Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
IF – 2.1 (5-Year IF – 2.0), JCI (2023) – 0.4
Scopus CiteScore – 3.7 (CiteScore Tracker – 4.3)
Q1 in SJR 2024, SJR score – 0.598
IC – 171.00; MNiSW – 70 pts
Initial editorial assessment and first decision within 24 h

ISSN 1899–5276 (print), ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2025, vol. 34, nr 2, February, p. 257–268

doi: 10.17219/acem/187891

Publication type: review

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Cite as:


Jaschke M, Kołodziej Ł, Wilk A, Droździk M. Which risk factors are involved in a distal biceps tendon injury? A systematic review. Adv Clin Exp Med. 2025;34(2):257–268. doi:10.17219/acem/187891

Which risk factors are involved in a distal biceps tendon injury? A systematic review

Markus Jaschke1,2,A,B,C,D, Łukasz Kołodziej1,C,E, Aleksandra Wilk3,C,E, Marek Droździk2,E,F

1 Department of Orthopedics, Traumatology and Oncology of the Musculoskeletal System, Pomeranian Medical University, Szczecin, Poland

2 Department of Pharmacology, Pomeranian Medical University, Szczecin, Poland

3 Department of Histology and Embryology, Pomeranian Medical University, Szczecin, Poland

Graphical abstract


Graphical abstracts

Abstract

Distal biceps tendon rupture is a rare injury predominately occurring in middle-aged men. This study aimed to collect relevant risk factors associated with distal biceps tendon rupture from the published literature. This systematic review aimed to collect and tabulate the risk factors for distal biceps tendon rupture. Studies published in English were searched concerning risk factors for distal biceps tendon ruptures until July 2022; cohort studies, case series and randomized controlled trials were subjected to analysis. Case studies, cadaveric studies and reviews in any form were excluded. The studies were quantitatively and qualitatively reviewed. One hundred twenty-one articles presenting risk factors for distal biceps tendon ruptures were identified, recruiting a total of 7,484–7,576 patients. The average age of the individuals was 46.8 years, with 96.7% being males and 94.7% having affinity for sports activities. In 56.7% of the cases, the dominant arm was involved, and in 54.6%, the right arm was affected. The use of tobacco was found in 20.8% of cases and of anabolic steroids in 2.5% of cases. On average, 55.8% of distal biceps tendon rupture patients had a physical occupation and the most common mechanism of the injury was related to heavy weight lifting observed in 53.2% of subjects. The most common and outstanding reported risk factors for distal biceps tendon ruptures were age, sex and sports activity, i.e., middle-aged males being still physically active and practicing sports. Steroid usage does not seem to increase significantly the risk of the distal biceps tendon rupture.

Key words: risk factor, tendon, rupture, distal biceps

Introduction

The biceps brachii muscle originates as a 2-headed muscle, with the long head originating from the supraglenoid tubercle and the short head from the coracoid process. The muscle inserts on the radial tuberosity as 1 tendon. The fibers of the long head insert more proximally than the fibers of the short head, leading to greater function in supination of the long head and greater function in flexion of the short head.1 A rupture of the distal biceps tendon usually leads to immediate weakness in supination and flexion. Additionally, a popping sound can be heard, followed by ecchymosis and edema. In most cases, retraction of the muscle is visible as a reverse Popeye sign.

Distal biceps tendon ruptures are uncommon injuries, with an incidence of 1.2 in the past and up to 6 per 100,000 nowadays.2, 3 This is likely explained by improved diagnostic procedures and consistent documentation of records nationwide.

Different methods have been implemented to diagnose and treat distal biceps tendon ruptures. Usually, clinical evaluation is sufficient, such as the hook test or the biceps squeeze test, yet in cases of doubt, ultrasonography (USG) or magnetic resonance imaging (MRI) can support the diagnosis.4, 5 Acute ruptures are characterized by a better prognosis, as chronic cases tend to have increased complication rates. The anatomical reinsertion should be targeted to recover most of the strength in flexion and supination. In older patients, conservative treatment is a viable alternative. The single- and the double-incision approaches have been described in the literature as equally viable methods with slight differences in complication rates.6, 7, 8, 9 The most common and major complications are lateral antebrachial cutaneous nerve (LABCN) injury, posterior interosseous nerve (PIN) injury, pain, and heterotrophic ossification.10 A graft can be used for tendon reconstruction in cases of chronic rupture or insufficient tendon quality.6, 9 Overall, literature has shown that surgery on the ruptured distal biceps tendon can lead to a very satisfactory outcome with a slight loss in supination and flexion strength.11, 12, 13

Yet, data collection about risk factors for distal biceps tendon injuries in the current literature is limited to a few reviews without quantification of the cases.

Objectives

In the published literature, risk factors for distal biceps tendon injuries have been presented, but not quantified as a systematic review. This systematic review aimed to determine the risk factors associated with distal biceps tendon ruptures, as well as to collect the data and articles currently available in the literature.

Material and methods

This systematic review was designed according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement from 2020. A registration and review protocol was not prepared.

Literature search

The databases of Scopus, Embase and MEDLINE were searched on July 15, 2022, for risk factors associated with distal biceps tendon ruptures. A starting date for the search was not defined. The terms applied for bibliographic search in these databases were “distal”, “biceps”, “rupture”, and “tear”, with the following Boolean line: (distal) AND (biceps) AND ((rupture) OR (tear)). Filters were set according to the inclusion and exclusion criteria mentioned below. The search was performed by the principal investigator and reviewed by 2 co-investigators independently. The abstracts were then screened to identify articles involving the distal biceps tendon. The full-text articles were then reviewed by the authors independently. The data was collected independently and then compared between the investigators. Differences in data collection were discussed, and the articles were rescreened. Inclusion and exclusion criteria were set before data collection. The inclusion criteria included articles published in English, retrospective/prospective cohort studies, case series, and randomized controlled trials. Exclusion criteria included reviews in any form, cadaveric studies, case reports, and patients with tendinopathy or tendinitis without rupture.

The data were extracted and tabulated into age, sex, dominant arm, lateralization of injury, tobacco smoking, alcohol consumption, steroid usage, occupation, body mass index (BMI), drug usage (fluoroquinolones and statins), radial tuberosity, sports, comorbidities, and mechanism of injury.

Search results

The initial search of all before mentioned databases combined yielded 1,237 results, of which 596 were from Scopus, 132 from MEDLINE and 509 from Embase. After screening for duplicates, 649 articles were excluded. After screening the abstracts according to the exclusion criteria, 114 additional articles were excluded. Four hundred seventy-four articles were left for full-text article review, and of these, 119 articles met the inclusion standards, and 2 additional articles were identified by reviewing the references of these articles, resulting in a total of 121 for the systematic review (Figure 1, Figure 2).

Analysis of articles

The articles that did not report an absolute number of participants in the subgroups but instead reported a percentage of participants were calculated to the absolute number by rounding the number to the next full digit.

Age

In 1 study, the age was not given as an average but instead in brackets. We assumed the middle value for each bracket and calculated the average value according to the provided data.

Occupation

This subgroup was divided into physical, mixed and non-physical groups. According to this classification, we assigned the occupation to their intensity in physical work. When an article categorized their cohort as physical and non-physical, the mixed category was counted as 0. Additionally, when an article partially did not report the occupation of participants, the amount of unknown occupations was deducted from the total number.

BMI

Some articles only reported height and weight either of each patient or as an average, so that was used to calculate the BMI.

Mechanism of injury

Martial arts, boxing and wrestling were considered to be fighting. Sports that did not belong to a fighting discipline, like football, baseball and rugby, were classified as sports. Weightlifting and bodybuilding were considered as lifting a heavy object as the mechanism. Additionally, when 2 mechanisms were mentioned for 1 number, this number was divided by 2, and each mechanism got half of the original number accredited.

Results

We analyzed the characteristics of 7,484–7,576 patients. The range is due to 1 article reporting a different/inconsistent number of patient information for different baseline characteristics.

Age

Of the 121 articles, 118 (97.5%) mentioned the age of the patients. In cases of bilateral ruptures, the age of the initial rupture was used in the average. The age of 7,408 patients at the time of the distal biceps tendon rupture was reported with an average age of 46.8 years. Furthermore, 7 articles reported the ages of female participants. The average age for 54 female patients was reported to be 60.1 years.

Sex

In total, 117 (96.7%) articles reported sex of the individuals. Of 7,355 participants, 7,112 were male (96.7%) and 243 (3.3%) were female.

Dominance and laterality

Information regarding injury to the dominant upper extremity was present in 88 articles (72.7%), while the laterality of the injury was addressed in 42 articles (34.7%). Of 3,798 patients analyzed in the 88 articles reporting dominance, 2,153 patients (56.7%) injured their dominant upper extremity and 1,645 patients (43.3%) injured their non-dominant upper extremity. From the point of laterality, 877 patients (54.6%) out of 1,606 injured their right upper extremity, while 729 patients (45.4%) injured their left side.

Tobacco smoking, steroids and alcohol

Overall, 33 (27.3%) articles included data on 3,573 patients, of which 743 (20.8%) were categorized as smokers. Regarding steroid use, 18 (14.9%) articles reported on 1,104 patients, in which 31 (2.8%) study participants were administered steroids, 28 (2.5%) patients admitted abusing anabolic steroids and 3 patients were used therapeutic glucocorticosteroids (lateral epicondylitis, sciatica and herniated disc). Only 3 (2.5%) articles reported alcohol consumption. Of 37 patients in the 1st study, 3 (8.1%) drank alcohol occasionally, 24 (64.9%) drank alcohol regularly and 10 (27%) abused alcohol. The 2nd study included 8 participants, of which no addiction to alcohol could be associated. The 3rd study reported 45 patients, of which 15 (33.3%) declared drinking alcohol regularly.

Occupation

In total, 29 (24%) articles reported either occupation of the patients or physical activity in their occupation. Of the 981 patients, 547 (55.8%) declared having a physical occupation, 122 (12.4%) a mixed occupation and 312 (31.8%) a non-physical occupation.

BMI

Body mass index was the subject in 10 (8.3%) articles during the time of rupture of the distal biceps tendon. The average BMI of 372 patients was 29.6, which is considered on the border between overweight to obese. Two articles categorized the BMI of their patients. Thus, 1 article concluded that 58 (15.5%) patients were obese in their cohort of 373 patients, and another article concluded that 6 (8.7%) had normal weight, 17 (24.6%) were overweight and 46 (66.7%) were obese in a cohort of 69 patients.

Statins and fluoroquinolones

Two articles included information about statin usage, and 2 articles included fluoroquinolones. In the aspect of statins, 1 study gave a quantitative measurement with 32 out of 104 (30.8%) patients reported using statins. The other study with 10 participants mentioned the usage of statins, yet the quantitative number is unclear. For fluoroquinolones, 36 patients were evaluated, of which 1 (2.8%) was administered levofloxacin at the time of injury.

Radial tuberosity

Hilgersom et al. concluded that radial tuberosity volume and height are significant risk factors for distal biceps tendon ruptures. In his cohort of ruptured tendons, 9 participants had a mean radial tuberosity size of 705 mm3 compared to 541 mm3 in the control group of 18 study participants. The mean radial tuberosity height in the rupture group was 4.6 mm, while in the control group it was 3.7 mm.14 On the other hand, Kodde et al. concluded that radial tuberosity size did not correlate with distal biceps tendon ruptures in a cohort size of 22 patients in the rupture group and 22 in the control group.15

Sports

Of the 11 (9.1%) articles that reported on activity in sports, 177 (94.7%) of 187 were active sportsmen. Six of the 11 articles included data about the type of sports with 76 participants. The most common sports among those were weight lifting (n = 16), fitness (n = 15), boxing (n = 10), cycling (n = 7), martial arts (n = 5), and rugby (n = 5). Other types of sports reported were running (n = 3), soccer (n = 2), swimming (n = 2), triathlon (n = 2), tennis (n = 1), skiing (n = 1), rowing (n = 1), kabaddi (n = 1), bodybuilding (n = 1), wrestling (n = 1), climbing (n = 1), baseball (n = 1), volleyball (n = 1), golf (n = 1), and bow hunting (n = 1).

Comorbidities

In total, 10 (8.3%) articles included information about comorbidities. Two of those only mentioned the coexistence of systemic comorbidities but did not specify the comorbidities themselves. Of 139 patients, 35 (25.2%) had comorbidities. Four articles provided data about diabetes as a comorbidity; upon evaluating 364 patients, 17 (4.7%) were diagnosed with diabetes. Another study by Kelly et al. identified a 2.7% rate of diabetes in their cohort for patients below the age of 65 and a 19.8% rate for patients above the age of 65.2 Hypercholesterolemia was a subject of 2 articles with 246 patients, of which 5 were diagnosed with hypercholesterolemia. Further comorbidities were addressed in 2 studies involving 241 patients. Hypertension (12), asthma (9) and diabetes (5) were the most common ones. Ischemic heart disease (3), tendinitis (3), hypercholesterolemia (2), inflammatory joint disease (1), and renal dysfunction (1) were also reported.

Mechanism of injury

Of the 121 articles, 39 (33.1%) articles reported about the mechanisms of injury, of which 5 qualitatively described the mechanism of injury. All 5 articles described an eccentric, excessive and sudden load in an acute setting as the most common. In the other 34 articles, the mechanism of injury for 43 patients out of 1,645 was unknown. The most common way of rupturing the distal biceps described was lifting a heavy object with 852 (53.2%) ruptures, followed by sporting activities with 196 (12.2%) ruptures. Also, quite common mechanisms of rupture were falling with 93 (5.8%) ruptures and forceful elbow extension-catching a falling object with 81 ruptures (5.1%). Less common were fighting and assault with 46 ruptures (2.9%), insidious ruptures with 34 ruptures (2.1%), pulling movements with 29 ruptures (1.8%), blunt impact with 10 ruptures (0.6%), and other causes in 243 ruptures (15.2%, Table 1).3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130

Discussion

This systematic review summarizes the knowledge about current risk factors for distal biceps tendon ruptures. The average male age associated with the incidence of rupture was 46.8 years, while in female patients, the average age of rupture was more advanced at 60.1 years. We suspect that decreased loads posed on the arm due to everyday activities, along with increased tendon degeneration with aging, precipitates conditions in which a minimal load on the arm is sufficient to cause the distal biceps tendon to rupture. Likewise, the sex distribution indicates that men as more associated with ruptures. Dunphy et al. and Ford et al. reported a similar incidence of rupture in male and female participants with 98.5% and 97.6%, respectively.9, 23

Additionally, we wanted to point out the risk factor of arm dominance in the literature. In most of the literature, the dominant side is affected by the rupture,131, 132, 133, 134, 135 yet in this systematic review, the dominant arm was involved in only 56.7% of the reported cases.

In this systematic review, it was observed that the majority of participants (94.7%) engaged in sports activities, either as professionals or as a leisure pursuit. The meaningfulness of BMI becomes less accurate when muscle mass is highly increased, such as in sportsmen. In these cases, BMI value would indicate higher than normal body mass, yet in some healthy states, the increase of BMI is due to muscle and not fatty tissue. Therefore, BMI alone is an inaccurate risk factor as the body composition of muscle and other structures is disregarded. Due to the high rate of study participants involved in sports activities, we believe that muscle mass is the major contributor to the increased BMI. Additionally, most of the patients reported at least a partially physical occupation (68.2%), leading to the possibility that muscle mass might be increased in those subjects.

The literature ascribes distal biceps tendon ruptures to middle-aged men, usually with an active lifestyle.2, 136, 137, 138 This systematic review confirms the general knowledge, and reports the rupture incidence in men at 96.7%, at the mean age of 46.8 years, with 94.7% of individuals being involved in an active lifestyle and 68.2% having a physical or mixed physical occupation.

Regarding tobacco smoking, Kelly et al. reported findings that are not in line with our study. They used a national database and reported that 4.3% of the injured population were tobacco users, while in our review, 20.8% can be considered smokers. Regarding the point of diabetes mellitus, Kelly et al. reported that below the age of 65 years, diabetes rates were estimated to be 2.7%, and above the age of 65 to be 19.8% for the injured population.2 The 4.7% diabetes incidence in our findings can be explained by the lack of age stratifications, i.e., participants aged above 65 years were included in the analysis and increased the rate of diabetes.

The study by Pope et al.139 indicates that approx. 3–4 million individuals aged 13–50 years in the USA are using anabolic steroids, representing 8.4% of the 155 million individuals aged 15–50 years in the USA, according to the United Nations population count.140 Therefore, the rate of anabolic steroid usage would be approx. 1.9–2.6% in the abovementioned age groups. In our systematic review, the rate of patients who used anabolic steroids was at the upper range of normality (2.5%), according to the calculations presented above. On the other hand, the usage of anabolic steroids has a bad reputation, is connected to health risks and is often concealed by patients.

We think that risk factor analysis in distal biceps tendon ruptures is veiled due to the lower usage of arms compared to legs in daily life. Tendons of the legs are used every day to carry the whole bodyweight, while muscles of the arm are only used when carrying objects. Therefore, tendons of the lower limb are much more prone to rupture due to systemic degenerative changes of the tendons than those of the upper limb.

Pathomechanisms of relevant risk factors

Aging has a tremendous effect on all tendons in the human body. On the cellular level, the active tenoblasts transform into inactive tenocytes with a general, age-dependent decrease in the number of tendon cells. Additionally, the overall metabolic activity of tenoblasts decreases drastically with age, leading to a reduced potential to repair and heal the tendon. Furthermore, metabolic anaerobic over aerobic pathways are favored due to overall reduced metabolism.

In the extracellular matrix (ECM), qualitative and quantitative changes can be seen. Collagen content reduces slightly, proteoglycans and glycoproteins decrease more intensively, as well as elastic components. Furthermore, water and mucopolysaccharide content of the tendon is also decreased, leading to increased stiffness of the tendon and a reduced gliding ability. Overall, a reduced tendon diameter and volume can be seen. Additionally, the vascular bed of the tendon is reduced, which results in reduced oxygen and nutrition transport to the tendon. Accumulation of lipids and calcium deposits can also be observed, which disrupts the tendon matrix and weakens the tensile strength. All of these mentioned factors lead to decreased tensile strength and increased risk of tendon rupture.141

Tobacco smoking has a similar effect as aging. It affects the healing ability by reducing the vascular supply of oxygen and nutrients, as nicotine is a potent vasoconstrictor.142, 143

It is hypothesized that sex is a risk factor in tendon ruptures, mainly due to hormonal differences. Estrogens are said to be tendon-protective.144, 145, 146 The mechanism of tendon protection by estrogens can be ascribed to inhibition in lysyl oxidase, the enzyme that forms cross-links between fibers in ligaments and tendons. The enzyme inhibition results in reduced cross linkage, producing more elastic tendons, and thus decreasing the impact of an abrupt muscle contraction.146, 147 On the other hand, testosterone, by modulating androgen receptors, causes the muscle to increase its mass via protein synthesis.148 Therefore, the combination of a deficit of female hormones and increased muscle mass and strength in men leads to an increased risk of tendon injury.

A similar mechanism of action can be ascribed to anabolic steroids since they are analogs of testosterone. Under anabolic steroids, a significant increase in muscle mass and strength can be observed, leading to increased tension on the tendon and a higher risk of rupture. Additionally, studies have shown that anabolic steroids also lead to dysplastic changes in the tendon and, therefore, decreased tensile strength.149, 150

The BMI, usually used as a rough indicator of body fat in non-athletic people, is shown to be a risk factor for tendon ruptures. The visceral fat-releasing inflammatory cytokines, including tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and interleukin 1 beta (IL-1β), which are implicated in pathophysiological structural changes in the tendon and can increase the risk of ruptures.151, 152

Literature has shown that glucocorticosteroids alter the mechanical tendon properties by activating the glucocorticoid receptor, which influences gene expression and transcription. A reduction in collagen fiber diameter, in cross-linkage and of collagen con­tent can be observed, which results in decreased tensile strength. Additionally, in vitro studies showed dysfunction of tenocytes, such as decreased proliferation, reduced collagen formation and increased reactive oxygen species (ROS) formation. Glucocorticosteroids also increase visceral fat deposition, which causes an increase in inflammatory cytokines as described above.150, 151, 153

Dyslipidemia is an underestimated risk factor for tendon ruptures, as specifically cholesterol accumulates in the tendon and disrupts its integrity.151, 154 Hypercholesterolemia can be associated with weakened tendons. Statins are used to treat elevated levels of cholesterol by inhibiting 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, yet studies have also shown that statins themselves are a risk factor for tendon ruptures. The precise mechanism of action on a molecular level is still unclear. It is hypothesized that matrix metalloproteinase (MMP) activity is increased, which mediates the catabolic state in tendons without a change in total levels of collagen, leading to a decrease in extracellular collagen strength and an increased risk of tendon rupture.151, 153, 155

Studies have shown that fluoroquinolones increase the risk of tendon ruptures. However, the mechanism of action can only be hypothesized. It is ascribed to direct toxicity as the rupture usually occurs hours after a single dose administration.156 One of the hypotheses is that fluoroquinolones stimulate the production and accumulation of ROS and thus induce apoptosis. Another hypothesis points out the activation of MMPs and induction of prostaglandin E2, IL and cyclooxygenase 2 (COX-2) production, similar to the state observed in dyslipidemia and visceral fat accumulation.153, 157, 158

Another tendon rupture risk factor is diabetes mellitus, more commonly type 2 (T2D). It was shown that non-enzymatic cross-links can be formed through the Maillard reaction between sugars and amino acids called advanced glycation end-products (AGEs).157 This results in the formation of stiffer tendons and a higher risk of ruptures, as an abrupt muscle contraction leads to abrupt transmission of the force to the tendon.146, 151, 158 Additionally, high glucose levels modulate gene expression, such as the decreased levels of adenosine monophosphate (AMP)-activated protein kinase, leading to a decreased production of adenosine triphosphate (ATP), and therefore decreased metabolic rate of tenocytes.159, 160 In cases involving T2D, its onset is slow compared to type 1 diabetes, and therefore high glucose levels exist unrecognized for years. Furthermore, T2D is often associated with obesity, which itself is a risk factor for tendon rupture, as described above. The negative effects of glucocorticosteroids on tendons include hyperglycemia, which adds to the overall risk of steroids.

In the literature, the mechanism of rupture of the distal biceps tendon is usually described as an eccentric contraction.161, 162 This is due to biomechanical forces in different elbow positions. When the elbow is 90°-angulated in the standing position, the point of insertion at the radial tuberosity is a few centimeters anterior to the elbow joint. A lever system is created, and as soon as the arm is extended, the distance between tendon insertion and the elbow joint is reduced. This reduction in distance leads to an increase in force produced on the tendon, although the same force is being applied to the distal arm. This increase in forces leads to rupture in the weakest part of the tendon, especially when it develops abruptly or with decreased tensile strength.163 Another biomechanical risk factor involved in the tendon rupture has been ascribed to a reduced proximal radioulnar space near the point of insertion. It has been suggested that the polymorphic traits of the radial tuberosity could lead to a decrease in the radioulnar space. The linear distance between the radius and ulnar is reduced by 45% when pronated, leaving less than 1 mm for the distal biceps tendon to slide through.164 In cases where the radial tuberosity is more pronounced, less space is available, and impingement of the tendon is possible, causing friction, inflammation and degeneration of the tendon.14

Limitations

This systematic review does have its limitations. The included studies showed a wide basis of heterogeneity, which made it impossible to perform a meta-analysis. Additionally, the included studies had different interests in their outcomes, which made the collection of studies heterogenic. As already seen in the results section, many studies provided incomplete data, and precise information was limited. It is well known that fluoroquinolones are a risk factor for tendon ruptures,7 yet only 2 studies reported information about these drugs. There is also probable reporting bias as temporary local inflammation in the area might be neglected in reporting, contrary to chronic diseases like asthma or hypertension. Therefore, hypertension and asthma might be overrepresented in this systematic review, similar to anabolic steroids, which might be purposely not reported by patients. Another limitation is that studies with level III or IV evidence were most often analyzed, and each of the included studies had their own limitations, e.g., small cohort size and incomplete data.

Conclusions

The most common and outstanding reported risk factors for distal biceps tendon ruptures were older age, male sex and sports activity. The average patient with a distal biceps tendon injury (slightly higher in the dominant arm) is a man aged 46.8 years with an active lifestyle and professional or sport activity. Steroid usage does not seem to significantly increase the risk of the distal biceps tendon rupture.

Tables


Table 1. Summary of risk factors with references

Risk factors

Result

Reference

Age

46.8 years

3, 9, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128

Age of women

60.1 years

3, 15, 23, 32, 65, 95, 103

Sex

96.7% men,

3.3% women

2, 3, 9, 11, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130

Dominance

56.7% dominant arm, 43.3% non-dominant arm

3, 9, 16, 17, 18, 19, 23, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 40, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 56, 59, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 74, 75, 76, 77, 78, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108, 110, 111, 112, 113, 114, 116, 117, 118, 119, 121, 122, 123, 124, 125, 127, 128, 129, 130

Laterality

54.6% right arm, 45.4% left arm

3, 11, 14, 15, 17, 20, 21, 23, 24, 30, 31, 34, 43, 45, 49, 52, 53, 54, 55, 57, 61, 69, 70, 72, 74, 78, 82, 84, 86, 89, 92, 93, 101, 107, 108, 114, 119, 120, 124, 125, 127

Smoking

20.8%

2, 3, 9, 11, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 35, 36, 39, 41, 42, 43, 77, 102, 118, 128, 129, 130

Steroid

2.8%

3, 9, 15, 28, 32, 33, 34, 35, 37, 38, 39, 42, 61, 71, 102, 117, 129, 130

Occupation

55.8% physical, 12.4% mixed, 31.8% non-physical

2, 3, 21, 23, 31, 32, 33, 34, 35, 36, 43, 48, 65, 66, 67, 70, 71, 72, 75, 86, 95, 99, 100, 113, 116, 119, 120, 126, 130

BMI

29.6 kg/m2

2, 14, 16, 23, 25, 34, 35, 36, 50, 68, 106, 119

Statin

30.8%

30, 35

Fluoroquinolone

2.8%

15, 35

Sports

94.7%

16, 21, 31, 33, 35, 37, 38, 39, 102, 113, 129

Alcohol

20, 32, 119

Radial tuberosity

14, 128

Comorbidities

2, 3, 17, 18, 21, 23, 24, 36, 37, 43

Mechanism of injury

3, 9, 11, 15, 17, 21, 28, 31, 34, 36, 42, 44, 47, 48, 59, 63, 67, 70, 86, 91, 94, 95, 96, 99, 101, 102, 106, 111, 113, 115, 116, 117, 119, 120, 123, 124, 125, 127

BMI – body mass index.

Figures


Fig. 1. Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 flowchart for a systematic review of risk factors for the distal biceps tendon rupture
Fig. 2. Risk factors for distal biceps tendon ruptures

References (164)

  1. Eames MHA, Bain GI, Fogg QA, Van Riet RP. Distal biceps tendon anatomy: A cadaveric study. J Bone Joint Surg. 2007;89(5):1044–1049. doi:10.2106/JBJS.D.02992
  2. Kelly MP, Perkinson SG, Ablove RH, Tueting JL. Distal biceps tendon ruptures: An epidemiological analysis using a large population database. Am J Sports Med. 2015;43(8):2012–2017. doi:10.1177/0363546515587738
  3. Safran MR, Graham SM. Distal biceps tendon ruptures: Incidence, demographics, and the effect of smoking. Clin Orthop Relat Res. 2002;(404):275–283.
  4. Belli P, Costantini M, Mirk P, Leone A, Pastore G, Marano P. Sonographic diagnosis of distal biceps tendon rupture: A prospective study of 25 cases. J Ultrasound Med. 2001;20(6):587–595. doi:10.7863/jum.2001.20.6.587
  5. Weiss C, Mittelmeier M, Gruber G. Do we need MR images for diagnosing tendon ruptures of the distal biceps brachii? Ultraschall Med. 2000;21(6):284–286. doi:10.1055/s-2000-9119
  6. Amarasooriya M, Bain GI, Roper T, Bryant K, Iqbal K, Phadnis J. Complications after distal biceps tendon repair: A systematic review. Am J Sports Med. 2020;48(12):3103–3111. doi:10.1177/0363546519899933
  7. Cerciello S, Visonà E, Corona K, Ribeiro Filho PR, Carbone S. The treatment of distal biceps ruptures: An overview. Joints. 2018;06(4):228–231. doi:10.1055/s-0039-1697615
  8. Castioni D, Mercurio M, Fanelli D, Cosentino O, Gasparini G, Galasso O. Single- versus double-incision technique for the treatment of distal biceps tendon rupture: A systematic review and meta-analysis of comparative studies. Bone Joint J. 2020;102–B(12):1608–1617. doi:10.1302/0301-620X.102B12.BJJ-2020-0822.R2
  9. Dunphy TR, Hudson J, Batech M, Acevedo DC, Mirzayan R. Surgical treatment of distal biceps tendon ruptures: An analysis of complications in 784 surgical repairs. Am J Sports Med. 2017;45(13):3020–3029. doi:10.1177/0363546517720200
  10. Reichert P, Królikowska A, Witkowski J, Szuba Ł, Czamara A. Surgical management of distal biceps tendon anatomical reinsertion complications: Iatrogenic posterior interosseous nerve palsy. Med Sci Monit. 2018;24:782–790. doi:10.12659/MSM.907260
  11. Huynh T, Leiter J, MacDonald PB, et al. Outcomes and complications after repair of complete distal biceps tendon rupture with the cortical button technique. JB JS Open Access. 2019;4(3):e0013. doi:10.2106/JBJS.OA.19.00013
  12. Litowski ML, Purnell J, Hildebrand KA, Bois AJ. Surgical outcomes and complications following distal biceps tendon reconstruction: A systematic review and meta-analysis. JSES Int. 2021;5(1):24–30. doi:10.1016/j.jseint.2020.09.010
  13. Grewal R, Athwal GS, MacDermid JC, et al. Single versus double-incision technique for the repair of acute distal biceps tendon ruptures: A randomized clinical trial. J Bone Joint Surg. 2012;94(13):1166–1174. doi:10.2106/JBJS.K.00436
  14. Hilgersom NFJ, Nagel M, Janssen SJ, Kodde IF, The B, Eygendaal D. Greater radial tuberosity size is associated with distal biceps tendon rupture: A quantitative 3-D CT case–control study. Knee Surg Sports Traumatol Arthrosc. 2021;29(12):4075–4081. doi:10.1007/s00167-021-06722-5
  15. Kodde IF, Van Den Bekerom MPJ, Mulder PGH, Eygendaal D. The size of the radial tuberosity is not related to the occurrence of distal biceps tendon ruptures: A case-control study. Open Orthop J. 2016;10(1):1–6. doi:10.2174/1874325001610010001
  16. Rao AJ, Scarola GT, Rowe TM, et al. Distal biceps repairs in females: A large single-center case series. HSS J. 2022;18(2):264–270. doi:10.1177/15563316211009855
  17. Gowd AK, Liu JN, Maheshwer B, et al. Return to sport and weightlifting analysis following distal biceps tendon repair. J Shoulder Elbow Surg. 2021;30(9):2097–2104. doi:10.1016/j.jse.2021.01.034
  18. Carter TH, Karunaratne BJ, Oliver WM, et al. Acute distal biceps tendon repair using cortical button fixation results in excellent short- and long-term outcomes: A single-centre experience of 102 patients. Bone Joint J. 2021;103–B(7):1284–1291. doi:10.1302/0301-620X.103B7.BJJ-2020-2246.R1
  19. Albishi W, Lam JJ, Agenor A, Elmaraghy A. Distal biceps tendon ruptures: Acute repair versus chronic reconstruction using the “anatomic length method” and concomitant bicipital aponeurosis repair: A group-matched comparative retrospective study. Techn Shoulder Elbow Surg. 2020;21(4):97–100. doi:10.1097/BTE.0000000000000203
  20. Stockton DJ, Tobias G, Pike JM, Daneshvar P, Goetz TJ. Supination torque following single- versus double-incision repair of acute distal biceps tendon ruptures. J Shoulder Elbow Surg. 2019;28(12):2371–2378. doi:10.1016/j.jse.2019.07.041
  21. Rollo G, Meccariello L, Rotini R, Pichierri P, Bisaccia M, Fortina M. Efficacy of the “Salento technique”, a modified two-incision approach in distal biceps brachii tendon repair: Surgical description and outcomes analysis. J Clin Orthop Trauma. 2019;10(5):959–964. doi:10.1016/j.jcot.2019.02.006
  22. Van Der Vis J, Janssen SJ, Haverlag R, Van Den Bekerom MPJ. Functional outcome in patients who underwent distal biceps tendon repair. Arch Orthop Trauma Surg. 2018;138(11):1541–1548. doi:10.1007/s00402-018-3018-6
  23. Ford SE, Andersen JS, Macknet DM, Connor PM, Loeffler BJ, Gaston RG. Major complications after distal biceps tendon repairs: Retrospective cohort analysis of 970 cases. J Shoulder Elbow Surg. 2018;27(10):1898–1906. doi:10.1016/j.jse.2018.06.028
  24. Dupaix JP, Kuba MHM, Atkinson RE, Singer DI, Chock MM, Napier E. Clinical outcomes of single-incision suture anchor repair of distal biceps tendon rupture. Curr Orthop Pract. 2017;28(4):375–382. doi:10.1097/BCO.0000000000000529
  25. Guglielmino C, Massimino P, Ioppolo F, Castorina S, Musumeci G, Di Giunta A. Single and dual incision technique for acute distal biceps rupture: Clinical and functional outcomes. Muscles Ligaments Tendons J. 2019;06(4):453. doi:10.32098/mltj.04.2016.05
  26. Beks RB, Claessen FMAP, Oh LS, Ring D, Chen NC. Factors associated with adverse events after distal biceps tendon repair or reconstruction. J Shoulder Elbow Surg. 2016;25(8):1229–1234. doi:10.1016/j.jse.2016.02.032
  27. Cohen SB, Buckley PS, Neuman B, Leland JM, Ciccotti MG, Lazarus M. A functional analysis of distal biceps tendon repair: Single-incision Endobutton technique vs. two-incision modified Boyd–Anderson technique. Phys Sportsmed. 2016;44(1):59–62. doi:10.1080/00913847.2016.1129260
  28. Shields E, Olsen JR, Williams RB, Rouse L, Maloney M, Voloshin I. Distal biceps brachii tendon repairs: A single-incision technique using a cortical button with interference screw versus a double-incision technique using suture fixation through bone tunnels. Am J Sports Med. 2015;43(5):1072–1076. doi:10.1177/0363546515570465
  29. Devereaux MW, ElMaraghy AW. Improving the rapid and reliable diagnosis of complete distal biceps tendon rupture: A nuanced approach to the clinical examination. Am J Sports Med. 2013;41(9):1998–2004. doi:10.1177/0363546513493383
  30. Atanda A, O’Brien DF, Kraeutler MJ, et al. Outcomes after distal biceps repair in patients with workers’ compensation claims. J Shoulder Elbow Surg. 2013;22(3):299–304. doi:10.1016/j.jse.2012.11.011
  31. Savvidou C, Moreno R. Spontaneous distal biceps tendon ruptures: Are they related to statin administration? Hand Surg. 2012;17(02):167–171. doi:10.1142/S0218810412500153
  32. Gupta RK, Bither N, Singh H, Kapoor S, Chhabra A, Garg S. Repair of the torn distal biceps tendon by endobutton fixation. Indian J Orthop. 2012;46(1):71–76. doi:10.4103/0019-5413.91638
  33. Green JB, Skaife TL, Leslie BM. Bilateral distal biceps tendon ruptures. J Hand Surg. 2012;37(1):120–123. doi:10.1016/j.jhsa.2011.09.043
  34. Pagonis T, Givissis P, Ditsios K, Pagonis A, Petsatodis G, Christodoulou A. The effect of steroid-abuse on anatomic reinsertion of ruptured distal biceps brachii tendon. Injury. 2011;42(11):1307–1312. doi:10.1016/j.injury.2011.03.018
  35. Eardley WGP, Odak S, Adesina TS, Jeavons RP, McVie JL. Bioabsorbable interference screw fixation of distal biceps ruptures through a single anterior incision: A single-surgeon case series and review of the literature. Arch Orthop Trauma Surg. 2010;130(7):875–881. doi:10.1007/s00402-009-0974-x
  36. Schneider A, Bennett JM, O’Connor DP, Mehlhoff T, Bennett JB. Bilateral ruptures of the distal biceps brachii tendon. J Shoulder Elbow Surg. 2009;18(5):804–807. doi:10.1016/j.jse.2009.01.029
  37. Niemeyer P, Köstler W, Bley T, et al. Anatomical refixation for acute ruptures of the distal biceps tendon using a novel transcortical refixation system. Arch Orthop Trauma Surg. 2008;128(6):573–581. doi:10.1007/s00402-007-0400-1
  38. Schamblin ML, Safran MR. Injury of the distal biceps at the musculotendinous junction. J Shoulder Elbow Surg. 2007;16(2):208–212. doi:10.1016/j.jse.2006.06.009
  39. Bohnsack M, Rühmann O, Hurschler C, Börner C, Wirth CJ. Reattachment of an avulsed distal biceps tendon in athletes: The two-incision technique according to Boyd and Anderson and modified by Bourne and Morrey. Eur J Orthop Surg Traumatol. 2007;17(1):37–42. doi:10.1007/s00590-006-0131-y
  40. Woods DA, Hoy G, Shimmin A. A safe technique for distal biceps repair using a suture anchor and a limited anterior approach. Injury. 1999;30(4):233–237. doi:10.1016/S0020-1383(98)00244-7
  41. Goljan P, Patel N, Stull JD, Donnelly BP, Culp RW. Single incision distal biceps repair with Hemi-Krackow suture technique: Surgical technique and early outcomes. Hand (N Y). 2016;11(2):238–244. doi:10.1177/1558944716628491
  42. Olsen JR, Shields E, Williams RB, Miller R, Maloney M, Voloshin I. A comparison of cortical button with interference screw versus suture anchor techniques for distal biceps brachii tendon repairs. J Shoulder Elbow Surg. 2014;23(11):1607–1611. doi:10.1016/j.jse.2014.06.049
  43. Fenton P, Qureshi F, Ali A, Potter D. Distal biceps tendon rupture: A new repair technique in 14 patients using the biotenodesis screw. Am J Sports Med. 2009;37(10):2009–2015. doi:10.1177/0363546509335465
  44. Luokkala T, Sidharthan SK, Karjalainen TV, Paloneva J, Watts AC. Distal biceps tendon repairs and reconstructions-an analysis of demographics, prodromal symptoms and complications. Arch Orthop Trauma Surg. 2022;142(7):1351–1357. doi:10.1007/s00402-021-03750-1
  45. Caekebeke P, Van Melkebeke L, Duerinckx J, Van Riet R. Anatomical intramedullary distal biceps tendon fixation: Our first experience. JSES Int. 2022;6(3):530–534. doi:10.1016/j.jseint.2022.01.010
  46. Thiele K, König L, Kerschbaum M, et al. Clinical outcomes after refixation of subacute repaired distal biceps tendon ruptures. JSES Int. 2022;6(3):523–529. doi:10.1016/j.jseint.2021.12.004
  47. Caekebeke P, Vande Voorde K, Duerinckx J, Van Riet R. In vivo evaluation of a new intramedullary distal biceps tendon fixation device. J Shoulder Elbow Surg. 2021;30(12):2869–2874. doi:10.1016/j.jse.2021.06.006
  48. Melo RRV, Cerqueira MS, Barbosa GM, et al. Static stretching at pain-tolerated intensity is not necessary to increase knee range of motion in amateur soccer players: A randomized trial. Muscle Ligaments Tendons J. 2021;11(3):536. doi:10.32098/mltj.03.2021.19
  49. Wörner E, Van Oost I, Eygendaal D, The B. Higher failure rate of suture anchors in partial distal biceps tendon ruptures in comparison with Endobutton fixation. JSES Int. 2021;5(4):821–826. doi:10.1016/j.jseint.2021.02.012
  50. Calderazzi F, Addevico F, Galavotti C, et al. Dominant vs nondominant arm in surgical repair of distal biceps tendon rupture: A case-control series of isotonic muscle strength evaluation. Muscle Ligaments Tendons J. 2021;11(2):231. doi:10.32098/mltj.02.2021.04
  51. Hendy BA, Padegimas EM, Harper T, et al. Outcomes of chronic distal biceps reconstruction with tendon grafting: A matched comparison with primary repair. JSES Int. 2021;5(2):302–306. doi:10.1016/j.jseint.2020.10.023
  52. Chiossi S, Spoliti M, Sessa P, et al. Distal biceps tendon repair and posterior interosseous nerve injury: Clinical results and a systematic review of the literature. Med Glas (Zenica). 2021;18(1):196–201. doi:10.17392/1303-21
  53. Di Stefano M, Sensi L, Di Bella L, Tucci R, Bazzucchi E, Zanna L. Acute distal biceps tendon rupture: Retrospective analysis of two different approaches and fixation techniques. Eur J Orthop Surg Traumatol. 2021;32(8):1543–1551. doi:10.1007/s00590-021-03132-8
  54. Berthold DP, Muench LN, Cusano A, et al. Clinical and functional outcomes after operative and nonoperative treatment of distal biceps brachii tendon ruptures in a consecutive case series. Orthop J Sports Med. 2021;9(6):232596712098484. doi:10.1177/2325967120984841
  55. Razaeian S, Zhang D, Harb A, Meller R, Krettek C, Hawi N. Distal biceps tendon repair using a modified double-incision technique: Patient-reported outcomes with 10-year follow-up. Orthop J Sports Med. 2020;8(8):232596712094481. doi:10.1177/2325967120944812
  56. Zeman CA, Mueller JD, Sanderson BR, Gluck JS. Chronic distal biceps avulsion treated with suture button. J Shoulder Elbow Surg. 2020;29(8):1548–1553. doi:10.1016/j.jse.2020.01.103
  57. Hamoodi Z, Winton J, Bhalaik V. Partial tear of the distal biceps tendon: Current concepts. J Orthop. 2022;32:18–24. doi:10.1016/j.jor.2022.05.002
  58. Samra I, Mati W, Blundell C, Lane S, Charalambous CP. Distal biceps tendon ruptures: The relation of radiological retraction and chronicity to the ability of tendon reattachment and long-term functional outcomes. J Orthop. 2020;20:111–118. doi:10.1016/j.jor.2019.12.004
  59. Midtgaard KS, Hallgren HB, Frånlund K, et al. An intact lacertus fibrosus improves strength after reinsertion of the distal biceps tendon. Knee Surg Sports Traumatol Arthrosc. 2020;28(7):2279–2284. doi:10.1007/s00167-019-05673-2
  60. DeAngelo N, Thomas RA, Kim HM. Primary repair of severely retracted nonchronic distal biceps tendon rupture using 2-incision anterior-approach repair. JSES Int. 2020;4(2):231–237. doi:10.1016/j.jseint.2020.01.003
  61. Poyser E, Abdul W, Mehta H. Mid-term clinical and functional outcomes of distal biceps tendon repair: A comparative study of two surgical fixation techniques. J Orthop Trauma Rehabil. 2020;27(1):47–51. doi:10.1177/2210491720903472
  62. De Mattos CA, Maia D, Castro R, Etchebehere M. Reinsertion of distal brachial biceps tendon rupture through single incision using anchors [in Portuguese]. Rev Bras Ortop (Sao Paulo). 2020;55(2):191–197. doi:10.1055/s-0039-3400525
  63. Goyal N, Wilson DJ, Salzano MB, Fernandez JJ, Cohen MS, Wysocki RW. Restoration of peak strength and endurance following distal biceps reconstruction with allograft for chronic ruptures. J Shoulder Elbow Surg. 2020;29(4):853–858. doi:10.1016/j.jse.2019.12.016
  64. Monaco NA, Duke AJ, Richardson MW, Komatsu DE, Wang ED. Distal biceps repair using a unicortical intramedullary button technique: A case series. J Hand Surg Glob Online. 2019;1(3):178–184. doi:10.1016/j.jhsg.2019.03.003
  65. Frank T, Seltser A, Grewal R, King GJW, Athwal GS. Management of chronic distal biceps tendon ruptures: Primary repair vs. semitendinosus autograft reconstruction. J Shoulder Elbow Surg. 2019;28(6):1104–1110. doi:10.1016/j.jse.2019.01.006
  66. Alech-Tournier F, Elkholti K, Locquet V, et al. Outcomes of distal biceps tendon reattachment using the ToggleLoc™ fixation device with ZipLoop™ technology with single mini-open technique. Eur J Orthop Surg Traumatol. 2019;29(4):925–931. doi:10.1007/s00590-019-02376-9
  67. Siebenlist S, Schmitt A, Imhoff AB, et al. Intramedullary cortical button repair for distal biceps tendon rupture: A single-center experience. J Hand Surg. 2019;44(5):418.e1–418.e7. doi:10.1016/j.jhsa.2018.07.005
  68. Barret H, Winter M, Gastaud O, Saliken DJ, Gauci MO, Bronsard N. Double incision repair technique with immediate mobilization for acute distal biceps tendon ruptures provides good results after 2 years in active patients. Orthop Traumatol Surg Res. 2019;105(2):323–328. doi:10.1016/j.otsr.2018.10.012
  69. Reichert P, Królikowska A, Kentel M, et al. A comparative clinical and functional assessment of cortical button versus suture anchor in distal biceps brachii tendon repair. J Orthop Sci. 2019;24(1):103–108. doi:10.1016/j.jos.2018.08.007
  70. Khalil LS, Keller RA, Mehran N, et al. The utility of botulinum toxin A in the repair of distal biceps tendon ruptures. Musculoskelet Surg. 2018;102(2):159–163. doi:10.1007/s12306-017-0515-7
  71. Suda AJ, Prajitno J, Grützner PA, Tinelli M. Good isometric and isokinetic power restoration after distal biceps tendon repair with anchors. Arch Orthop Trauma Surg. 2017;137(7):939–944. doi:10.1007/s00402-017-2724-9
  72. Smith JRA, Amirfeyz R. Does immediate elbow mobilization after distal biceps tendon repair carry the risk of wound breakdown, failure of repair, or patient dissatisfaction? J Shoulder Elbow Surg. 2016;25(5):810–815. doi:10.1016/j.jse.2015.11.066
  73. Pangallo L, Valore A, Padovani L, et al. Mini-open incision for distal biceps repair by suture anchors: Follow-up of eighteen patients. Musculoskelet Surg. 2016;100(1):19–23. doi:10.1007/s12306-015-0372-1
  74. Wang D, Joshi NB, Petrigliano FA, et al. Trends associated with distal biceps tendon repair in the United States, 2007 to 2011. J Shoulder Elbow Surg. 2016;25(4):676–680. doi:10.1016/j.jse.2015.11.012
  75. Schmidt CC, Brown BT, Qvick LM, Stacowicz RZ, Latona CR, Miller MC. Factors that determine supination strength following distal biceps repair. J Bone Joint Surg. 2016;98(14):1153–1160. doi:10.2106/JBJS.15.01025
  76. Pavelka M, Pienaar S, Fialka C, Obrist J. Distal biceps tendon rupture: Is surgical reconstruction really always necessary? Sports Orthop Traumatol. 2015;31(4):267–271. doi:10.1016/j.orthtr.2015.09.008
  77. Recordon JAF, Misur PN, Isaksson F, Poon PC. Endobutton versus transosseous suture repair of distal biceps rupture using the two-incision technique: A comparison series. J Shoulder Elbow Surg. 2015;24(6):928–933. doi:10.1016/j.jse.2014.12.032
  78. Kodde IF, Van Den Bekerom MPJ, Eygendaal D. Reconstruction of distal biceps tendon ruptures with a cortical button. Knee Surg Sports Traumatol Arthrosc. 2015;23(3):919–925. doi:10.1007/s00167-013-2571-3
  79. Hansen G, Smith A, Pollock JW, et al. Anatomic repair of the distal biceps tendon cannot be consistently performed through a classic single-incision suture anchor technique. J Shoulder Elbow Surg. 2014;23(12):1898–1904. doi:10.1016/j.jse.2014.06.051
  80. Cusick MC, Cottrell BJ, Cain RA, Mighell MA. Low incidence of tendon rerupture after distal biceps repair by cortical button and interference screw. J Shoulder Elbow Surg. 2014;23(10):1532–1536. doi:10.1016/j.jse.2014.04.013
  81. Murena L, Canton G, Camana E, Vulcano E, Cherubino P. Anatomic reinsertion of the distal biceps tendon rupture through a single anterior approach: Extensile or mini-invasive approach? A retrospective study at mean 45-month follow-up. Musculoskelet Surg. 2014;98(Suppl 1):71–76. doi:10.1007/s12306-014-0318-z
  82. Siebenlist S, Fischer SC, Sandmann GH, et al. The functional outcome of forty-nine single-incision suture anchor repairs for distal biceps tendon ruptures at the elbow. Int Orthop. 2014;38(4):873–879. doi:10.1007/s00264-013-2200-2
  83. Schmidt CC, Brown BT, Sawardeker PJ, DeGravelle M, Miller MC. Factors affecting supination strength after a distal biceps rupture. J Shoulder Elbow Surg. 2014;23(1):68–75. doi:10.1016/j.jse.2013.08.019
  84. Banerjee M, Shafizadeh S, Bouillon B, Tjardes T, Wafaisade A, Balke M. High complication rate following distal biceps refixation with cortical button. Arch Orthop Trauma Surg. 2013;133(10):1361–1366. doi:10.1007/s00402-013-1819-1
  85. Pascarelli L, Righi LCS, Bongiovanni RR, Imoto RS, Teodoro RL, Ferro HFDA. Technique and results after distal braquial biceps tendon reparation, through two anterior mini-incisions [in Portuguese]. Acta Ortop Bras. 2013;21(2):76–79. doi:10.1590/S1413-78522013000200002
  86. Anakwenze OA, Baldwin K, Abboud JA. Distal biceps tendon repair: An analysis of timing of surgery on outcomes. J Athl Train. 2013;48(1):9–11. doi:10.4085/1062-6050-48.1.10
  87. Bosman HA, Fincher M, Saw N. Anatomic direct repair of chronic distal biceps brachii tendon rupture without interposition graft. J Shoulder Elbow Surg. 2012;21(10):1342–1347. doi:10.1016/j.jse.2012.01.012
  88. Marnitz T, Spiegel D, Hug K, et al. MR imaging findings in flexed abducted supinated (FABS) position and clinical presentation following refixation of distal biceps tendon rupture using bioabsorbable suture anchors. Fortschr Röntgenstr. 2012;184(5):432–436. doi:10.1055/s-0031-1299291
  89. Júnior JCG, De Castro Filho CDC, De Castro Mello TF, De Vasconcelos RA, Zabeu JLA, Garcia JPM. Isokinetic and functional evaluation of distal biceps reconstruction using the MAYO mini-double route technique. Rev Bras Ortop. 2012;47(5):581–587. doi:10.1016/S2255-4971(15)30007-0
  90. Citak M, Backhaus M, Seybold D, Suero EM, Schildhauer TA, Roetman B. Surgical repair of the distal biceps brachii tendon: A comparative study of three surgical fixation techniques. Knee Surg Sports Traumatol Arthrosc. 2011;19(11):1936–1941. doi:10.1007/s00167-011-1591-0
  91. Dillon MT, Bollier MJ, King JC. Repair of acute and chronic distal biceps tendon ruptures using the Endobutton. Hand (N Y). 2011;6(1):39–46. doi:10.1007/s11552-010-9286-4
  92. Chadwick CM, John J, Shahane SA. Distal biceps tendon repair: Results of a modified technique. Shoulder Elbow. 2010;2(3):196–200. doi:10.1111/j.1758-5740.2010.00072.x
  93. Silva J, Eskander MS, Lareau C, Deangelis NA. Treatment of distal biceps tendon ruptures using a single-incision technique and a bio-tenodesis screw. Orthopedics. 2010;33(7):01477447-20100526-09. doi:10.3928/01477447-20100526-09
  94. Frazier MS, Boardman MJ, Westland M, Imbriglia JE. Surgical treatment of partial distal biceps tendon ruptures. J Hand Surg. 2010;35(7):1111–1114. doi:10.1016/j.jhsa.2010.04.024
  95. Jockel CR, Mulieri PJ, Belsky MR, Leslie BM. Distal biceps tendon tears in women. J Shoulder Elbow Surg. 2010;19(5):645–650. doi:10.1016/j.jse.2010.01.015
  96. Geaney LE, Brenneman DJ, Cote MP, Arciero RA, Mazzocca AD. Outcomes and practical information for patients choosing nonoperative treatment for distal biceps ruptures. Orthopedics. 2010;33(6):391. doi:10.3928/01477447-20100429-10
  97. Nesterenko S, Domire ZJ, Morrey BF, Sanchez-Sotelo J. Elbow strength and endurance in patients with a ruptured distal biceps tendon. J Shoulder Elbow Surg. 2010;19(2):184–189. doi:10.1016/j.jse.2009.06.001
  98. Freeman CR, McCormick KR, Mahoney D, Baratz M, Lubahn JD. Nonoperative treatment of distal biceps tendon ruptures compared with a historical control group. J Bone Joint Surg Am. 2009;91(10):2329–2334. doi:10.2106/JBJS.H.01150
  99. De Carli A, Zanzotto E, Vadalà AP, Luzon D, Di Salvo M, Ferretti A. Surgical repair of the distal biceps brachii tendon: Clinical and isokinetic long-term follow-up. Knee Surg Sports Traumatol Arthrosc. 2009;17(7):850–856. doi:10.1007/s00167-008-0705-9
  100. Mavrogenis AF, Papagelopoulos PJ, Ignatiadis IA, Antonopoulos D, Spyridonos SG. Anatomical repair of distal biceps brachii tendon rupture through a limited anterior approach. Eur J Orthop Surg Traumatol. 2009;19(4):243–247. doi:10.1007/s00590-009-0426-x
  101. Arbuthnot JE, Deans VM, Morgan D, Colville J, Sloan R, Selvey DM. The intramedullary Endobutton® technique: The outcome of repair of acute distal biceps rupture. Eur J Orthop Surg Traumatol. 2009;19(3):155–157. doi:10.1007/s00590-008-0403-9
  102. Grégory T, Roure P, Fontès D. Repair of distal biceps tendon rupture using a suture anchor: Description of a new endoscopic procedure. Am J Sports Med. 2009;37(3):506–511. doi:10.1177/0363546508326985
  103. Peeters T, Ching-Soon NG, Jansen N, Sneyers C, Declercq G, Verstreken F. Functional outcome after repair of distal biceps tendon ruptures using the endobutton technique. J Shoulder Elbow Surg. 2009;18(2):283–287. doi:10.1016/j.jse.2008.10.004
  104. Austin L, Mathur M, Simpson E, Lazarus M. Variables influencing successful two-incision distal biceps repair. Orthopedics. 2009;32(2):88. PMID:19301803.
  105. Cil A, Merten S, Steinmann SP. Immediate active range of motion after modified 2-incision repair in acute distal biceps tendon rupture. Am J Sports Med. 2009;37(1):130–135. doi:10.1177/0363546508323749
  106. Hetsroni I, Pilz-Burstein R, Nyska M, Back Z, Barchilon V, Mann G. Avulsion of the distal biceps brachii tendon in middle-aged population: Is surgical repair advisable? Injury. 2008;39(7):753–760. doi:10.1016/j.injury.2007.11.287
  107. Iwamoto A, Kearney JP, Goyal G, Viegas SF. The incidence of subsequent contralateral distal biceps tendon rupture following unilateral rupture. Orthopedics. 2008;31(4):356–358. doi:10.3928/01477447-20080401-16
  108. Bisson L, Moyer M, Lanighan K, Marzo J. Complications associated with repair of a distal biceps rupture using the modified two-incision technique. J Shoulder Elbow Surg. 2008;17(Suppl 1):S67–S71. doi:10.1016/j.jse.2007.04.008
  109. Weinstein DM, Ciccone WJ, Buckler MC, Balthrop PM, Busey TD, Elias JJ. Elbow function after repair of the distal biceps brachii tendon with a two-incision approach. J Shoulder Elbow Surg. 2008;17(Suppl 1):S82–S86. doi:10.1016/j.jse.2007.07.006
  110. Khan AD, Penna S, Yin Q, Sinopidis C, Brownson P, Frostick SP. Repair of distal biceps tendon ruptures using suture anchors through a single anterior incision. Arthroscopy. 2008;24(1):39–45. doi:10.1016/j.arthro.2007.06.019
  111. Hartman MW, Merten SM, Steinmann SP. Mini-open 2-incision technique for repair of distal biceps tendon ruptures. J Shoulder Elbow Surg. 2007;16(5):616–620. doi:10.1016/j.jse.2006.10.021
  112. John CK, Field LD, Weiss KS, Savoie FH. Single-incision repair of acute distal biceps ruptures by use of suture anchors. J Shoulder Elbow Surg. 2007;16(1):78–83. doi:10.1016/j.jse.2006.03.002
  113. Dellaero DT, Mallon WJ. Surgical treatment of partial biceps tendon ruptures at the elbow. J Shoulder Elbow Surg. 2006;15(2):215–217. doi:10.1016/j.jse.2005.08.020
  114. Cheung EV, Lazarus M, Taranta M. Immediate range of motion after distal biceps tendon repair. J Shoulder Elbow Surg. 2005;14(5):516–518. doi:10.1016/j.jse.2004.12.003
  115. McKee MD, Hirji R, Schemitsch EH, Wild LM, Waddell JP. Patient-oriented functional outcome after repair of distal biceps tendon ruptures using a single-incision technique. J Shoulder Elbow Surg. 2005;14(3):302–306. doi:10.1016/j.jse.2004.09.007
  116. Balabaud L, Ruiz C, Nonnenmacher J, Seynaeve P, Kehr P, Rapp E. Repair of distal biceps tendon ruptures using a suture anchor and an anterior approach. J Hand Surg. 2004;29(2):178–182. doi:10.1016/j.jhsb.2003.07.002
  117. Bohnsack M, Wirth CJ. Distale Bizepssehnenruptur und Refixation der Sehne über zwei Zugänge. Operative Orthopädie und Traumatologie. 2003;15(4):415–427. doi:10.1007/s00064-003-1087-2
  118. Kobayashi K, Bruno RJ, Cassidy C. Single anterior incision suture anchor technique for distal biceps tendon ruptures. Orthopedics. 2003;26(8):767–770. doi:10.3928/0147-7447-20030801-13
  119. Özyürekoğlu T, Tsai TM. Ruptures of the distal biceps brachii tendon: Results of three surgical techniques. Hand Surg. 2003;08(1):65–73. doi:10.1142/S0218810403001431
  120. Kelly EW, Steinmann S, O’Driscoll SW. Surgical treatment of partial distal biceps tendon ruptures through a single posterior incision. J Shoulder Elbow Surg. 2003;12(5):456–461. doi:10.1016/S1058-2746(03)00052-1
  121. Klonz A, Loitz D, Wöhler P, Reilmann H. Rupture of the distal biceps brachii tendon: Isokinetic power analysis and complications after anatomic reinsertion compared with fixation to the brachialis muscle. J Shoulder Elbow Surg. 2003;12(6):607–611. doi:10.1016/S1058-2746(03)00212-X
  122. El-Hawary R, MacDermid JC, Faber KJ, Patterson SD, King GJW. Distal biceps tendon repair: Comparison of surgical techniques. J Hand Surg. 2003;28(3):496–502. doi:10.1053/jhsu.2003.50081
  123. Bell RH, Wiley WB, Noble JS, Kuczynski DJ. Repair of distal biceps brachii tendon ruptures. J Shoulder Elbow Surg. 2000;9(3):223–226. PMID:10888167.
  124. Bain GI, Prem H, Heptinstall RJ, Verhellen R, Paix D. Repair of distal biceps tendon rupture: A new technique using the endobutton. J Shoulder Elbow Surg. 2000;9(2):120–126. doi:10.1067/2000.102581
  125. Rantanen J, Orava S. Rupture of the distal biceps tendon. Am J Sports Med. 1999;27(2):128–132. doi:10.1177/03635465990270020201
  126. Lynch SA, Beard DM, Renström PAFH. Repair of distal biceps tendon rupture with suture anchors. Knee Surg Sports Traumatol Arthrosc. 1999;7(2):125–131. doi:10.1007/s001670050134
  127. Davison BL, Engber WD, Tigert LJ. Long term evaluation of repaired distal biceps brachii tendon ruptures. Clin Orthop Relat Res. 1996;333:186–191. doi:10.1097/00003086-199612000-00019
  128. Andritsos GC, Skouteris DG, Psychoyios V. Distal biceps tendon repair using both an anchor and a bone tunnel via one and a second stab incision: A retrospective study. J Orthop Surg (Hong Kong). 2018;26(1):230949901875753. doi:10.1177/2309499018757531
  129. Legg AJ, Stevens R, Oakes NO, Shahane SA. A comparison of nonoperative vs. Endobutton repair of distal biceps ruptures. J Shoulder Elbow Surg. 2016;25(3):341–348. doi:10.1016/j.jse.2015.10.008
  130. Tarallo L, Lombardi M, Zambianchi F, Giorgini A, Catani F. Distal biceps tendon rupture: Advantages and drawbacks of the anatomical reinsertion with a modified double incision approach. BMC Musculoskelet Disord. 2018;19(1):364. doi:10.1186/s12891-018-2278-1
  131. Hsu D, Anand P, Mabrouk A, Chang KV. Biceps tendon rupture. In: StatPearls. Treasure Island, USA: StatPearls Publishing; 2024:Bookshelf ID NBK513235. http://www.ncbi.nlm.nih.gov/books/NBK513235. Accessed April 25, 2024.
  132. Miyamoto RG, Elser F, Millett PJ. Distal biceps tendon injuries. J Bone Joint Surg. 2010;92(11):2128–2138. doi:10.2106/JBJS.I.01213
  133. Siebenlist S, Elser F, Sandmann GH, et al. The double intramedullary cortical button fixation for distal biceps tendon repair. Knee Surg Sports Traumatol Arthrosc. 2011;19(11):1925–1929. doi:10.1007/s00167-011-1569-y
  134. Giacalone F, Dutto E, Ferrero M, Bertolini M, Sard A, Pontini I. Treatment of distal biceps tendon rupture: Why, when, how? Analysis of literature and our experience. Musculoskelet Surg. 2015;99(Suppl 1):67–73. doi:10.1007/s12306-015-0360-5
  135. Srinivasan RC, Pederson WC, Morrey BF. Distal biceps tendon repair and reconstruction. J Hand Surg. 2020;45(1):48–56. doi:10.1016/j.jhsa.2019.09.014
  136. Caekebeke P, Duerinckx J, Van Riet R. Acute complete and partial distal biceps tendon ruptures: What have we learned? A review. EFORT Open Rev. 2021;6(10):956–965. doi:10.1302/2058-5241.6.200145
  137. Kannus P, Paavola M, Józsa L. Aging and degeneration of tendons. In: Maffulli N, Renström P, Leadbetter WB, eds. Tendon Injuries. London, UK: Springer International Publishing; 2005:25–31. doi:10.1007/1-84628-050-8_4
  138. Elmasry S, Asfour S, De Rivero Vaccari JP, Travascio F. Effects of tobacco smoking on the degeneration of the intervertebral disc: A finite element study. PLoS One. 2015;10(8):e0136137. doi:10.1371/journal.pone.0136137
  139. Pope HG, Kanayama G, Athey A, Ryan E, Hudson JI, Baggish A. The lifetime prevalence of anabolic-androgenic steroid use and dependence in Americans: Current best estimates. Am J Addict. 2014;23(4):371–377. doi:10.1111/j.1521-0391.2013.12118.x
  140. United Nations (UN), Department of Economics and Social Affairs (DESA), Population Division. World Population Prospects 2022. New York, USA: United Nations (UN), Department of Economics and Social Affairs (DESA), Population Division;2022. https://population.un.org/wpp/Graphs/Probabilistic/POP/15-49/840. Accessed September 3, 2022.
  141. Yang D, Curtis K, Daniels A, Owens B, DeFroda S. The effects of smoking on extensor mechanism injury and post surgical complications: A national database study. Orthop J Sports Med. 2020;8(7 Suppl 6):2325967120S0048. doi:10.1177/2325967120S00487
  142. Hansen M, Kjaer M. Sex hormones and tendon. In: Ackermann PW, Hart DA, eds. Metabolic Influences on Risk for Tendon Disorders. Vol. 920. Advances in Experimental Medicine and Biology. Cham, Switzerland: Springer International Publishing; 2016:139–149. doi:10.1007/978-3-319-33943-6_13
  143. Sarver DC, Kharaz YA, Sugg KB, Gumucio JP, Comerford E, Mendias CL. Sex differences in tendon structure and function. J Orthop Res. 2017;35(10):2117–2126. doi:10.1002/jor.23516
  144. Chidi-Ogbolu N, Baar K. Effect of estrogen on musculoskeletal performance and injury risk. Front Physiol. 2019;9:1834. doi:10.3389/fphys.2018.01834
  145. Lee CA, Lee-Barthel A, Marquino L, Sandoval N, Marcotte GR, Baar K. Estrogen inhibits lysyl oxidase and decreases mechanical function in engineered ligaments. J Appl Physiol. 2015;118(10):1250–1257. doi:10.1152/japplphysiol.00823.2014
  146. Wyce A, Bai Y, Nagpal S, Thompson CC. Research resource: The androgen receptor modulates expression of genes with critical roles in muscle development and function. Mol Endocrinol. 2010;24(8):1665–1674. doi:10.1210/me.2010-0138
  147. Laseter JT, Russell JA. Anabolic steroid-induced tendon pathology: A review of the literature. Med Sci Sports Exerc. 1991;23(1):1–3. PMID:1997802.
  148. Jones IA, Togashi R, Hatch GFR, Weber AE, Vangsness CT. Anabolic steroids and tendons: A review of their mechanical, structural, and biologic effects. J Orthop Res. 2018;36(11):2830–2841. doi:10.1002/jor.24116
  149. Lewis T, Zeisig E, Gaida JE. Does glucocorticoid exposure explain the association between metabolic dysfunction and tendinopathy? Endocr Connect. 2020;9(3):R36–R46. doi:10.1530/EC-19-0555
  150. Lui PPY, Yung PSH. Inflammatory mechanisms linking obesity and tendinopathy. J Orthop Transl. 2021;31:80–90. doi:10.1016/j.jot.2021.10.003
  151. Kirchgesner T, Larbi A, Omoumi P, et al. Drug-induced tendinopathy: From physiology to clinical applications. Joint Bone Spine. 2014;81(6):485–492. doi:10.1016/j.jbspin.2014.03.022
  152. Józsa L, Réffy A, Bálint JB. The pathogenesis of tendolipomatosis: An electron microscopical study. Int Orthop. 1984;7(4):251–255. doi:10.1007/BF00266836
  153. Eliasson P, Svensson RB, Giannopoulos A, et al. Simvastatin and atorvastatin reduce the mechanical properties of tendon constructs in vitro and introduce catabolic changes in the gene expression pattern. PLoS One. 2017;12(3):e0172797. doi:10.1371/journal.pone.0172797
  154. Tsai WC, Yang YM. Fluoroquinolone-associated tendinopathy. Chang Gung Med J. 2011;34(5):461–467. PMID:22035890.
  155. Wise BL, Peloquin C, Choi H, Lane NE, Zhang Y. Impact of age, sex, obesity, and steroid use on quinolone-associated tendon disorders. Am J Med. 2012;125(12):1228.e23–1228.e28. doi:10.1016/j.amjmed.2012.05.027
  156. Wang MX, Wei A, Yuan J, et al. Antioxidant enzyme peroxiredoxin 5 is upregulated in degenerative human tendon. Biochem Biophys Res Commun. 2001;284(3):667–673. doi:10.1006/bbrc.2001.4991
  157. Dyer DG, Dunn JA, Thorpe SR, et al. Accumulation of Maillard reaction products in skin collagen in diabetes and aging. J Clin Invest. 1993;91(6):2463–2469. doi:10.1172/JCI116481
  158. Couppé C, Svensson RB, Kongsgaard M, et al. Human Achilles tendon glycation and function in diabetes. J Appl Physiol. 2016;120(2):130–137. doi:10.1152/japplphysiol.00547.2015
  159. Lu PP, Chen MH, Dai GC, Li YJ, Shi L, Rui YF. Understanding cellular and molecular mechanisms of pathogenesis of diabetic tendinopathy. World J Stem Cells. 2020;12(11):1255–1275. doi:10.4252/wjsc.v12.i11.1255
  160. Wu YF, Wang HK, Chang HW, Sun J, Sun JS, Chao YH. High glucose alters tendon homeostasis through downregulation of the AMPK/Egr1 pathway. Sci Rep. 2017;7(1):44199. doi:10.1038/srep44199
  161. Bernstein AD, Breslow MJ, Jazrawi LM. Distal biceps tendon ruptures: A historical perspective and current concepts. Am J Orthop (Belle Mead NJ). 2001;30(3):193–200. PMID:11300127.
  162. Vandenberghe M, Van Riet R. Distal biceps ruptures: Open and endoscopic techniques. Curr Rev Musculoskelet Med. 2016;9(2):215–223. doi:10.1007/s12178-016-9330-2
  163. Hall JE, Guyton AC. Guyton and Hall Textbook of Medical Physiology. 13th ed. Philadelphia, USA: Elsevier; 2016. ISBN:978-1-4557-7005-2, 978-1-4557-7016-8.
  164. Matsuki K, Sugaya H, Takahashi N, et al. Three-dimensional measurement of proximal radioulnar space during active forearm pronation. J Biomech. 2020;113:110120. doi:10.1016/j.jbiomech.2020.110120