Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
5-Year IF – 2.0, IF – 1.9, JCI (2024) – 0.43
Scopus CiteScore – 4.3
Q1 in SJR 2024, SJR score – 0.598, H-index: 49 (SJR)
ICV – 161.00; MNiSW – 70 pts
Initial editorial assessment and first decision within 24 h

ISSN 1899–5276 (print), ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2024, vol. 33, nr 7, July, p. 679–689

doi: 10.17219/acem/171451

Publication type: meta-analysis

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Cite as:


Mi N, Liu M, Meng C, Fu F. Evaluation of the effects of vitamin D deficiency and cigarette smoking on insulin resistance in type 2 diabetes mellitus: A meta-analysis of randomized controlled trials. Adv Clin Exp Med. 2024;33(7):679–689. doi:10.17219/acem/171451

Evaluation of the effects of vitamin D deficiency and cigarette smoking on insulin resistance in type 2 diabetes mellitus: A meta-analysis of randomized controlled trials

Nianrong Mi1,A, Mingyuan Liu2,B, Chao Meng1,C, Fangming Fu1,D,E,F

1 Department of Endocrinology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China

2 Department of Obstetrics, Jinan Maternity and Child Care Health Hospital, Shandong First Medical University, Jinan, China

Graphical abstract


Graphical abstracts

Abstract

There are contradictory findings regarding the effects of vitamin D supplementation and cigarette smoking on glucose metabolism in individuals with type 2 diabetes mellitus (T2DM). Consequently, this meta-analysis focused on the association between vitamin D interventions and smoking cessation on glycemic control in T2DM patients. This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Cochrane Library, EMBASE and PubMed databases were used for a language-inclusive literature search until November 2022. The primary outcomes of this meta-analysis were changes in glycated hemoglobin (HbA1c) level, vitamin D concentration and body mass index (BMI) values. This meta-analysis included 14 randomized controlled trials (RCTs) with a total of 23,289 individuals with T2DM. Nine RCTs were related to vitamin D supplementation interventions, and 5 RCTs were related to smoking cessation interventions. The studies on vitamin D supplementation showed a substantial change in the intervention group, with a risk ratio (RR) of 0.72 (95% confidence interval (95% CI): 0.58, 0.88; p = 0.001) and an odds ratio (OR) of 0.52 (95% CI: 0.34, 0.78; p = 0.002); high heterogeneity was observed (I2 ≥ 95%). Similarly, the smoking cessation studies showed a substantial change in the intervention group, with a RR of 0.92 (95% CI: 0.86, 0.99; p = 0.04) and an OR of 0.86 (95% CI: 0.74, 0.99; p = 0.04); high heterogeneity was observed (I2 = 87%). In conclusion, both vitamin D supplementation and smoking cessation are associated with moderate BMI decline and an improvement of insulin sensitivity in people with T2DM.

Key words: glycemic index, smoking, type 2 diabetes mellitus, vitamin D deficiency, homeostatic model assessment of insulin resistance (HOMA-IR)

Introduction

Type 2 diabetes mellitus (T2DM) is a worldwide public health concern.1 Globally, 597 million individuals were suffering from T2DM by the year 20212 It is well documented that T2DM is a substantial risk factor for premature death and complications such as blindness, stroke, heart attack, amputation, and kidney failure.3, 4 Type 2 diabetes mellitus is a chronic metabolic condition characterized by relative insulin deficiency, insulin resistance and elevated blood glucose levels.5 Vitamin D supplementation dramatically improves peripheral insulin sensitivity and beta-cell function in people with T2DM who were recently diagnosed or are at high risk of developing the disease, by directly promoting pancreatic insulin production. Vitamin D acts through nuclear vitamin D receptors, since a particular receptor for vitamin D was found in the human insulin gene promoters (between 761 and 732 base pairs), which allowed it to control insulin expression.6 Considerable research has explored the relationship between circulating vitamin D concentrations and T2DM risk over the past few decades and has identified a high correlation between the two variables, but the results remain contradictory. For instance, Li et al.,7 Hu et al.8 and Łagowska et al.9 reported in their systematic reviews and meta-analyses that vitamin D supplementation improves the insulin sensitivity of target cells (liver, skeletal muscle and adipose tissue) and, consequently, improves beta-cell function, glycated hemoglobin (HbA1c) level, insulin resistance, and homeostatic model assessment of insulin resistance (HOMA-IR) scores in T2DM patients. In contrast, Jamka et al.10 and Al Thani et al.11 showed that vitamin D supplementation had no effect on glucose tolerance or insulin sensitivity.

Similarly, many studies have demonstrated that cigarette smoking increases the risk of vascular problems in T2DM patients and diabetes incidence in the general population.12 Smoking can influence glucose homeostasis by raising insulin resistance, lowering insulin production, or affecting pancreatic beta-cell function, and is linked to poor glycemic control in T2DM patients.13 Cigarette smoking and nicotine exposure, for instance, reduce the efficiency of pancreatic cells, leading to elevated insulin resistance in T2DM patients, as documented in a review paper by Maddatu et al.14 Contrary to this, Wang et al.15 found that smoking is negatively associated with insulin resistance in T2DM, likely due to increased weight gain upon nicotine withdrawal.

Since the available randomized controlled trials (RCTs) showed contradictory results, the present meta-analysis of RCTs investigates the influence of vitamin D and smoking on insulin resistance in T2DM patients.

Objectives

The aim of this meta-analysis was to assess the impact of vitamin D deficiency and cigarette smoking on insulin resistance in individuals with T2DM.

Materials and methods

This meta-analysis was undertaken following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.

Data sources and literature search

An inclusive literature search was conducted without any restrictions on the year and language of publication using electronic databases, namely Cochrane Library, EMBASE and PubMed, up to November 2022. In addition, the bibliographies of relevant studies and meta-analyses were searched. The search strategy involved combinations of the following keywords: “type 2 diabetes mellitus”, “T2DM”, “insulin resistance”, “vitamin-D deficiency”, “vitamin-D supplementation”, “cigarette smoking”, “cessation of smoking”, “HbA1c”, “glycated hemoglobin”, “glycaemic index”, “meta-analysis”, and “systematic review”. Duplicate papers were deleted from the search results, followed by a title and abstract screening of the remaining articles. Finally, the full texts of the eligible studies were retrieved and reviewed, based on the inclusion and exclusion criteria.

Study selection

The literature search was conducted separately by 2 authors. In the event of disputes, a consensus was obtained through discussion. The following conditions had to be met for a study to be eligible for the meta-analysis: (A) RCTs examining the effects of vitamin D deficiency on insulin resistance in T2DM; (B) RCTs examining the effects of cigarette smoking on insulin resistance in T2DM; and (C) studies evaluating the following outcomes: changes in vitamin D levels, HbA1c levels and body mass index (BMI) values. The exclusion criteria included clinical trials with a follow-up time of less than 1 month. Studies that were conducted on healthy volunteers or on those who suffered from type 1 diabetes mellitus were excluded from the study. Lastly, studies that compared factors other than vitamin D deficiency and cigarette smoking were not included in this meta-analysis.

Data extraction

A computerized data extraction form was developed in Microsoft Excel (Microsoft Corp., Redmond, USA) and utilized for the purpose of documenting the essential information of the studies16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 selected for the meta-analysis. This included the first author’s name, the year of publication, the intervention, the sample size in each group, the follow-up duration, and the study outcomes. Two different authors independently extracted the data, and their results were compared. In the case of divergent opinions, an agreement was obtained via discussion. Depending on the circumstances, a third author was also included.

Quality assessment

The Cochrane Risk of Bias tool (Cochrane, London, UK) was applied in order to evaluate the methodological validity of each study that was incorporated into the meta-analysis. During the process of data extraction, selected articles were given a score, and RevMan v. 5.4.030 (Cochrane) was used to construct a quality evaluation graph.

Data analysis

RevMan v. 5.4.0 and MedCalc software31 were used throughout the procedure of data processing. The Mantel–Haenszel approach with the random-effects model29 was utilized in order to calculate the pooled risk ratio (RR) and the 95% confidence interval (95% CI) for each of the 2 outcomes. A result was considered statistically significant if its p-value was less than 0.05.32, 33 The RCTs that did not have any outcome events recorded in the investigation groups were excluded from the analysis of a particular outcome event because they did not contribute to the RR. Forest plots34 were used to visually represent the RRs and the 95% CIs. The I2 statistics were used to assess the level of heterogeneity present in the results.35

Results

Literature search results

Figure 1 depicts the PRISMA chart for the study selection process. A total of 567 studies were retrieved through a comprehensive search of online databases. After eliminating duplicates, the abstracts and titles of 384 studies were screened. Only 120 studies qualified for full-text evaluation. Fourteen publications were ultimately included based on the PICOS criteria36 presented in Table 1. The characteristics of all included trials are displayed in Table 2. The included studies evaluated the effectiveness of vitamin D supplementation and smoking cessation on glycemic index, HbA1c level and insulin sensitivity in individuals with T2DM. In all the included investigations, the median follow-up time ranged from 3 to 36 months.

Risk of bias and publication bias

The quality of the included studies was assessed, as shown in Table 3. Figure 2 depicts a summary of the risk of bias, and Figure 3 presents a risk of bias graph. Ten of the 14 included studies had a low risk of bias, whereas 3 studies had a moderate risk attributable to selective reporting or reporting bias. One study showed a high risk of performance bias. Figure 4A depicts the funnel plot for studies related to the effect of vitamin D supplementation, which indicates a low probability of publication bias, with a significant p-value of 0.394 (Begg’s test). Figure 4B depicts the funnel plot for studies related to the effect of cigarette smoking, which indicated a low probability of publication bias, with a significant p-value of 0.252 (Begg’s test).37

Efficacy outcomes

Effect of vitamin D deficiency on insulin resistance

The 14 studies evaluated in this meta-analysis included a total of 23,289 individuals with T2DM. Among these, 9 studies provided information on the effect of vitamin D deficiency on insulin resistance in people with T2DM. Table 4 displays a detailed comparison of the intervention and control groups with respect to the main outcome, comparative BMI values, and changes in HbA1c and vitamin D levels due to vitamin D supplementation. The values presented in Figure 5 show a substantial change in the intervention group, with a RR of 0.72 (95% CI: 0.58, 0.88; p = 0.001), high heterogeneity value for risk ratio of 95%, an odds ratio (OR) of 0.52 (95% CI: 0.34, 0.78; p = 0.002), and high heterogeneity value for odds ratio of 96%.

Effect of smoking cessation on glycemic index

The remaining 5 studies provided information on the effect of cigarette smoking on glycemic index in people with T2DM. Table 5 displays a detailed comparison of the intervention and control groups with respect to the main outcomes, BMI of the control (non-smokers) and smoker groups, and changes in HbA1c level due to smoking cessation. As in the case of vitamin D supplementation, the meta-analysis data show a substantial change in the intervention group, with a RR of 0.92 (95% CI: 0.86, 0.99; p = 0.04) and an OR of 0.86 (95% CI: 0.74, 0.99; p = 0.04); there was high heterogeneity of 87% (Figure 6).

Risk ratio values and OR values lower than 1 indicate a high likelihood of the positive effect of vitamin D supplementation and smoking cessation on improving the glycemic index (HbA1c level) and insulin sensitivity in individuals with T2DM. High heterogeneity was detected among the pooled studies (I2 > 85%).

Figure 7 presents a comparison of BMI for the control and vitamin D supplementation groups and the control (non-smoker) and smoker groups. Vitamin D supplementation reduces BMI values, while smoking increases BMI and obesity when compared to the control group.

Discussion

In this meta-analysis designed to investigate the glycemic control outcomes in persons with T2DM, we discovered that vitamin D supplementation and smoking cessation decreased plasma HbA1c and insulin resistance. Additionally, we observed that vitamin D supplementation lowered BMI compared to the control group, which is consistent with the findings of other studies,38, 39 showing that vitamin D-deficient individuals have a higher BMI but experience a decrease in BMI after taking a reasonable amount of vitamin D supplements. Similar to other studies40, 41 that demonstrated that smoking increases BMI and obesity, our research revealed that smoking raises BMI in comparison to the control group. Hemoglobin undergoes constant, gradual, non-enzymatic glycosylation due to hyperglycemia.42 The UK Prospective Diabetes Study established that HbA1c is the gold standard for assessing glycemic control in diabetes management.43 George et al.44 conducted a meta-analysis to assess the influence of vitamin D on glycemic management and insulin resistance. The authors reported a slight reduction in fasting blood glucose and insulin resistance, but no improvement in HbA1c levels. We found that vitamin D treatment decreased the elevated plasma HbA1c levels, indicating that vitamin D is advantageous for preventing or delaying the onset of diabetic complications. These disparate outcomes may be the result of our inclusion of a higher number of recent investigations. There was a substantial positive link between HOMA-IR and the development of T2DM. The HOMA-IR is an important factor in the onset of diabetes.45, 46 Insulin resistance is defined as a decreased sensitivity of insulin target tissues to insulin, and the majority of T2DM patients have mixed insulin resistance.47 Frequently, blood glucose concentration and insulin secretion are indirect indicators of insulin sensitivity. In T2DM patients, the blood glucose has not been well managed, which triggered β-cells to produce even more insulin.48, 49 In the vitamin D treatment group, insulin and HOMA-IR values significantly decreased. Insulin secretion is a calcium-dependent mechanism. Vitamin D activates L-type calcium channels on islet beta cells, which modulate calcium levels, initiate insulin signaling and stimulate insulin release.50 Vitamin D deficiency can be accompanied by a drop in plasma calcium concentration, which in turn induces a secondary increase in calcium levels, altering insulin signal transduction, interfering with insulin release and disturbing islet beta-cell function.51 Therefore, the present study further validates these results and demonstrates that vitamin D supplementation improves insulin resistance in individuals with T2DM in the short term.

Smoking is associated with the early onset of microvascular disorders and may contribute to the pathogenesis of T2DM.52, 53 Both the transition from normal glycemia to impaired glucose tolerance and the increased risk of developing diabetes are predicted by smoking.54, 55 According to the studies by Akter et al.56 and Campagna et al.,57 smoking cessation can reduce the risk of macrovascular problems and significantly improve the glycemic index. This meta-analysis demonstrated a substantial association between smoking cessation and a drop in HbA1c level as well as an improvement in glycemic index, similar to the previous findings.

Limitations

This study has a number of limitations. Even though it was completed with the recommended methodological rigor, its results are limited by the availability of only 14 RCTs with moderate to high heterogeneity. In addition, few long-term follow-up studies were included, and the effects of vitamin D supplementation and smoking cessation on insulin secretion were not considered. Even if the heterogeneity of the literature was avoided, heterogeneity was still present due to the dose variability of vitamin D intake in the included studies and variable smoking cessation periods. In addition, the RR values were generally applied to establish the association between the two parameters, which may introduce bias when comparing the outcomes of RCTs of varied durations.

Conclusions

In conclusion, both vitamin D supplementation and smoking cessation are associated with a moderate decline in BMI and an improvement in insulin sensitivity in people with T2DM.

Tables


Table 1. PICOS search

PICOS criteria

Description

P (patient, problem, population)

people with T2DM

I (intervention)

the effect of vitamin D deficiency and cigarette smoking on people with T2DM

C (comparison, control or comparator)

vitamin D deficiency compared to vitamin D supplements

smoking compared to smoking cessation

O (outcome (s))

the use of vitamin D supplements and smoking cessation have positive impacts on the glycemic index of people with T2DM

S (study type)

randomized controlled trials

T2DM – type 2 diabetes mellitus.
Table 2. Brief summary of the included studies evaluating the effect of vitamin D supplementation on type 2 diabetes mellitus (T2DM)

Study ID

Year

Journal of publication

Type of study

Follow-up

Intervention

Number of patients

Age of patients [years]

Gender M/F

Primary outcome

Conclusion

Buhary et al.16

2017

Journal of Clinical Medicine Research

randomized controlled trial

9 months

association of Hb1Ac levels with vitamin D supplementation

1000

20–65

397/603

BMI, change in vitamin D concentration, change in Hb1Ac level

There is a significant inverse association between serum 25(OH)D and HbA1c.

Cojic et al.17

2021

Frontiers in Endocrinology

randomized controlled trial

6 months

effect of vitamin D supplementation on patients with T2DM

130

50–70

94/36

BMI, change in vitamin D concentration, change in Hb1Ac level

Oral daily doses of vitamin D reduce the levels of HbA1c over a 6-month period.

Gu et al.18

2022

Journal of Clinical Laboratory Analysis

randomized controlled trial

3 months

effect of vitamin D supplementation on patients with T2DM

172

>18

102/70

BMI, change in vitamin D concentration, change in Hb1Ac level

Vitamin D supplementation has important beneficial effects in T2DM patients.

Kawahara et al.19

2022

The BMJ

randomized controlled trial

3 years

effect of vitamin D supplementation on glucose control and insulin resistance in patients with T2DM

1256

50–70

742/571

BMI, change in vitamin D concentration, change in Hb1Ac level

Vitamin D has potential beneficial effects in patients with insufficient insulin secretion.

Kayaniyil et al.20

2010

Diabetes Care

randomized controlled trial

2 years

association of vitamin D with insulin resistance in subjects with T2DM

712

40–60

462/498

BMI, change in vitamin D concentration, change in Hb1Ac level

Vitamin D has beneficial effects in patients with T2DM.

Lemieux et al.21

2019

European Journal of Endocrinology

randomized controlled trial

6 months

effect of vitamin D supplementation on insulin sensitivity and secretion

96

50–70

57/39

BMI, change in vitamin D concentration, change in Hb1Ac level

Vitamin D supplementation over a 6-month period significantly increased the peripheral insulin sensitivity and β-cell function in T2DM patients.

Pittas et al.22

2020

New England Journal of Medicine

randomized controlled trial

2.5 years

effect of vitamin D supplementation on T2DM

2423

50–70

1337/1086

BMI, change in vitamin D concentration, change in Hb1Ac level

Vitamin D supplementation has important beneficial effects in T2DM patients.

Yousefi Rad et al.23

2014

Iranian Journal of Public Health

randomized controlled trial

2 months

effect of vitamin D supplementation on glucose control and insulin resistance in patients with T2DM

58

30–60

12/36

BMI, change in vitamin D concentration, change in Hb1Ac level

Vitamin D supplementation has beneficial effects on glucose homeostasis and can increase insulin sensitivity in T2DM patients.

Talaei et al.24

2013

Diabetology & Metabolic Syndrome

randomized controlled trial

2 months

effect of vitamin D supplementation on insulin resistance in patients with T2DM

100

30–70

30/70

BMI, change in vitamin D concentration, change in Hb1Ac level

Vitamin D supplementation could reduce insulin resistance in T2DM.

Cho et al.25

2022

Scientific Reports

randomized controlled trial

1 year

effect of short-term smoking on increasing the risk of insulin resistance

4043

19–70

2067/1976

change in HbA1c level, BMI

Smoking cessation may protect against insulin resistance.

Molla et al.26

2020

Canadian Journal of Diabetes

randomized controlled trial

6 months

effect of smoking on diabetes control in adults with T2DM

8278

>18

5036/3242

change in HbA1c level, BMI

Smoking prevention and cessation are beneficial for diabetes control.

Ohkuma et al.27

2015

PLOS One

randomized controlled trial

1 year

association of smoking and its cessation with insulin resistance in patients with T2DM

2490

>20

2490

change in HbA1c level, BMI

Smoking cessation has positive effects on glycemic control in patients with T2DM.

Sia et al.28

2022

Annals of Medicine

randomized controlled trial

1 year

association between smoking and glycemic control in men with T2DM

3044

>30

3044

change in HbA1c level, BMI

Smoking has unfavorable effects on glycemic control in men with T2DM.

Stadler et al.29

2014

European Journal of Endocrinology

randomized controlled trial

6 months

effect of smoking cessation on beta-cell function and insulin resistance in patients with T2DM

27

27–30

18/9

change in HbA1c level, BMI

Smoking cessation has positive outcomes on diabetes control.

HbA1c – glycated hemoglobin; BMI – body mass index.
Table 3. Risk assessment for the included studies

Study ID and year

Buhary et al.16

Cojic et al.17

Gu et al.18

Kawahara et al.19

Kayaniyil et al.20

Lemieux et al.21

Pittas et al.22

Yousefi Rad et al.23

Talaei et al.24

Cho et al.25

Molla et al.26

Ohkuma et al.27

Sia et al.28

Stadler et al.29

Did the study avoid inappropriate exclusions?

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Did all patients receive the same reference standard?

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Were all patients included in the analysis?

N

N

N

N

N

N

N

N

N

N

N

N

N

N

Was the sample frame appropriate to address the target population?

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Were study participants sampled in an appropriate way?

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Were the study subjects and the setting described in detail?

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Were valid methods used for the identification of the condition?

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Was the condition measured in a standard, reliable way for all participants?

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Table 4. Primary outcomes of vitamin D supplementation in type 2 diabetes mellitus (T2DM)

Study ID

Effect of vitamin D deficiency

Dose of vitamin D3 supplementation

Duration of intervention

BMI [kg/m2]

Change in vitamin D concentration in the intervention group

Change in Hb1Ac level in the intervention group

control group

intervention group

pre-treatment [ng/mL]

post-treatment [ng/mL]

p-value

pre-treatment (%)

post-treatment (%)

p-value

Buhary et al.16

affects insulin secretion and insulin sensitivity

4000 IU

9 months

32.65 ±5.6

25.79 ±4.7

40.09 ±23.13

80.5 ±29.77

0.0001

10.55 ±2.58

7.70 ±1.61

0.0001

Cojic et al.17

affects insulin action

3000 IU

6 months

30.13 ±4.6

29.79 ±5.0

48.79 ±31.63

92.24 ±20.25

0.0001

6.56 ±1.0

6.32 ±0.69

0.025

Gu et al.18

affects insulin secretion and insulin sensitivity

3000 IU

3 months

29.83 ±0.64

25.7 ±0.73

19.50 ±9.29

56.55 ±17.76

0.0001

7.0 ±0.23

6.44 ±0.24

0.0001

Kawahara et al.19

impaired glucose tolerance

4000 IU

3 years

24.5 ±1.8

24.1 ±2.7

21.0 ±6.2

47.7 ±22.2

0.0001

6.5 ±0.1

5.9 ±0.2

0.0001

Kayaniyil et al.20

affects insulin action

4000 IU

2 years

30.05 ±3.7

22.5 ±1.4

26.3 ±11.0

55.81 ±22.90

0.0001

7.14 ±0.1

6.1 ±0.2

0.0001

Lemieux et al.21

affects insulin secretion and insulin sensitivity

5000 IU

6 months

32.2 ±4.3

32.1 ±3.9

48.5 ±13.0

79.1 ±11.0

0.0001

6.94 ±0.2

5.6 ±0.1

0.0001

Pittas et al.22

impaired glucose tolerance

4000 IU

2.5 years

32.1 ±4.4

32.0 ±4.5

27.7 ±10.2

54.3 ±11.5

0.0001

6.85 ±0.1

5.9 ±0.2

0.0001

Yousefi Rad et al.23

affects insulin action

4000 IU

3 months

28.75 ±0.95

27.94 ±0.92

15.55 ±1.91

27.50 ±2.04

0.0001

7.29 ±0.22

6.76 ±0.18

0.0001

Talaei et al.24

affects insulin secretion and insulin sensitivity

5000 IU

2 months

31.3 ±4.3

30 ±2.8

43.03 ±19.28

58.52 ±22.22

0.0001

7.02 ±0.33

6.84 ±0.15

0.0001

HbA1c – glycated hemoglobin; BMI – body mass index.
Table 5. Primary outcomes of cigarette smoking in type 2 diabetes mellitus (T2DM)

Study ID

Effect of cigarette smoking

Duration of intervention

BMI [kg/m2]

Hb1Ac level

control group

intervention group

control group (%)

intervention group (%)

p-value

Cho et al.25

insulin resistance

1 year

25.6 ±1.6

28.7 ±2.5

6.21 ±0.23

7.02 ±0.17

0.0001

Molla et al.26

insulin resistance

6 months

23 ±2.1

25 ±1.5

8.39 ±2.25

7.75 ±3.43

0.0001

Ohkuma et al.27

insulin resistance

1 year

23.4 ±3.4

23.8 ±3.6

7.27 ±0.04

7.47 ±0.04

0.0001

Sia et al.28

insulin resistance

1 year

26.2 ±4.2

26.3 ±4.0

9.5 ±2.8

9.0 ±2.7

0.0001

Stadler et al.29

insulin resistance

6 months

22.9 ±0.6

23.4 ±0.8

4.9 ±0.1

5.0 ±0.1

0.0006

HbA1c – glycated hemoglobin; BMI – body mass index.

Figures


Fig. 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart of study selection
RCT – randomized controlled trial.
Fig. 2. Risk of bias summary
Fig. 3. Risk of bias graph
Fig. 4. A. Funnel plots for studies evaluating the effect of vitamin D supplementation on insulin resistance; B. Funnel plots for studies evaluating the effect of cigarette smoking on insulin resistance
RR – risk ratio; SE – standard error.
Fig. 5. Forest plot for the primary outcome. A. Risk ratio; B. Odds ratio of vitamin-D supplementation on insulin resistance
95% CI – 95% confidence interval; df – degrees of freedom.
Fig. 6. Forest plot for the primary outcome. A. Risk ratio; B. Odds ratio of smoking effects on insulin resistance
95% CI – 95% confidence interval; df – degrees of freedom.
Fig. 7. Comparison of body mass index (BMI) in the control group with the intervention group

References (57)

  1. Tinajero MG, Malik VS. An update on the epidemiology of type 2 diabetes. Endocrinol Metab Clin North Am. 2021;50(3):337–355. doi:10.1016/j.ecl.2021.05.013
  2. Kotwas A, Karakiewicz B, Zabielska P, Wieder-Huszla S, Jurczak A. Epidemiological factors for type 2 diabetes mellitus: Evidence from the Global Burden of Disease. Arch Public Health. 2021;79(1):110. doi:10.1186/s13690-021-00632-1
  3. Deshpande AD, Harris-Hayes M, Schootman M. Epidemiology of diabetes and diabetes-related complications. Phys Ther. 2008;88(11):1254–1264. doi:10.2522/ptj.20080020
  4. Rossboth S, Lechleitner M, Oberaigner W. Risk factors for diabetic foot complications in type 2 diabetes: A systematic review. Endocrinol Diab Metab. 2021;4(1):e00175. doi:10.1002/edm2.175
  5. Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 2020;21(17):6275. doi:10.3390/ijms21176275
  6. Yaribeygi H, Maleki M, Sathyapalan T, et al. The molecular mechanisms by which vitamin D improve glucose homeostasis: A mechanistic review. Life Sci. 2020;244:117305. doi:10.1016/j.lfs.2020.117305
  7. Li X, Liu Y, Zheng Y, Wang P, Zhang Y. The effect of vitamin D supplementation on glycemic control in type 2 diabetes patients: A systematic review and meta-analysis. Nutrients. 2018;10(3):375. doi:10.3390/nu10030375
  8. Hu Z, Chen J, Sun X, Wang L, Wang A. Efficacy of vitamin D supplementation on glycemic control in type 2 diabetes patients: A meta-analysis of interventional studies. Medicine (Baltimore). 2019;98(14):e14970. doi:10.1097/MD.0000000000014970
  9. Łagowska K, Bajerska J, Jamka M. The role of vitamin D oral supplementation in insulin resistance in women with polycystic ovary syndrome: A systematic review and meta-analysis of randomized controlled trials. Nutrients. 2018;10(11):1637. doi:10.3390/nu10111637
  10. Jamka M, Woźniewicz M, Jeszka J, Mardas M, Bogdański P, Stelmach-Mardas M. The effect of vitamin D supplementation on insulin and glucose metabolism in overweight and obese individuals: Systematic review with meta-analysis. Sci Rep. 2015;5(1):16142. doi:10.1038/srep16142
  11. Al Thani M, Sadoun E, Sofroniou A, et al. The effect of vitamin D supplementation on the glycemic control of pre-diabetic Qatari patients in a randomized control trial. BMC Nutr. 2019;5(1):46. doi:10.1186/s40795-019-0311-x
  12. Xie X tao, Liu Q, Wu J, Wakui M. Impact of cigarette smoking in type 2 diabetes development. Acta Pharmacol Sin. 2009;30(6):784–787. doi:10.1038/aps.2009.49
  13. Oba S, Suzuki E, Yamamoto M, Horikawa Y, Nagata C, Takeda J. Active and passive exposure to tobacco smoke in relation to insulin sensitivity and pancreatic β-cell function in Japanese subjects. Diabetes Metab. 2015;41(2):160–167. doi:10.1016/j.diabet.2014.09.002
  14. Maddatu J, Anderson-Baucum E, Evans-Molina C. Smoking and the risk of type 2 diabetes. Transl Res. 2017;184:101–107. doi:10.1016/j.trsl.2017.02.004
  15. Wang S, Chen J, Wang Y, et al. Cigarette smoking is negatively associated with the prevalence of type 2 diabetes in middle-aged men with normal weight but positively associated with stroke in men. J Diabetes Res. 2019;2019:1853018. doi:10.1155/2019/1853018
  16. Buhary BM, Almohareb O, Aljohani N, et al. Association of glycosylated hemoglobin levels with vitamin D status. J Clin Med Res. 2017;9(12):1013–1018. doi:10.14740/jocmr3227w
  17. Cojic M, Kocic R, Klisic A, Kocic G. The effects of vitamin D supplementation on metabolic and oxidative stress markers in patients with type 2 diabetes: A 6-month follow up randomized controlled study. Front Endocrinol (Lausanne). 2021;12:610893. doi:10.3389/fendo.2021.610893
  18. Gu J, Wu Y, Huang W, et al. Effect of vitamin D on oxidative stress and serum inflammatory factors in the patients with type 2 diabetes. Clin Lab Anal. 2022;36(5):e24430. doi:10.1002/jcla.24430
  19. Kawahara T, Suzuki G, Mizuno S, et al. Effect of active vitamin D treatment on development of type 2 diabetes: DPVD randomised controlled trial in Japanese population. BMJ. 2022;377:e066222. doi:10.1136/bmj-2021-066222
  20. Kayaniyil S, Vieth R, Retnakaran R, et al. Association of vitamin D with insulin resistance and β-cell dysfunction in subjects at risk for type 2 diabetes. Diabetes Care. 2010;33(6):1379–1381. doi:10.2337/dc09-2321
  21. Lemieux P, Weisnagel SJ, Caron AZ, et al. Effects of 6-month vitamin D supplementation on insulin sensitivity and secretion: A randomised, placebo-controlled trial. Eur J Endocrinol. 2019;181(3):287–299. doi:10.1530/EJE-19-0156
  22. Pittas AG, Jorde R, Kawahara T, Dawson-Hughes B. Vitamin D supplementation for prevention of type 2 diabetes mellitus: To D or not to D? J Clin Endocrinol Metab. 2020;105(12):3721–3733. doi:10.1210/clinem/dgaa594
  23. Yousefi Rad E, Djalali M, Koohdani F, et al. The effects of vitamin D supplementation on glucose control and insulin resistance in patients with diabetes type 2: A randomized clinical trial study. Iran J Public Health. 2014;43(12):1651–1656. PMID:26171357.
  24. Talaei A, Mohamadi M, Adgi Z. The effect of vitamin D on insulin resistance in patients with type 2 diabetes. Diabetol Metab Syndr. 2013;5(1):8. doi:10.1186/1758-5996-5-8
  25. Cho SH, Jeong SH, Shin J, Park S, Jang SI. Short-term smoking increases the risk of insulin resistance. Sci Rep. 2022;12(1):3550. doi:10.1038/s41598-022-07626-1
  26. Molla GJ, Ismail-Beigi F, Larijani B, et al. Smoking and diabetes control in adults with type 1 and type 2 diabetes: A nationwide study from the 2018 National Program for Prevention and Control of Diabetes of Iran. Can J Diabetes. 2020;44(3):246–252. doi:10.1016/j.jcjd.2019.07.002
  27. Ohkuma T, Iwase M, Fujii H, et al. Dose- and time-dependent association of smoking and its cessation with glycemic control and insulin resistance in male patients with type 2 diabetes mellitus: The Fukuoka Diabetes Registry. PLoS One. 2015;10(3):e0122023. doi:10.1371/journal.pone.0122023
  28. Sia HK, Kor CT, Tu ST, Liao PY, Wang JY. Association between smoking and glycemic control in men with newly diagnosed type 2 diabetes: A retrospective matched cohort study. Ann Med. 2022;54(1):1385–1394. doi:10.1080/07853890.2022.2075559
  29. Stadler M, Tomann L, Storka A, et al. Effects of smoking cessation on β-cell function, insulin sensitivity, body weight, and appetite. Eur J Endocrinol. 2014;170(2):219–227. doi:10.1530/EJE-13-0590
  30. Schmidt L, Shokraneh F, Steinhausen K, Adams CE. Introducing RAPTOR: RevMan Parsing Tool for Reviewers. Syst Rev. 2019;8(1):151. doi:10.1186/s13643-019-1070-0
  31. Elovic A, Pourmand A. MDCalc medical calculator app review. J Digit Imaging. 2019;32(5):682–684. doi:10.1007/s10278-019-00218-y
  32. Dettori JR, Norvell DC, Chapman JR. Fixed-effect vs random-effects models for meta-analysis: 3 points to consider. Global Spine J. 2022;12(7):1624–1626. doi:10.1177/21925682221110527
  33. Henmi M, Copas JB, Eguchi S. Confidence intervals and p-values for meta-analysis with publication bias. Biometrics. 2007;63(2):475–482. doi:10.1111/j.1541-0420.2006.00705.x
  34. Huedo-Medina TB, Sánchez-Meca J, Marín-Martínez F, Botella J. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol Methods. 2006;11(2):193–206. doi:10.1037/1082-989X.11.2.193
  35. Saaiq M, Ashraf B. Modifying “PICO” question into “PICOS” model for more robust and reproducible presentation of the methodology employed in a scientific study. World J Plast Surg. 2017;6(3):390-392. PMID:29218294; PMCID:PMC5714990
  36. Amir-Behghadami M, Janati A. Population, Intervention, Comparison, Outcomes and Study (PICOS) design as a framework to formulate eligibility criteria in systematic reviews. Emerg Med J. 2020;37(6):387. doi:10.1136/emermed-2020-209567
  37. Simmonds M. Quantifying the risk of error when interpreting funnel plots. Syst Rev. 2015;4(1):24. doi:10.1186/s13643-015-0004-8
  38. Wamberg L, Pedersen SB, Rejnmark L, Richelsen B. Causes of vitamin D deficiency and effect of vitamin D supplementation on metabolic complications in obesity: A review. Curr Obes Rep. 2015;4(4):429–440. doi:10.1007/s13679-015-0176-5
  39. De Oliveira LF, De Azevedo LG, Da Mota Santana J, De Sales LPC, Pereira-Santos M. Obesity and overweight decreases the effect of vitamin D supplementation in adults: Systematic review and meta-analysis of randomized controlled trials. Rev Endocr Metab Disord. 2020;21(1):67–76. doi:10.1007/s11154-019-09527-7
  40. Harris KK, Zopey M, Friedman TC. Metabolic effects of smoking cessation. Nat Rev Endocrinol. 2016;12(5):299–308. doi:10.1038/nrendo.2016.32
  41. Yu W, Gao C, Zhao X, et al. Four-way decomposition of effect of cigarette smoking and body mass index on serum lipid profiles. PLoS One. 2022;17(8):e0270486. doi:10.1371/journal.pone.0270486
  42. Kennedy L, Lyons TJ. Non-enzymatic glycosylation. Br Med Bull. 1989;45(1):174–190. doi:10.1093/oxfordjournals.bmb.a072310
  43. UK Prospective Diabetes Study (UKPDS). VIII. Study design, progress and performance. Diabetologia. 1991;34(12):877–890. PMID:1778353.
  44. George PS, Pearson ER, Witham MD. Effect of vitamin D supplementation on glycaemic control and insulin resistance: A systematic review and meta-analysis. Diabet Med. 2012;29(8):e142–e150. doi:10.1111/j.1464-5491.2012.03672.x
  45. Carrillo-Larco RM, Miranda JJ, Gilman RH, et al. The HOMA-IR performance to identify new diabetes cases by degree of urbanization and altitude in Peru: The CRONICAS Cohort Study. J Diabetes Res. 2018;2018:7434918. doi:10.1155/2018/7434918
  46. Tokodai K, Amada N, Haga I, Takayama T, Nakamura A, Kashiwadate T. Insulin resistance as a risk factor for new-onset diabetes after kidney transplantation. Transplant Proc. 2014;46(2):537–539. doi:10.1016/j.transproceed.2013.10.060
  47. Ronald Kahn C. Insulin resistance, insulin insensitivity, and insulin unresponsiveness: A necessary distinction. Metabolism. 1978;27(12):1893–1902. doi:10.1016/S0026-0495(78)80007-9
  48. Miyazaki Y, Akasaka H, Ohnishi T, Saitoh, S, DeFronzo RA, Shimamoto K. Differences in insulin action and secretion, plasma lipids and blood pressure levels between impaired fasting glucose and impaired glucose tolerance in Japanese subjects. Hypertens Res. 2008;31(7):1357–1363. doi:10.1291/hypres.31.1357
  49. Aoyama-Sasabe S, Fukushima M, Xin X, et al. Insulin secretory defect and insulin resistance in isolated impaired fasting glucose and isolated impaired glucose tolerance. J Diabetes Res. 2016;2016:1298601. doi:10.1155/2016/1298601
  50. Klec C, Ziomek G, Pichler M, Malli R, Graier WF. Calcium signaling in ß-cell physiology and pathology: A revisit. Int J Mol Sci. 2019;20(24):6110. doi:10.3390/ijms20246110
  51. Charoenngam N, Holick MF. Immunologic effects of vitamin D on human health and disease. Nutrients. 2020;12(7):2097. doi:10.3390/nu12072097
  52. Palladino R, Tabak AG, Khunti K, et al. Association between pre-diabetes and microvascular and macrovascular disease in newly diagnosed type 2 diabetes. BMJ Open Diab Res Care. 2020;8(1):e001061. doi:10.1136/bmjdrc-2019-001061
  53. Zhu P, Pan XF, Sheng L, Chen H, Pan A. Cigarette smoking, diabetes, and diabetes complications: Call for urgent action. Curr Diab Rep. 2017;17(9):78. doi:10.1007/s11892-017-0903-2
  54. Petersen JL, McGuire DK. Impaired glucose tolerance and impaired fasting glucose: A review of diagnosis, clinical implications and management. Diab Vasc Dis Res. 2005;2(1):9–15. doi:10.3132/dvdr.2005.007
  55. Unwin N, Shaw J, Zimmet P, Alberti KGMM. Impaired glucose tolerance and impaired fasting glycaemia: The current status on definition and intervention. Diabet Med. 2002;19(9):708–723. doi:10.1046/j.1464-5491.2002.00835.x
  56. Akter S, Goto A, Mizoue T. Smoking and the risk of type 2 diabetes in Japan: A systematic review and meta-analysis. J Epidemiol. 2017;27(12):553–561. doi:10.1016/j.je.2016.12.017
  57. Campagna D, Alamo A, Di Pino A, et al. Smoking and diabetes: Dangerous liaisons and confusing relationships. Diabetol Metab Syndr. 2019;11(1):85. doi:10.1186/s13098-019-0482-2