical antipsychotics for negative symptoms of schizophrenia. J Clin Psychiatry. 2014;75(6):608–615. doi:10.4088/JCP.13m08551
  16. Shoja Shafti S, Jafarabad MS, Azizi R. Amelioration of deficit syndrome of schizophrenia by norepinephrine reuptake inhibitor. Ther Adv Psychopharmacol. 2015;5(5):263–270. doi:10.1177/2045125315591953
  17. Michelson D, Allen AJ, Busner J, et al. Once-daily atomoxetine treatment for children and adolescents with attention deficit hyperactivity disorder: A randomized, placebo-controlled study. Am J Psychiatry. 2002;159(11):1896–1901. doi:10.1176/appi.ajp.159.11.1896
  18. Friedman JI, Carpenter D, Lu J, et al. A pilot study of adjunctive atomoxetine treatment to second-generation antipsychotics for cognitive impairment in schizophrenia. J Clin Psychopharmacol. 2008;28(1):59–63. doi:10.1097/jcp.0b013e318161318f
  19. Takahashi M, Takita Y, Yamazaki K, et al. A randomized, double-blind, placebo-controlled study of atomoxetine in Japanese children and adolescents with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol. 2009;19(4):341–350. doi:10.1089/cap.2008.0154
  20. Ball M, Warren K, Feldman S, McMahon R, Kelly D, Buchanan R. Placebo-controlled trial of atomoxetine for weight reduction in people with schizophrenia treated with clozapine or olanzapine. Clin Schizophr Relat Psychoses. 2011;5(1):17–25. doi:10.3371/CSRP.5.1.3
  21. Pourshams M, Riahi F, Tashakori A, Erfanifar F. The evaluation of atypical antipsychotic augmentation with atomoxetine in the reduction of negative symptoms in patients with schizophrenia: A randomized, double-blind, placebo-controlled clinical trial. Clin Schizophr Relat Psychoses. 2020;14(2):54–57. https://www.clinicalschizophrenia.net/articles/the-evaluation-of-atypical-antipsychotic-augmentation-with-atomoxetine-in-the-reduction-of-negative-symptoms-in-patients.pdf. Accessed November 16, 2021.
  22. Salazar de Pablo G, Woods SW, Drymonitou G, de Diego H, Fusar-Poli P. Prevalence of individuals at clinical high-risk of psychosis in the general population and clinical samples: Systematic review and meta-analysis. Brain Sci. 2021;11(11):1544. doi:10.3390/brainsci11111544
  23. Tanaka M, Spekker E, Szabó Á, Polyák H, Vécsei L. Modelling the neurodevelopmental pathogenesis in neuropsychiatric disorders. Bioactive kynurenines and their analogues as neuroprotective agents: In celebration of 80th birthday of Professor Peter Riederer. J Neural Transm. 2022;129(5–6):627–642. doi:10.1007/s00702-022-02513-5
  24. Nyatega CO, Qiang L, Adamu MJ, Younis A, Kawuwa HB. Altered dynamic functional connectivity of cuneus in schizophrenia patients: A resting-state fMRI study. Appl Sci. 2021;11(23):11392. doi:10.3390/app112311392
  25. Panov G. Dissociative model in patients with resistant schizophrenia. Front Psychiatry. 2022;13:845493. doi:10.3389/fpsyt.2022.845493
  26. Rog J, Błażewicz A, Juchnowicz D, et al. The role of GPR120 receptor in essential fatty acids metabolism in schizophrenia. Biomedicines. 2020;8(8):243. doi:10.3390/biomedicines8080243
  27. Gaebler AJ, Finner-Prével M, Sudar FP, et al. The interplay between vitamin D, exposure of anticholinergic antipsychotics and cognition in schizophrenia. Biomedicines. 2022;10(5):1096. doi:10.3390/biomedicines10051096
  28. Correia BSB, Nani JV, Waladares Ricardo R, et al. Effects of psychostimulants and antipsychotics on serum lipids in an animal model for schizophrenia. Biomedicines. 2021;9(3):235. doi:10.3390/biomedicines9030235
  29. Matthews PRL, Horder J, Pearce M. Selective noradrenaline reuptake inhibitors for schizophrenia. Cochrane Database Syst Rev. 2018;2018(1):CD010219. doi:10.1002/14651858.CD010219.pub2
  30. Wilens TE, Spencer TJ. Understanding attention-deficit/hyperactivity disorder from childhood to adulthood. Postgrad Med. 2010;122(5):97–109. doi:10.3810/pgm.2010.09.2206
  31. De Crescenzo F, Ziganshina LE, Yudina EV, et al. Noradrenaline reuptake inhibitors (NRIs) for attention deficit hyperactivity disorder (ADHD) in adults. Cochrane Database Syst Rev. 2018;2018(6):CD013044. doi:10.1002/14651858.CD013044
  32. Hor K, Taylor M. Suicide and schizophrenia: A systematic review of rates and risk factors. J Psychopharmacol. 2010;24(4 Suppl):81–90. doi:10.1177/1359786810385490
  33. Balhara YP, Verma R. Schizophrenia and suicide. East Asian Arch Psychiatry. 2012;22(3):126–133. PMID:23019287.
  34. Siris SG. Suicide and schizophrenia. J Psychopharmacol. 2001;15(2):127–135. doi:10.1177/026988110101500209
  35. James A, Lai FH, Dahl C. Attention deficit hyperactivity disorder and suicide: A review of possible associations. Acta Psychiatr Scand. 2004;110(6):408–415. doi:10.1111/j.1600-0447.2004.00384.x
  36. Beauchaine TP, Ben-David I, Bos M. ADHD, financial distress, and suicide in adulthood: A population study. Sci Adv. 2020;6(40):eaba1551. doi:10.1126/sciadv.aba1551
  37. Battaglia S, Orsolini S, Borgomaneri S, Barbieri R, Diciotti S, di Pellegrino G. Characterizing cardiac autonomic dynamics of fear learning in humans. Psychophysiology. 2022;2022:e14122. doi:10.1111/psyp.14122
  38. Battaglia S, Thayer JF. Functional interplay between central and autonomic nervous systems in human fear conditioning. Trends Neurosci. 2022;45(7):504–506. doi:10.1016/j.tins.2022.04.003
  39. Tanaka M, Tóth F, Polyák H, Szabó Á, Mándi Y, Vécsei L. Immune influencers in action: Metabolites and enzymes of the tryptophan-kynurenine metabolic pathway. Biomedicines. 2021;9(7):734. doi:10.3390/biomedicines9070734
  40. Martin EI, Ressler KJ, Binder E, Nemeroff CB. The neurobiology of anxiety disorders: Brain imaging, genetics, and psychoneuroendocrinology. Psychiatr Clin North Am. 2009 Sep;32(3):549-75. doi:10.1016/j.psc.2009.05.004
  41. Battaglia S, Fabius JH, Moravkova K, Fracasso A, Borgomaneri S. The neurobiological correlates of gaze perception in healthy individuals and neurologic patients. Biomedicines. 2022;10(3):627. doi:10.3390/biomedicines10030627
  42. Trajkovic J, Di Gregorio F, Ferri F, Marzi C, Diciotti S, Romei V. Resting state alpha oscillatory activity is a valid and reliable marker of schizotypy. Sci Rep. 2021;11(1):10379. doi:10.1038/s41598-021-89690-7
  43. Marsicano G, Cerpelloni F, Melcher D, Ronconi L. Lower multisensory temporal acuity in individuals with high schizotypal traits: A web-based study. Sci Rep. 2022;12(1):2782. doi:10.1038/s41598-022-06503-1
  44. Borgomaneri S, Battaglia S, Avenanti A, di Pellegrino G. Don’t Hurt Me No More: State-dependent transcranial magnetic stimulation for the treatment of specific phobia. J Affect Disord. 2021;286:78–79. doi:10.1016/j.jad.2021.02.076
  45. Lacro JP, Dunn LB, Dolder CR, Leckband SG, Jeste DV. Prevalence of and risk factors for medication nonadherence in patients with schizophrenia: A comprehensive review of recent literature. J Clin Psychiatry. 2002;63(10):892–909. doi:10.4088/JCP.v63n1007
  46. Finnerup NB, Attal N, Haroutounian S, et al. Pharmacotherapy for neuropathic pain in adults: A systematic review and meta-analysis. Lancet Neurol. 2015;14(2):162–173. doi:10.1016/S1474-4422(14)70251-0
  47. Maletic V, Eramo A, Gwin K, Offord SJ, Duffy RA. The role of norepinephrine and its α-adrenergic receptors in the pathophysiology and treatment of major depressive disorder and schizophrenia: A systematic review. Front Psychiatry. 2017;8:42. doi:10.3389/fpsyt.2017.00042
  48. Mäki-Marttunen V, Andreassen OA, Espeseth T. The role of norepinephrine in the pathophysiology of schizophrenia. Neurosci Behav Rev. 2020;118:298–314. doi:10.1016/j.neubiorev.2020.07.038
  49. Navarra R, Graf R, Huang Y, et al. Effects of atomoxetine and methylphenidate on attention and impulsivity in the 5-choice serial reaction time test. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(1):34–41. doi:10.1016/j.pnpbp.2007.06.017
  50. Locher C, Koechlin H, Zion SR, et al. Efficacy and safety of selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors, and placebo for common psychiatric disorders among children and adolescents: A systematic review and meta-analysis. JAMA Psychiatry. 2017;74(10):1011. doi:10.1001/jamapsychiatry.2017.2432
  51. Outhred T, Hawkshead BE, Wager TD, Das P, Malhi GS, Kemp AH. Acute neural effects of selective serotonin reuptake inhibitors versus noradrenaline reuptake inhibitors on emotion processing: Implications for differential treatment efficacy. Neurosci Biobehav Rev. 2013;37(8):1786–1800. doi:10.1016/j.neubiorev.2013.07.010
  52. Ruhé HG, Mason NS, Schene AH. Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: A meta-analysis of monoamine depletion studies. Mol Psychiatry. 2007;12(4):331–359. doi:10.1038/sj.mp.4001949
  53. Rubia K, Alegria AA, Cubillo AI, Smith AB, Brammer MJ, Radua J. Effects of stimulants on brain function in attention-deficit/hyperactivity disorder: A systematic review and meta-analysis. Biol Psychiatry. 2014;76(8):616–628. doi:10.1016/j.biopsych.2013.10.016
  54. Papakostas GI, Nelson JC, Kasper S, Möller HJ. A meta-analysis of clinical trials comparing reboxetine, a norepinephrine reuptake inhibitor, with selective serotonin reuptake inhibitors for the treatment of major depressive disorder. Eur Neuropsychopharmacol. 2008;18(2):122–127. doi:10.1016/j.euroneuro.2007.07.005