Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
5-Year IF – 2.0, IF – 1.9, JCI (2024) – 0.43
Scopus CiteScore – 4.3
Q1 in SJR 2024, SJR score – 0.598, H-index: 49 (SJR)
IC – 171.00; MNiSW – 70 pts
Initial editorial assessment and first decision within 24 h

ISSN 1899–5276 (print), ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2025, vol. 34, nr 9, September, p. 1425–1431

doi: 10.17219/acem/207741

Publication type: editorial

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Cite as:


Jaxa-Kwiatkowski AM, Leszczyszyn A, Gerber H. ERAS protocols for oral cancer free tissue transfer reconstruction: Critical review & clinical checklist. Adv Clin Exp Med. 2025;34(9):1425–1431. doi:10.17219/acem/207741

ERAS protocols for oral cancer free tissue transfer reconstruction: Critical review and clinical checklist

Andrzej Marek Jaxa-Kwiatkowski1,A,B,C,D,E,F, Anna Leszczyszyn2,C,D,E, Hanna Gerber1,A,E,F

1 Clinical Department of Maxillofacial Surgery, Faculty of Dentistry, Wroclaw Medical University, Poland

2 Oral Surgery Outpatient Clinic, 4th Military Hospital, Wrocław, Poland

Graphical abstract


Graphical abstracts

Highlights


• Enhanced Recovery After Surgery (ERAS) provides a solid framework but requires adaptation for free-tissue transfer reconstructions in oral cancer patients.
• Challenges such as clinical heterogeneity, institutional variability, and lack of compliance audits can hinder postoperative recovery.
• Multidisciplinary collaboration is essential to transform ERAS from theoretical guidelines into reproducible clinical pathways.
• A proposed checklist integrates evidence-based recommendations with practical adaptations to ensure consistent, auditable, outcome-driven perioperative care.

Abstract

The Enhanced Recovery After Surgery (ERAS) consensus offers a robust framework but must be tailored to the unique challenges of free-tissue transfer reconstructions in oral cancer. Factors such as clinical heterogeneity, institutional variability, inconsistent monitoring, and the absence of internal compliance audits can undermine postoperative recovery. By fostering multidisciplinary collaboration, ERAS can evolve from a theoretical guideline into a reproducible clinical pathway that enhances survival, functional outcomes and quality of life for oral cancer patients undergoing free-tissue reconstruction. Our proposed checklist merges evidence-based recommendations with practical adaptations to establish a more consistent, auditable and outcome-driven approach to perioperative care.

Key words: oral cancer, enhanced recovery after surgery (ERAS), perioperative care, clinical checklist

Introduction

Enhanced Recovery After Surgery (ERAS) protocols have revolutionized perioperative care by substantially decreasing morbidity across numerous surgical disciplines. Dort et al. published a consensus on ERAS implementation in head and neck cancer surgery and free tissue transfer reconstruction (HNS-FTR).1 However, when extrapolating to complex oncologic oral cavity reconstructions involving FTR, the ERAS framework begins to show signs of strain. That editorial addressed major controversial issues but left universal matters uncommented upon while stating that the general principles of early mobilization, multimodal analgesia, reduced perioperative fasting, and early urinary catheter removal remain universally beneficial. Nonetheless, several core elements of ERAS in this specific surgical context require critical adaptation or, in some cases, fundamental rethinking because even seemingly straightforward opioid-sparing analgesia requires improvements in monitoring. Kemp et al.2 revealed inconsistencies in the implementation of the guidelines by showing that more than 64% of intensive care unit (ICU) patients did not receive a physician-documented pain assessment. This critical oversight highlights the urgent need for a structured checklist that includes ERAS recommendations for oral cancer FTR patients who may be tracheostomy-dependent and unable to self-report.

Preoperative nutritional optimization

The interval between diagnostic evaluation, definitive diagnosis and treatment initiation in oral cancer patients varies significantly depending on the institution and multiple individual patient factors.3 Given the significant delays before treatment reported by Rutkowska et al.,4 we believe that the time required for comprehensive diagnostics can be used to optimize the patient’s nutritional status in every case where oral cancer is suspected, using validated tools such as Nutritional Risk Screening 2002 (NRS-2002)5 or the Malnutrition Universal Screening Tool (MUST).6

Early oral feeding vs prolonged nil by mouth

Institutions vary widely in their protocols for postoperative oral intake: Some enforce a strict nil-by-mouth (NBM) regimen for 7–10 days regardless of reconstruction type, based on the traditional belief that prolonged fasting reduces the risk of flap dehiscence, compromised healing and fistula formation. Both ERAS and European Society for Clinical Nutrition and Metabolism (ESPEN) support early oral feeding, though they underscore the limitation in robust data regarding oral cancer. When oral feeding is contraindicated, enteral nutrition should be initiated within 24 h of surgery, with careful monitoring and proactive management of refeeding syndrome.1, 7, 8 Kerawala et al. showed that early oral feeding did not increase the incidence of recipient site complications and was safe, even in patients with prior radiotherapy. Moreover, it significantly reduced the length of stay (LOS), supporting a shift from routine prolonged NBM practices.9 Brady and al. supported these findings and proposed a structured early feeding protocol that commences oral intake of a liquid diet on postoperative day 1, dietitian-supported nutritional planning, swallowing assessment by a speech and language therapist (SLT), and instrumental swallowing assessments when the clinical situation is unclear.10 In our experience, rigid fasting protocols often delay recovery and undermine nutritional goals that are critical in cancer care. It is time to abandon dogma in favor of a data-driven, patient-centered approach.

Airway management: Is tracheostomy still too routine?

Free tissue transfer reconstruction (FTR) involving the tongue base, floor of the mouth and extensive mandibular resections presents particular challenges in assessing the need for elective tracheostomy. According to Ledderhof et al. and Le et al., elective tracheostomy should be reserved for patients with large lower oral cavity defects when the resection crosses the midline, involves the floor of the mouth, or requires bilateral neck dissections with FTR.11, 12 Reconstructive flaps should be designed with approx. 37% additional tissue to offset anticipated postoperative shrinkage and natural atrophy.13 In this context, postoperative edema can constrict the upper airway, posing a life-threatening risk if a tracheostomy is not performed. Although ERAS guidelines advocate for selective tracheostomy use and prompt decannulation once safe, they do not define explicit indications for elective tracheostomy, leaving this decision to the surgeon’s clinical judgment and experience. Several validated scoring systems can aid in determining the need for elective tracheostomy in head and neck surgery. Cameron’s original index evaluates factors such as surgical site, anticipated airway edema and comorbidities; Gupta’s modification refines these criteria by incorporating intraoperative findings and patient risk profiles; and the TRACHY (Tracheostomy Risk Assessment Checklist in Head and Neck Surgery) protocol, developed by Mohamedbhai, combines preoperative, intraoperative and postoperative variables to generate a composite risk score that guides both tracheostomy placement and timing of decannulation.14, 15, 16 Table 1 presents a comparison of the 3 scoring systems.

Adhikari et al. defined decannulation timing as early (≤7 days) or delayed (≥7 days),17 whereas Patel et al. recommended that, in uncomplicated cases, decannulation can be safely performed between postoperative days 3 and 6 – provided there is adequate airway patency, an effective cough and no evidence of flap compromise.18

When tracheostomy is employed, the most widely accepted and safe protocols include tracheostomy tube cuff deflation on postoperative day 1 with subsequent early decannulation and surgical closure of the tracheostomy. These procedures lead to faster recovery and more effective respiratory and swallowing rehabilitation, though individualized assessments remain critical to avoid postoperative airway emergencies.1, 19

Tracheostomy should be a carefully considered intervention rather than a routine reflex. When it is required, protocols must emphasize structured weaning and early decannulation. This approach not only safeguards the airway but also accelerates recovery, minimizes complications and restores function at the earliest clinically appropriate time.

Postoperative ICU admission: Necessary or not?

Routine postoperative admission to the ICU is a case for ongoing discussion, and we believe it is time to question the reflexive ICU admission model. According to a systematic review and meta-analysis conducted by Mashrah et al., it does not improve outcomes in terms of flap survival or complication rates after HNS-FTR. Moreover, reducing ICU time or even limiting postoperative admissions can lower rates of pneumonia, sepsis, LOS, and healthcare costs.20 Based on our experience and institutional setting, it is more efficient to monitor stable patients’ when they remain in the same surgical ward rather than being transferred to the ICU, which also supports faster mobilization and improves continuity of care, but these findings require comprehensive research. Table 2 presents our institution’s decision-support criteria for ICU compared to ward admission, which is grounded in recent literature and expert consensus. The presence of a single high-risk factor may be sufficient to warrant postoperative ICU admission.20, 21, 22, 23, 24

Perioperative antibiotics: Tailored duration and choice

Prolonged antibiotic use remains common in oral cavity oncology and is usually connected to bone reconstruction, segmental mandibulectomy, preoperative radiation therapy, tracheotomy, longer operative time, and LOS.13 The Centers for Disease Control and Prevention (CDC) recommend antibiotic prophylaxis within 60 min before incision and discontinuation within 24 h postoperatively. Current guidelines emphasize pathogen-directed, short-term antibiotic regimens to optimize outcomes and reduce hospital-acquired infections.1, 25, 26 In contrast, a retrospective study by Daly et al. demonstrated that shortening the duration of antibiotic prophylaxis from a median of 9 days to 1 day, including the recommended cefazolin + metronidazole regimen, led to a significant increase in surgical site infection (SSI).27

Recent evidence indicates that extending prophylactic antibiotic courses beyond 48–72 h offers no additional benefit; penicillins and cephalosporins remain the most effective agents for preventing surgical-site infections in head and neck/oral cancer surgery, whereas clindamycin performs poorly, especially in penicillin-allergic patients.26, 28, 29, 30 Iocca et al. also highlighted that most reported penicillin allergies are not confirmed upon formal testing, suggesting that many patients may be unnecessarily excluded from receiving first-line prophylaxis.26 Multidisciplinary research shows that the risk of cross-reactivity between penicillin and cefazolin is very low and supports its use in most surgical patients with a history of penicillin allergy, but current official clinical guidelines still do not fully align with these trends.31, 32 Data on the optimal duration of postoperative antibiotic prophylaxis are limited – articularly in patients undergoing vascularized bone graft reconstruction or those who have received neoadjuvant therapy. Furthermore, no clear consensus has been established, underscoring the need for further research, ideally randomized controlled trials focused on these high-risk subgroups. Current perioperative antibiotic prophylaxis recommendations are summarized in Table 3.

Steroid use: Limited to single preoperative dose

Corticosteroid use in ERAS protocols for head and neck surgery (HNS) remains a subject of debate. Dort et al.1 recommend a single preoperative dose of corticosteroids, primarily to reduce postoperative nausea and vomiting (PONV) after some types of surgery. However, the role of extended steroid administration is more controversial. In a randomized controlled trial, Kainulainen et al. examined the effects of a total of 60 mg dexamethasone intravenously (i.v.) for 3 days. The regimen did not reduce flap edema or shorten LOS and was associated with a higher rate of postoperative infections than placebo.33

The ongoing PreSte-HN study34 is the first multicenter, placebo-controlled, phase III trial specifically addressing whether a single, low-dose preoperative dexamethasone infusion can enhance recovery without increasing complications and establishing clearly defined ERAS guidelines for HNS-FTR. Once consensus is reached, the checklist should include a single preoperative dose of steroids; routine use of steroids beyond that single dose is not supported by the literature and may be harmful.

Venous thromboembolism prevention: Multimodal, risk-based strategy

Thromboprophylaxis following oral cancer FTR, where the balance between thrombosis and bleeding is particularly delicate, has led to wide variations in clinical practice; some centers initiate low-molecular-weight heparin (LMWH) within 6–12 h following the operation, while others delay pharmacologic prophylaxis, relying initially on mechanical methods.

Low-molecular-weight heparin and unfractionated heparin (UFH) are effective options for venous thromboembolism (VTE) prophylaxis, with LMWH offering practical advantages such as predictable dosing and longer half-life, though no clear superiority has been proven. Aspirin alone is not recommended for VTE prophylaxis, and its role remains unclear since evidence indicates increased bleeding when combined with other anticoagulants.35

Current expert consensus supports a multimodal approach combining pharmacologic agents with mechanical prophylaxis, like intermittent pneumatic compression and early mobilization. Low-molecular-weight heparin should ideally commence within 12 h of surgery (following hemostasis) at prophylactic doses (40 mg daily) and continue for at least 7 days or extend to 28 days in high-risk scenarios (previous VTE, obesity, prolonged immobilization, and advanced cancer stage). It is also vital to assess patients’ individualized thromboembolism risk factors preoperatively and adjust prophylaxis accordingly.

At present, the routine continuation of anticoagulant therapy to prevent metastatic spread is not standard practice, although preclinical studies indicate that anticoagulants may possess antitumor properties.36

Conclusions

Perhaps the most glaring weakness in ERAS implementation for oral cavity reconstruction is the lack of monitoring systems. Protocols are frequently adopted in theory but inconsistently applied. Furthermore, elements such as early feeding, pain control, ambulation, and tracheostomy weaning are often left without documentation or audit.

Given the increasing volume of microvascular procedures, there is a clear need for targeted research and consensus-building. ERAS should function as a living, actively implemented protocol – not a checklist gathering dust in a drawer. It should be a dynamic system, not a static guideline, that evolves with evidence, audits its own effectiveness, and adapts to institutional realities. Our proposed checklist (Table 4), a first step toward that vision, is a user-friendly protocol that centers not on what is easy but on what is necessary, a literature-based approach to optimal recovery.

Use of AI and AI-assisted technologies

Not applicable.

Tables


Table 1. Tracheostomy scoring systems focused on oral cancer surgery

Feature

Cameron et al.14

CASST15

TRACHY score16

Study focus

Major head and neck surgery (including oral cancers)

Oral cavity and oropharyngeal cancers

Head and neck cancer with flap reconstruction, including oral sites

What about oral cancer?

Included oral sites like the anterior/posterior tongue, floor of mouth, and mandibular alveolus. Scoring emphasized tumor site proximity to the pharyngeal airway. High risk in tongue/floor of mouth resections

Exclusively focused on oral and oropharyngeal cancer surgeries. Identified tumor size, site, extent of resection, trismus, radiation, and flap bulk as major contributors to airway risk

Included oral cavity tumors as part of the overall H&N group. Oral cancers that needed bulky flaps or bilateral neck dissections scored higher

Study type

Retrospective review

(148 procedures)

Retrospective analysis of 386 patients, prospective validation on 486 patients

Retrospective review

(149 patients)

Tracheostomy criteria

Score based on tumor site, mandibulectomy, bilateral neck dissection, reconstruction

Score based on 6 major and 4 minor factors; surgical/anatomic risks and patient comorbidities

Score based on TRACHY (T-stage, reconstruction type, surgical site, ASA, treatment history, and neck dissection laterality)

Threshold for tracheostomy

Total score ≥5

Total score ≥7

Total score ≥4

Ease of use

Moderate – 4-factor model

Complex – 10 variables

Simple – 6 variables

Oral cancer suitability

Good general tool; flagged tongue and floor of mouth as high-risk

Best suited – built around oral cancer surgeries; robust data and validated, with the highest sensitivity (95.5%) and specificity (99.5%)

Applicable but not exclusive to oral cancers; strength in flap-specific risk

Key strengths

First structured scoring method; intuitive clinical categories

Highly predictive; prospectively validated in a large oral/oropharyngeal cancer cohort

Easy to apply; high-performing for flap-based reconstructions, including oral sites

Main limitation

Does not account for comorbidities; retrospective only

Many variables, less intuitive, and may be complex for routine use

Not yet externally validated; not exclusive to oral cancers

CASST – Clinical Assessment Scoring System for Tracheostomy; TRACHY – acronym based on 6 key factors: T-stage – tumor stage (based on TNM classification); reconstruction type – type of reconstruction (e.g., free flap, local flap); anatomic surgical site – surgical location (e.g., tongue, floor of mouth); ASA – American Society of Anesthesiologists physical status classification; history of treatment – prior therapies (e.g., radiation, surgery); Y/N neck dissection bilaterality – yes/no: Bilateral neck dissection performed; H&N – Head and Neck.
Table 2. Intensive care unit vs ward admission criteria for oral cancer free tissue transfer reconstruction

Parameter

ICU admission recommended

Ward/step-down admission safe

GoE

SoR

ASA physical status

ASA IV or unstable ASA III

ASA I–III, stable

III

A

Airway management

Anticipated airway difficulty without tracheostomy or unstable

Secured airway (tracheostomy or extubated safely in OR/PACU)

IV

A

Intraoperative hemodynamics

Vasopressor/inotrope use >1 h, persistent instability

Stable throughout the case, with low or no vasoactive support

II

A

Ventilation needs

Planned postoperative ventilation or FiO2 > 50%

Extubated, normal oxygen needs

III

B

Bleeding risk or coagulopathy

Active bleeding, platelet dysfunction, INR > 1.5

Controlled hemostasis, no known coagulopathy

III

A

Comorbidities

Decompensated CHF, ESRD, CAD with low EF, severe COPD

Controlled hypertension, DM, mild COPD

III

B

Free flap complexity

Bone flaps, previous radiation, bilateral neck, and long op (>12 h)

Soft tissue flap, unilateral neck, operative time <10–12 h

III

B

Postoperative pain/sedation plan

Requires i.v. PCA or deep sedation with hypoventilation risk

On multimodal PO analgesia or light sedation

II

B

GoE – grade of evidence; I – meta-analysis or more than 1 high-quality randomized controlled trial (RCT); II – prospective cohort study or lower-quality RCT; III – retrospective cohort, case-control study, or expert-informed institutional data; IV – case series or registry data; V – expert opinion or consensus without direct supporting studies; SoR – strength of recommendation; A – strong recommendation (clear benefit > risk; high-quality evidence); B – moderate recommendation (moderate-quality evidence or smaller benefit margin); C – weak recommendation (limited evidence or highly individualized decision); ASA – American Society of Anesthesiologists; CAD – coronary artery disease; CHF – congestive heart failure; COPD – chronic obstructive pulmonary disease; DM – diabetes mellitus; EF – ejection fraction; ERAS – enhanced recovery after surgery; ESRD – end-stage renal disease; FiO2 fraction of inspired oxygen; ICU – intensive care unit; INR – international normalized ratio; i.v. – intravenous; OR – operating room; PACU – post-anesthesia care unit; PCA – patient-controlled analgesia; PO – per os (by mouth); SCCM – Society of Critical Care Medicine.
Table 3. Recommended perioperative antibiotic therapy in oral cavity free flap reconstruction

Clinical scenario

Antibiotic regimen

Dosage and frequency

Duration

Notes/Alternatives

GoE

SoR

Standard case (clean-contaminated)

Ampicillin + sulbactam

3 g i.v. every 6 h

≤24 h

Preferred: discontinue unless high-risk*

II

A

Alternative (β-lactam allergy – non-anaphylaxis)

Cefazolin + metronidazole

Cefazolin 1–2 g i.v. q8h and metronidazole 500 mg i.v. q8h

≤24 h

Use only if allergy is mild (e.g., rash); avoid in-mediated reactions

II

B

Penicillin anaphylaxis (true allergy)

Clindamycin

Clindamycin 600 mg i.v. q8h

≤24 h

Limited Gram-negative coverage. Consider adding levofloxacin 500–750 mg i.v. q24h if Gram-negative risk is high

Monitor for C. difficile

III

B

High-risk

Ampicillin-sulbactam

As above

up to 72 h

For major contamination, ischemia, prior radiation, or immunocompromised hosts. De-escalate and consult ID if needed

II

B

Signs of infection or fistula

Tailored antibiotic therapy (based on cultures)

Per ID recommendation

Therapeutic course (7–14 days)

Start broad empiric coverage de-escalate once cultures available. Cover oral flora, anaerobes, and skin flora

III

A

i.v.– intravenous; q8h – every 8 h; q12h – every 12 h; ID – infectious diseases specialist; C. difficile – Clostridium difficile; *High risk – bone reconstruction (e.g., fibula flap, segmental mandibulectomy), preoperative radiation therapy, tracheostomy or prolonged intubation, risk of salivary leak, operative time >8 h, reoperation or flap revision within 72 h; supporting sources for these recommendations include: Iocca et al. (Head Neck, 2022), Daly et al. (Open Forum Infect Dis, 2021), Khariwala et al. (Surg Infect, 2016), Haidar et al. (Head Neck, 2018), Balamohan et al. (Am J Otolaryngol, 2019), Sousa-Pinto et al. (JAMA Surg, 2021), Sexton & Kuruvilla (Antibiotics, 2024)26, 27, 28, 29, 30, 31, 32
Table 4. Checklist for oral cancer free flap reconstruction (institutional adaptation of ERAS guidelines)

Phase

Component

Summary recommendation

Icon

Priority

()

Pre-op

Nutritional screening

NRS-2002 or MUST at the first visit, at least ≥7 days pre-op; dietitian review

????

????

Smoking/alcohol cessation

Counsel ≥2 weeks pre-op; document cessation

????

Chlorhexidine rinse

Initiate 0.12% rinse 2–3 days before surgery

????

Patient Education

Discuss surgery, feeding, airway, pain, and mobility

????

????

Carb loading

400 mL iso-osmolar drink the night before (omit if diabetic)

????

Intra-op

Antibiotics

Administer ≤60 min pre-incision; limit to 24 h unless high-risk*

????

????

Fluid management

Goal-directed/zero-balance fluids

????

????

PONV prevention

Ondansetron + dexamethasone based on risk

????

Tracheostomy

Selective only; avoid routine tracheostomy

Post-op

Analgesia

VAS-documented multimodal; minimize opioids

????

????

Enteral nutrition

Start via NG/PEG <24 h; consider oral fluids POD 4–7

????

????

Mobilization

Sit up ≥2 h POD 1; walk POD 2–3 with physio assist

????

????

Laboratory tests

POD 1–3: Daily CBC, electrolytes, creatinine, CRP; q48 – 72 h LFTs, albumin, glucose POD ≥3: Patient-specific

????

Tracheostomy decannulation

Cuff deflate POD 1, decannulation trial POD ≥3; criteria: Patent airway, effective cough, no leak, early stomia closure

Foley catheter

Remove POD 1–2 if stable

????

????

Flap monitoring

q1–2 h (POD 0– 1), q2 – 4 h (POD 2–3), q6 – 12 h (POD ≥4 if stable ±Doppler)

????

????

Swallowing evaluation

SLT assesses POD ≥5 or before oral intake

????

VTE prophylaxis

LMWH + compression; extend to high-risk (Caprini ≥5)

????

????

Discharge

Nutrition

Define plan

????

Tracheostomy care

Ensure closure or a follow-up

Rehab follow-up

Ensure SLT and physiotherapy referral

????

Audit & compliance

Track ERAS adherence, complications, LOS

????

????

POD – postoperative day; NRS-2002 – Nutritional Risk Screening 2002; MUST – Malnutrition Universal Screening Tool; NG – nasogastric; PEG – percutaneous endoscopic gastrostomy; PONV – postoperative nausea and vomiting; CBC – complete blood count; CRP – C-reactive protein; LFTs – liver function tests; PT/INR – prothrombin time/international normalized ratio; SLT – speech and language therapy; VTE – venous thromboembolism; LMWH – low-molecular-weight heparin; ERAS – enhanced recovery after surgery; LOS – length of stay; *high-risk – bone reconstruction (e.g., fibula flap, segmental mandibulectomy), preoperative radiation therapy, tracheostomy or prolonged intubation, risk of salivary leak, operative time >8 h, reoperation or flap revision within 72 h.
Priority flags:|
o ???? Essential for ERAS success and strongly evidence-based
o Recommended but may vary based on patient or institutional factors
Icons: Visual cues for quick reference by interdisciplinary teams
Column: Use for bedside documentation, audits, or real-time team tracking

References (36)

  1. Dort JC, Farwell DG, Findlay M, et al. Optimal perioperative care in major head and neck cancer surgery with free flap reconstruction: A consensus review and recommendations from the enhanced recovery after Surgery Society. JAMA Otolaryngol Head Neck Surg. 2017;143(3):292. doi:10.1001/jamaoto.2016.2981
  2. Kemp HI, Bantel C, Gordon F, et al. Pain Assessment in INTensive care (PAINT): An observational study of physician-documented pain assessment in 45 intensive care units in the United Kingdom. Anaesthesia. 2017;72(6):737–748. doi:10.1111/anae.13786
  3. Swaminathan D, George NA, Thomas S, Iype EM. Factors associated with delay in diagnosis of oral cancers. Cancer Treat Res Commun. 2024;40:100831. doi:10.1016/j.ctarc.2024.100831
  4. Rutkowska M, Hnitecka S, Nahajowski M, Dominiak M, Gerber H. Oral cancer: The first symptoms and reasons for delaying correct diagnosis and appropriate treatment. Adv Clin Exp Med. 2020;29(6):735–743. doi:10.17219/acem/116753
  5. Kondrup J, Rasmussen HH, Hamberg O, Stanga Z; Ad Hoc ESPEN Working Group. Nutritional risk screening (NRS 2002): A new method based on an analysis of controlled clinical trials. Clin Nutr. 2003;22(3):321–336. doi:10.1016/s0261-5614(02)00214-5
  6. Chao PC, Chuang HJ, Tsao LY, et al. The Malnutrition Universal Screening Tool (MUST) and a nutrition education program for high risk cancer patients: Strategies to improve dietary intake in cancer patients. BioMed. 2015;5(3):17. doi:10.7603/s40681-015-0017-6
  7. Weimann A, Braga M, Carli F, et al. ESPEN practical guideline: Clinical nutrition in surgery. Clin Nutr. 2021;40(7):4745–4761. doi:10.1016/j.clnu.2021.03.031
  8. Jaxa-Kwiatkowski A, Łysenko L, Gara-Rucińska M, Leszczyszyn A, Gerber H, Kubiak M. Potentially lethal but rarely considered: Risk of developing refeeding syndrome in primary oral squamous cell carcinoma. J Stomatol Oral Maxillofac Surg. 2024;125(5):101742. doi:10.1016/j.jormas.2023.101742
  9. Kerawala CJ, Riva F, Paleri V. The impact of early oral feeding following head and neck free flap reconstruction on complications and length of stay. Oral Oncol. 2021;113:105094. doi:10.1016/j.oraloncology.2020.105094
  10. Brady G, Leigh-Doyle L, Riva F, Kerawala C, Roe J. Early post-operative feeding: An investigation of early functional outcomes for oral cancer patients treated with surgical resection and free flap reconstruction. Dysphagia. 2022;37(4):1008–1013. doi:10.1007/s00455-021-10363-8
  11. Ledderhof NJ, Carlson ER, Heidel RE, Winstead ML, Fahmy MD, Johnston DT. Are tracheotomies required for patients undergoing composite mandibular resections for oral cancer? J Oral Maxillofac Surg. 2020;78(8):1427–1435. doi:10.1016/j.joms.2020.03.027
  12. Le JM, Gigliotti J, Bourne GR, et al. Immediate extubation versus elective tracheostomy following free flap reconstruction of the oral cavity: A 7-year single institution retrospective study. J Oral Maxillofac Surg. 2023;81(9 Suppl):S57–S58. doi:10.1016/j.joms.2023.08.148
  13. Schuderer JG, Hoferer F, Eichberger J, et al. Predictors for prolonged and escalated perioperative antibiotic therapy after microvascular head and neck reconstruction: A comprehensive analysis of 446 cases. Head Face Med. 2024;20(1):58. doi:10.1186/s13005-024-00463-9
  14. Cameron M, Corner A, Diba A, Hankins M. Development of a tracheostomy scoring system to guide airway management after major head and neck surgery. Int J Oral Maxillofac Surg. 2009;38(8):846–849. doi:10.1016/j.ijom.2009.03.713
  15. Gupta K, Mandlik D, Patel D, et al. Clinical assessment scoring system for tracheostomy (CASST) criterion: Objective criteria to predict pre-operatively the need for a tracheostomy in head and neck malignancies. J Craniomaxillofac Surg. 2016;44(9):1310–1313. doi:10.1016/j.jcms.2016.07.008
  16. Mohamedbhai H, Ali S, Dimasi I, Kalavrezos N. TRACHY score: A simple and effective guide to management of the airway in head and neck cancer. Br J Oral Maxillofac Surg. 2018;56(8):709–714. doi:10.1016/j.bjoms.2018.07.015
  17. Adhikari A, Noor A, Mair M, et al. Comparison of postoperative complications in early versus delayed tracheostomy decannulation in patients undergoing oral cancer surgery with microvascular reconstruction. Br J Oral Maxillofac Surg. 2023;61(1):101–106. doi:10.1016/j.bjoms.2022.11.285
  18. Patel P, Patel P, Solanki K, Ahmed A, Visavadia B, Farook S. 42. Temporary tracheostomy in post-operative airway management of oral cavity surgery free flap patients: Is it necessary? Br J Oral Maxillofac Surg. 2022;60(10):e23. doi:10.1016/j.bjoms.2022.11.116
  19. Bertazzoni G, Testa G, Tomasoni M, et al. The Enhanced Recovery After Surgery (ERAS) protocol in head and neck cancer: A matched-pair analysis. Acta Otorhinolaryngol Ital. 2022;42(4):325–333. doi:10.14639/0392-100X-N2072
  20. Mashrah MA, Aldhohrah T, Abdelrehem A, et al. Postoperative care in ICU versus non-ICU after head and neck free-flap surgery: A systematic review and meta-analysis. BMJ Open. 2022;12(1):e053667. doi:10.1136/bmjopen-2021-053667
  21. Nates JL, Nunnally M, Kleinpell R, et al. ICU admission, discharge, and triage guidelines: A framework to enhance clinical operations, development of institutional policies, and further research. Crit Care Med. 2016;44(8):1553–1602. doi:10.1097/CCM.0000000000001856
  22. Chen WC, Hung KS, Chen SH, et al. Intensive care unit versus ward management after anterolateral thigh flap reconstruction after oral cancer ablation. Ann Plast Surg. 2018;80(2 Suppl):S11–S14. doi:10.1097/SAP.0000000000001301
  23. Cervenka B, Olinde L, Gould E, et al. Use of a non-ICU specialty ward for immediate post-operative management of head and neck free flaps: A randomized controlled trial. Oral Oncol. 2019;99:104464. doi:10.1016/j.oraloncology.2019.104464
  24. Van Valkinburgh D, Kerndt CC, Hashmi MF. Inotropes and vasopressors. In: StatPearls. Treasure Island, USA: StatPearls Publishing; 2025. http://www.ncbi.nlm.nih.gov/books/NBK482411. Accessed June 30, 2025.
  25. Busch CJ, Knecht R, Münscher A, Matern J, Dalchow C, Lörincz BB. Postoperative antibiotic prophylaxis in clean-contaminated head and neck oncologic surgery: A retrospective cohort study. Eur Arch Otorhinolaryngol. 2016;273(9):2805–2811. doi:10.1007/s00405-015-3856-6
  26. Iocca O, Copelli C, Ramieri G, Zocchi J, Savo M, Di Maio P. Antibiotic prophylaxis in head and neck cancer surgery: Systematic review and Bayesian network meta-analysis. Head Neck. 2022;44(1):254–261. doi:10.1002/hed.26908
  27. Daly JF, Gearing PF, Tang NSJ, Ramakrishnan A, Singh KP. Antibiotic prophylaxis prescribing practice in head and neck tumor resection and free flap reconstruction. Open Forum Infect Dis. 2022;9(1):ofab590. doi:10.1093/ofid/ofab590
  28. Khariwala SS, Le B, Pierce BHG, Isaksson Vogel R, Chipman JG. Antibiotic use after free tissue reconstruction of head and neck defects: Short course vs long course. Surg Infect. 2016;17(1):100–105. doi:10.1089/sur.2015.131
  29. Haidar YM, Tripathi PB, Tjoa T, et al. Antibiotic prophylaxis in clean-contaminated head and neck cases with microvascular free flap reconstruction: A systematic review and meta-analysis. Head Neck. 2018;40(2):417–427. doi:10.1002/hed.24988
  30. Balamohan SM, Sawhney R, Lang DM, et al. Prophylactic antibiotics in head and neck free flap surgery: A novel protocol put to the test. Am J Otolaryngol. 2019;40(6):102276. doi:10.1016/j.amjoto.2019.102276
  31. Sousa-Pinto B, Blumenthal KG, Courtney L, Mancini CM, Jeffres MN. Assessment of the frequency of dual allergy to penicillins and cefazolin: A systematic review and meta-analysis. JAMA Surg. 2021;156(4):e210021. doi:10.1001/jamasurg.2021.0021
  32. Sexton ME, Kuruvilla ME. Management of penicillin allergy in the perioperative setting. Antibiotics (Basel). 2024;13(2):157. doi:10.3390/antibiotics13020157
  33. Kainulainen S, Törnwall J, Koivusalo AM, Suominen AL, Lassus P. Dexamethasone in head and neck cancer patients with microvascular reconstruction: No benefit, more complications. Oral Oncol. 2017;65:45–50. doi:10.1016/j.oraloncology.2016.12.008
  34. Shinozaki T, Imai T, Kobayashi K, et al. Preoperative steroid for enhancing patients’ recovery after head and neck cancer surgery with free tissue transfer reconstruction: Protocol for a phase III, placebo-controlled, randomised, double-blind study (J-SUPPORT 2022, PreSte-HN Study). BMJ Open. 2023;13(5):e069303. doi:10.1136/bmjopen-2022-069303
  35. Abraham M, Badhey A, Hu S, et al. Thromboprophylaxis in head and neck microvascular reconstruction. Craniomaxillofac Trauma Reconstr. 2018;11(2):85–95. doi:10.1055/s-0037-1607068
  36. Ma SN, Mao ZX, Wu Y, et al. The anti-cancer properties of heparin and its derivatives: A review and prospect. Cell Adh Migr. 2020;14(1):118–128. doi:10.1080/19336918.2020.1767489