Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1 (5-Year IF – 2.0)
Journal Citation Indicator (JCI) (2023) – 0.4
Scopus CiteScore – 3.7 (CiteScore Tracker 3.8)
Index Copernicus  – 171.00; MNiSW – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2023, vol. 32, nr 9, September, p. 1041–1048

doi: 10.17219/acem/159947

Publication type: review

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Cite as:


Olasińska-Wiśniewska A, Urbanowicz TK, Gładki MM, Bobkowski W, Zalas D, Jemielity M. The beneficial role of simple inflammatory blood indices in pediatric cardiology. Adv Clin Exp Med. 2023;32(9):1041–1048. doi:10.17219/acem/159947

The beneficial role of simple inflammatory blood indices in pediatric cardiology

Anna Olasińska-Wiśniewska1,A,B,C,D,F, Tomasz Kamil Urbanowicz1,A,B,C,D,E,F, Marcin Michał Gładki2,C,E,F, Waldemar Bobkowski3,C,E,F, Dominika Zalas3,C,E,F, Marek Jemielity1,2,A,E,F

1 Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, Poland

2 Department of Pediatric Cardiac Surgery, Poznan University of Medical Sciences, Poland

3 Department of Pediatric Cardiology, Poznan University of Medical Sciences, Poland

Graphical abstract


Graphical abstracts

Abstract

Simple whole blood analysis can effectively demonstrate complex changes in inflammatory responses to cardiovascular disorders in adults and enable the prediction of adverse outcomes or diminished survival. Such inflammatory activation has also been detected in the pediatric population. Blood analysis results are repeatable and readily available, which gives the method an advantage over others. Inflammatory phenomena such as a high leukocyte count and an increased neutrophil-to-lymphocyte ratio (NLR) are related to a poor prognosis of advanced heart defects and worse outcomes after pediatric cardiac surgery in the advanced stages of the disease. Surgery-associated inflammation exacerbates these diseases, and the inflammatory response may further complicate the postoperative period. Simple blood cell counts and indices may be beneficial for evaluating cardiac surgery outcomes and cardiovascular disorder prognosis in infants and children. This review summarizes current knowledge on inflammatory markers in pediatric cardiovascular diseases and surgery.

Key words: surgery, inflammation, congenital heart disease, neutrophil-to-lymphocyte ratio

Introduction

Inflammation is a well-known causative factor in cardiovascular disorders in adults, and several studies have underlined the significant contribution of inflammation in the occurrence and progression of coronary artery disease.1, 2 Atherosclerotic plaque formation and enlargement are related to neutrophil and macrophage infiltration, pro-inflammatory cytokines and chemokines, lipid accumulation in the core, and thinning of the fibrous cap.3, 4 Moreover, inflammatory responses were reported in heart failure5, 6, 7 and worsened with its advancement and complications, such as pulmonary hypertension.8 Furthermore, the assessment of inflammatory activation demonstrated its value in the pediatric population.9

The assessment of cardiovascular disease prognosis and procedural outcomes highlighted several parameters and biomarkers.10, 11, 12, 13, 14, 15 Many of them, including interleukins, microribonucleic acids (microRNAs), tumor necrosis factor alpha (TNF-α), and platelet-leukocyte aggregates,16, 17 have high prognostic value. However, using such markers in clinical practice is not possible, as a profound analysis of inflammatory phenomena is challenging and not cost-effective.18, 19 Hence, simpler methods, such as whole blood analysis, were introduced and described as sufficient for demonstrating complex changes in the inflammatory response to cardiovascular disorders and predicting adverse outcomes or diminished survival. The results of whole blood analysis are readily available, and the method is repeatable, which gives it an advantage over other methods.

Objectives

The objective of this review was to summarize current knowledge on inflammatory markers in pediatric cardiovascular diseases. The contemporary studies concerning the assessment of inflammatory activation using simple blood count analysis were collected and analyzed.

Outline of the issue

The neutrophil-to-lymphocyte ratio (NLR) is the most commonly described biomarker that represents the relationship between neutrophils and lymphocytes in the blood. Other indices include the monocyte-to-lymphocyte ratio (MLR) and platelet-to-lymphocyte ratio (PLR). More complex indices, such as the systemic inflammatory index (SII), systemic inflammatory response index (SIRI) and aggregate index of systemic inflammation (AISI), combine even more morphological elements of blood.

Leukocytes are the primary cellular mediators of inflammation, and changes in their subpopulation counts may reflect the immune response to several inflammation-associated phenomena. Neutrophils are a marker of ongoing nonspecific inflammation, while lymphocytes signify the immune regulatory response.20 At the same time, lymphocyte count indicates physiological stress but is inversely proportional to inflammation.21 The NLR combines 2 leukocyte subtypes and may have high predictive value in several cardiovascular and noncardiac disorders.

Platelets are involved in inflammatory processes and secrete thromboxane, chemokines, proinflammatory cytokines, and growth factors, which play roles in vascular inflammation and thrombosis.21 Mean platelet volume (MPV) is a marker of platelet activation associated with active rheumatic arthritis, bowel disease20 and revascularization processes.22

Inflammatory markers in cardiac disorders

Hematological count and index derangements, functioning as predictors of clinical outcomes, are presented in Table 1.

Cardiac arrhythmias

Cardiac arrhythmias usually occur in children as paroxysmal supraventricular tachycardia (SVT).23 There are 2 peaks of its incidence – the 1st in infancy and the 2nd between 8 and 12 years of age.24 Some hypotheses explain the etiology of SVT with an inflammatory state as its trigger. The fact that viral infections in children, especially those promoting myocarditis, are commonly related to the prevalence of arrhythmias supports these hypotheses.25 Furthermore, Aydin et al. emphasised that patients with SVT have higher NLR values.26

Frequent premature ventricular beats may be associated with chronic myocardial injury that is related to many inflammatory response factors.27 Therefore, an early prediction of a higher risk of myocardial damage is crucial. Among the available laboratory tests, troponin and creatine kinase are established markers of myocardial injury in acute and chronic heart failure. Recently, leukocyte count and NLR correlated positively with troponin and perioperative damage.27 Preoperative neutrophil count has been proposed as a predictive factor for postoperative atrioventricular block in pediatric cardiac surgery.28

Kawasaki disease

Kawasaki disease is an acute febrile disorder characterized by systemic inflammation and vasculitis.29, 30 Characteristic hallmarks of the disease include coronary artery lesions (CALs), coronary dilatation, aneurysm, stenosis, myocardial infarction, and valvular lesions. Chang et al. underlined the critical role of simple markers in preventing CAL development by identifying at-risk children.29 They proposed 4 independent risk factors for predicting CALs, namely C-reactive protein (CRP) >103 mg/L, NLR > 3.5, male gender, and intravenous immunoglobulin (IVIG) resistance. High-dose IVIG effectively resolves inflammation and reduces the risk of CALs. However, 10% of patients are resistant to this therapy. Kanai et al. showed high NLR and PLR to be strong predictors of IVIG resistance.31 Moreover, Smorczewska-Kiljan et al. showed that high platelet count is one of the most important predictors of coronary artery aneurysm occurrence.30 In addition, Yan et al. proposed NLR and CRP as markers deserving special attention in patients suspected of Kawasaki disease who do not initially meet the diagnostic criteria.32

Necrotizing enterocolitis and congenital heart disease

Infants diagnosed with necrotizing enterocolitis with patent ductus arteriosus (PDA) and congenital heart defects had significantly higher NLR and MLR than children without cardiac abnormalities.33 Higher NLR and MLR resulted in very intense local inflammation involving infiltration of the intestines by neutrophils and circulating monocytes. The monocytes differentiated into macrophages in situ in infants with impaired intestinal perfusion and systemic circulation caused by cardiac anomalies.

Acute rheumatic disease

Inflammation is fundamentally involved in the pathogenesis of acute rheumatic disease. The infiltration of several inflammatory cells into the myocardium and endocardium of valves is observed, including neutrophils, macrophages and subpopulations of lymphocytes. Neutrophils and macrophages influence atrial remodeling, and the actions of macrophages include the generation of oxygen free radicals.34 The healing process results in fibrosis and changes in the vasculature and dimensions of atrial cells. Increased NLR, PLR and MLR, and decreased MPV are associated with the severity of valvular involvement in patients with acute rheumatic carditis (ARC).20, 35 In addition, NLR correlated with leukocyte count, erythrocyte sedimentation rate (ESR) and CRP.20, 35 In other studies, ESR, CRP and red blood cell distribution width (RDW) were higher in patients with ARC.36, 37, 38 Moreover, an increase in platelet count is relevant and reflects the production of new reactive platelets through cytokine stimulation.20 Interleukin 6 (IL-6) is a platelet effector, and its serum levels increase significantly in episodes of acute rheumatic fever.39 In the presence of IL-6, inflammatory processes are activated and generate thrombogenicity.40

Arterial hypertension

Arterial hypertension is an increasing problem in children due to obesity, sedentary lifestyle and excessive salt intake.41 Subclinical inflammation may contribute to the pathogenesis of primary hypertension. Skrzypczyk et al. analyzed simple blood morphology and found higher NLR, PLR and platelet counts in hypertensive patients than in healthy subjects, and NLR correlated with arterial stiffness.41 Based on the different diagnostic methods used in the study, the authors concluded that the intramural inflammatory process affects multiple arteries in primary hypertension in children.

Heart failure

Heart failure in children is a rare but serious complication of several cardiological disorders and may lead to death or the need for a heart transplant.42 Several clinical, echocardiographic and laboratory parameters characterize its advance and severity. Although brain natriuretic peptide (BNP) and N-terminal BNP are commonly analyzed, simple blood morphology predicted worse survival or the need for a heart transplant.43

Lymphocytopenia is multifactorial and may reflect the degree of sympathetic activation.43 Araújo et al. reported a worse prognosis and a higher risk of death or cardiac transplant in children with dilated cardiomyopathy and higher NLR (>5.2) and lymphopenia (<1000/µL) values.44 Gursoy et al. correlated inflammatory markers, including NLR, with the progression of pulmonary hypertension related to congenital heart defects.45 In addition, mean pulmonary artery pressure and NLR significantly increased during the postoperative period in patients with a pulmonary hypertensive crisis.

Surgery in cardiac disorders in children

The surgery itself is related to a certain degree of inflammatory response. However, it can be unpredictably exaggerated in some congenital heart diseases.

Cardiopulmonary bypass

Cardiopulmonary bypass (CPB) use is usually associated with a systemic inflammatory response, a nonspecific inflammatory syndrome that may be similar to infection and lead to the unnecessary use of broad-spectrum antibiotics. The contact of blood with the surface of the CPB circuit results in a cascade of pro-inflammatory cytokines, complement activation, blood coagulation, and an increase in leukocytes, platelets and vascular endothelial cells. The neutrophils are essential components of the systemic inflammatory response to tissue and reperfusion injury.46 Furthermore, ischemia–reperfusion injury and endotoxemia due to hypothermic perfusion lead to endothelial injury and the release of reactive oxygen species. Neither leukocytosis, nor neutrophil count, nor CRP can discriminate between infection and a nonspecific inflammatory syndrome,47 as these markers reflect the inflammatory process. Fortunately, the biomarker procalcitonin enables differentiation between bacterial infection and noninfectious systemic inflammatory responses48, 49 after surgery with CPB. Indeed, an increase in procalcitonin above a proposed cutoff value of 2 ng/mL should lead to the commencement of antibiotic therapy.48 However, the cutoff points are different on consecutive days due to the evolution of procalcitonin over time, and increase rates differ between infected and noninfected patients. Indeed, Haponiuk et al. pointed out the importance of changes and trends in values in the early postoperative hours rather than concentrating on single values of inflammatory markers.50 Deviation from the typical kinetics of leukocyte count, CRP and procalcitonin should pique the attention of physicians.

Manuel et al. observed that children with cyanotic congenital heart diseases exhibited higher preoperative NLR than acyanotic patients.51 Therefore, the authors assumed that cyanosis was related to a higher degree of preoperative inflammation. Similarly, more sophisticated methods, including the analysis of interleukins, showed their higher levels in cyanotic children.52 A lower perioperative anti-inflammatory cytokine balance may contribute to postoperative mortality.53 There are still some gaps in the literature and questions, such as why some patients with the same disease have a higher NLR than others, which extends to other biomarkers of the same lineage. Manuel et al. recently proposed a probable mechanism to explain this increase and the association with unfavorable outcomes in pediatric cardiac surgery patients (Figure 1).54 Cyanotic patients are continuously exposed to myocardial hypoxia, promoting myocardial stress, which causes a permanent inflammatory response characterized by high oxidative stress, reactive oxygen species and the recruitment of neutrophils.54 The exacerbation of these phenomena may negatively influence postoperative outcomes, especially with CPB use.51, 55 The described mechanism causes cellular apoptosis and tissue injury.54 In turn, increased blood flow to the lungs induces pulmonary vascular stress, vascular remodeling and endothelial dysfunction, followed by pulmonary hypertension and preceded by chronic inflammatory processes in the pulmonary tissue of acyanotic patients. Similarly, surgery under CPB is associated with an exacerbated inflammatory response and a negative impact on surgery outcomes.

Moosmann et al. recommended calculating NLR and PLR for univentricular patients during the course of total cavopulmonary connection and follow-up.56 In their study, NLR and PLR correlated with the degree of lymphatic malformations, which are associated with early complications after Fontan surgery and Fontan failure, and may also occur after Glenn surgery despite a lack of clinical manifestation. The authors suggested that patients with higher values require closer monitoring and evaluation for signs of Fontan complications, such as lymphatic malformations and protein-losing enteropathy (PLE). Lymphopenia in Fontan patients is associated with portal hypertension, PLE and lymphatic malformations. Lymphangiogenesis occurs during inflammation due to mediators released from inflammatory cells, including neutrophils. An increase in neutrophil and a decrease in lymphocyte count were described in Fontan patients.56

Postoperative complications

Studies performed in acyanotic patients with co-existing pulmonary hypertension demonstrated a significant prognostic value of NLR and SII on a higher vasoactive–inotrope score (VIS), prolonged mechanical ventilation time, extended time in the intensive care unit (ICU), and the length of hospital stay.57, 58, 59 The aforementioned inflammatory markers have been introduced in the assessment of prognosis in pediatric cardiac surgery.46, 54, 60 In a study by Savluk et al., NLR varied between children with failed and successful extubation (following prolonged intubation).61 Moreover, a high preoperative NLR was associated with acute kidney injury after tetralogy of Fallot repair.62 Therefore, NLR may be used to identify patients at risk of postoperative complications.

Elevated preoperative NLR was associated with higher mortality in hypoplastic left heart syndrome patients.63 Cabrera et al. reported preoperative lymphopenia as a predictor of adverse outcomes such as longer postoperative length of stay, mechanical ventilation, postoperative nitric oxide use, and mortality.64 Other authors made similar observations.65, 66 Perioperative complications associated with abnormal blood cell counts include an increased risk of perioperative mortality (lymphopenia), longer postoperative length of stay (lymphopenia, thrombocytopenia and neutrophilia), increased occurrence of postoperative sepsis (lymphopenia and thrombocytopenia), and the need for postoperative mechanical circulatory support (neutrophilia). A decreased absolute lymphocyte count secondary to acquired or inherited deficiency resulted in an increased susceptibility to infections.64 The causes are multifactorial, with increased destruction or loss secondary to sequestration and decreased production. The authors explained their results by the presence of pulmonary lymphatic dysplasia and lymphangiectasia. These lesions may be associated with cardiac disorders with pulmonary venous obstruction, such as hypoplastic left heart syndrome or total anomalous pulmonary venous return.

Postoperative pleural effusion is a common complication after CPB during cardiac surgery.67 Prolonged accumulation may lead to the deterioration of postoperative recovery, extended hospital stay and a higher mortality rate due to malnutrition.68 Yakuwa et al. found no significant differences in baseline characteristics, while NLR change had prognostic value in predicting prolonged pleural effusion, including chylothorax.68 Besides several factors such as increased right-sided hydrostatic pressure, decreased collagen osmolarity, slow bleeding, warfarin use, longer CPB time, and postoperative infection, enhanced permeability due to systemic inflammation is an important etiological factor.68 Gupta-Malhotra et al. showed a weak correlation between pleural fluid volume and IL-6, and in their further study,69 they demonstrated an association between total duration and the amount of pleural effusion and troponin.67 Bocsi et al. recommended the evaluation of preoperative neutrophil count and percentage, as well as a decreased percentage of lymphocytes, as suitable for identifying patients at risk of postoperative effusions and edema.70 Crucially, NLR includes both blood elements in its calculation.

Extracorporeal membrane oxygenation

The use of extracorporeal membrane oxygenation (ECMO) in the postoperative period may be critical for pediatric patients with low output and pulmonary difficulties21 to facilitate pulmonary or cardiac recovery. The therapeutic outcomes vary due to several factors, complications and comorbidities. Inflammation, infection and heart failure are common problems. Considering the interaction between blood flow and the foreign surfaces of ECMO, changes in the severity of inflammatory indices may show the degree of inflammation and provide information concerning prognosis. In a study by Arslanoğlu et al., NLR and PLR significantly increased compared to the preoperative period in patients who received ECMO, but its association with mortality was uncertain.21 Iliopoulos et al. demonstrated a significant relationship between preoperative NLR and low cardiac output syndrome after cardiac surgery in children, particularly during the first 12 h.71

Limitations

The limitation of the evaluated inflammatory indices casts doubt over their normal ranges in children, especially if multiple pathological conditions and comorbidities exist.

Conclusions

The greatest advantages of using NLR and other indices are their accessibility in clinical practice and low evaluation costs. Several of the aforementioned reports highlighted their beneficial role in evaluating infants and children in terms of cardiac surgery outcomes and the prognosis of several cardiological disorders.

Tables


Table 1. Hematological count and index derangements as predictors of clinical outcomes

Parameters

Outcome

Reference

Neutrophilia

longer hospital stay

need for postoperative mechanical circulatory support

65

Lymphopenia

longer hospital stay

longer mechanical ventilation time

postoperative nitric oxide use

increased mortality

postoperative sepsis

increased susceptibility to infections

postoperative effusion and edema

heart failure

43, 44, 6465

Thrombocytopenia

longer hospital stay

postoperative sepsis

64

NLR

longer mechanical ventilation time

increased length of ICU stay

increased hospital stay

increased mortality

higher vasoactive–inotrope score

low cardiac output syndrome

pleural effusion, chylothorax

Kawasaki disease – coronary artery lesions

IVIG resistance in Kawasaki disease

Kawasaki disease diagnostics in uncertain cases

necrotizing enterocolitis in PDA children

arterial hypertension

heart failure

acute kidney disease

pulmonary hypertension

neonatal sepsis exclusion

progression in pulmonary hypertension related to congenital heart defects

cyanotic congenital heart disease

Fontan patients, PLE

coronary artery lesions in Kawasaki disease

supraventricular tachyarrhythmia

frequent ventricular premature beats

lymphatic malformations and complications after Fontan surgery

ECMO use

21, 27, 29, 30, 31, 32, 33, 41, 44, 45, 46, 55, 56, 57, 59, 60, 62, 6371

Platelet count

Kawasaki disease – coronary artery aneurysms

acute rheumatic carditis

arterial hypertension

20, 30, 41

PLR

Fontan patients

neonatal sepsis

ECMO use

IVIG resistance in Kawasaki disease

arterial hypertension

21, 41

MLR

necrotizing enterocolitis in PDA children

severity of valvular involvement in acute rheumatic carditis

33, 35]

ECMO – extracorporeal membrane oxygenation; ICU – intensive care unit; IVIG – intravenous immunoglobulin; MLR – monocyte-to-lymphocyte ratio; NLR – neutrophil-to-lymphocyte ratio; PDA – patent ductus arteriosus; PLE – protein-losing enteropathy; PLR – platelet-to-lymphocyte ratio.

Figures


Fig. 1. Probable mechanism of high neutrophil-to-lymphocyte ratio (NLR) in cyanotic patients presenting with hypoxemia and myocardial stress linked with exaggerated inflammatory response and negative impact on postoperative outcomes. High pulmonary flow with pulmonary vascular stress seems to represent a comparable factor in acyanotic patients (see interpretation in the text). Adapted and modified, with permission, from Manuel V, Miana LA, Jatene MB. Neutrophil-lymphocyte ratio in congenital heart surgery: What is known and what is new? World J Pediatr Congenit Heart Surg. 2022;13(2):208–216. doi:10.1177/2150135121106414354
CPB – cardiopulmonary bypass.

References (71)

  1. Grajek S, Michalak M, Urbanowicz T, Olasińska-Wiśniewska A. A meta-analysis evaluating the colchicine therapy in patients with coronary artery disease. Front Cardiovasc Med. 2021;8:740896. doi:10.3389/fcvm.2021.740896
  2. Urbanowicz T, Michalak M, Olasińska-Wiśniewska A, et al. Neutrophil counts, neutrophil-to-lymphocyte ratio, and systemic inflammatory response index (SIRI) predict mortality after off-pump coronary artery bypass surgery. Cells. 2022;11(7):1124. doi:10.3390/cells11071124
  3. Meyer-Lindemann U, Mauersberger C, Schmidt AC, et al. Colchicine impacts leukocyte trafficking in atherosclerosis and reduces vascular inflammation. Front Immunol. 2022;13:898690. doi:10.3389/fimmu.2022.898690
  4. Urbanowicz T, Olasińska-Wiśniewska A, Michalak M, et al. The prognostic significance of neutrophil to lymphocyte ratio (NLR), monocyte to lymphocyte ratio (MLR) and platelet to lymphocyte ratio (PLR) on long-term survival in off-pump coronary artery bypass grafting (OPCAB) procedures. Biology (Basel). 2021;11(1):34. doi:10.3390/biology11010034
  5. Wang X, Ni Q, Wang J, Wu S, Chen P, Xing D. Systemic inflammation response index is a promising prognostic marker in elderly patients with heart failure: A retrospective cohort study. Front Cardiovasc Med. 2022;9:871031. doi:10.3389/fcvm.2022.871031
  6. Budde H, Hassoun R, Mügge A, Kovács Á, Hamdani N. Current understanding of molecular pathophysiology of heart failure with preserved ejection fraction. Front Physiol. 2022;13:928232. doi:10.3389/fphys.2022.928232
  7. Wang Y, Li Y, Zhang W, Yuan Z, Lv S, Zhang J. NLRP3 inflammasome: A novel insight into heart failure [published online as ahead of print on June 13, 2022]. J Cardiovasc Transl Res. 2022. doi:10.1007/s12265-022-10286-1
  8. Urbanowicz T, Olasińska-Wiśniewska A, Michalak M, Straburzyńska-Migaj E, Jemielity M. Neutrophil to lymphocyte ratio as noninvasive predictor of pulmonary vascular resistance increase in congestive heart failure patients: Single-center preliminary report. Adv Clin Exp Med. 2020;29(11):1313–1317. doi:10.17219/acem/126292
  9. Yuan Y, Liu J, Zhou Y, et al. The relationship between monocyte-to-lymphocyte ratio and the risk of gastrointestinal system involvement in children with IgA vasculitis: A preliminary report. Adv Clin Exp Med. 2021;30(10):999–1005. doi:10.17219/acem/138906
  10. Gładki M, Składzień T, Żurek R, Broniatowska E, Wójcik E, Skalski JH. Effect of acid–base balance on postoperative course in children with hypoplastic left heart syndrome after the modified Norwood procedure. Medicine (Baltimore). 2017;96(34):e7739. doi:10.1097/MD.0000000000007739
  11. Urbanowicz TK, Rodzki M, Michalak M, et. al. Large unstained cell (LUC) count as a predictor of carotid artery occlusion [published online as head of print on March 15,2023]. Adv Clin Exp Med. 2023. doi:10.17219/acem/159756
  12. Bohn MK, Steele S, Hall A, Poonia J, Jung B, Adeli K. Cardiac biomarkers in pediatrics: An undervalued resource. Clin Chem. 2021;67(7):947–958. doi:10.1093/clinchem/hvab063
  13. Parker DM, Everett AD, Stabler ME, et al. The association between cardiac biomarker NT-proBNP and 30-day readmission or mortality after pediatric congenital heart surgery. World J Pediatr Congenit Heart Surg. 2019;10(4):446–453. doi:10.1177/2150135119842864
  14. Bobillo-Perez S, Jordan I, Corniero P, et al. Prognostic value of biomarkers after cardiopulmonary bypass in pediatrics: The prospective PANCAP study. PLoS One. 2019;14(6):e0215690. doi:10.1371/journal.pone.0215690
  15. Bobillo-Perez S, Girona-Alarcon M, Corniero P, et al. Pro-atrial natriuretic peptide and pro-adrenomedullin before cardiac surgery in children: Can we predict the future? PLoS One. 2020;15(7):e0236377. doi:10.1371/journal.pone.0236377
  16. Błażejowska E, Urbanowicz T, Gąsecka A, et al. Diagnostic and prognostic value of miRNAs after coronary artery bypass grafting: A review. Biology (Basel). 2021;10(12):1350. doi:10.3390/biology10121350
  17. Pluta K, Porębska K, Urbanowicz T, et al. Platelet–leucocyte aggregates as novel biomarkers in cardiovascular diseases. Biology (Basel). 2022;11(2):224. doi:10.3390/biology11020224
  18. Adamstein NH, MacFadyen JG, Rose LM, et al. The neutrophil–lymphocyte ratio and incident atherosclerotic events: Analyses from five contemporary randomized trials. Eur Heart J. 2021;42(9):896–903. doi:10.1093/eurheartj/ehaa1034
  19. Olasińska-Wiśniewska A, Urbanowicz T, Grodecki K, et al. Neutrophil-to-lymphocyte ratio as a predictor of inflammatory response in patients with acute kidney injury after transcatheter aortic valve implantation. Adv Clin Exp Med. 2022;31(9):937–945. doi:10.17219/acem/149229
  20. Çelik SF, Çelik E. The neutrophil-to-lymphocyte ratio and mean platelet volume can be associated with severity of valvular involvement in patients with acute rheumatic carditis. Cardiovasc J Afr. 2018;29(5):296–300. doi:10.5830/CVJA-2018-031
  21. Arslanoğlu E, Çine N, Kara KA, et al. Do platelet-to-lymphocyte ratio (PLR) and neutrophil-to-lymphocyte ratio (NLR) have a predictive value on pediatric extracorporeal membrane oxygenation (ECMO) results? Cardiol Young. 2021;31(6):1003–1008. doi:10.1017/S1047951121001918
  22. Urbanowicz TK, Michalak M, Mikołajewska W, et al. Mean platelet volume as a simple marker of repeated coronary artery intervention after off-pump technique (OPCAB) procedures: Initial report. Kardiochir Torakochirurgia Pol. 2021;18(4):231–235. doi:10.5114/kitp.2021.112190
  23. Szafran E, Baszko A, Bukowska-Posadzy A, et al. Do children with supraventricular tachycardia treated with ablation therapy have similar quality of life as healthy children? JMS. 2017;86(2):141–147. doi:10.20883/jms.2016.208
  24. Bassareo PP, Fanos V, Pala M, et al. Supraventricular tachycardia during the first year of life: Is subclinical inflammation the trigger? J Matern Fetal Neonatal Med. 2018;31(1):53–58. doi:10.1080/14767058.2016.1275545
  25. Čulić V. Inflammation, coagulation, weather and arrhythmogenesis: Is there a linkage? Int J Cardiol. 2014;176(1):289–293. doi:10.1016/j.ijcard.2014.06.078
  26. Aydin M, Yıldız A, Yuksel M, Polat N, Aktan A, İslamoglu Y. Assessment of the neutrophil/lymphocyte ratio in patients with supraventricular tachycardia. Anatol J Cardiol. 2015;16(1):29–33. doi:10.5152/akd.2015.5927
  27. Tian J, An X, Niu L. Analysis of the correlation between the neutrophil–lymphocyte ratio in peripheral blood and perioperative myocardial damage in pediatric patients with frequent ventricular premature beat. Eur Rev Med Pharmacol Sci. 2018;22(6):1752–1757. doi:10.26355/eurrev_201803_14591
  28. Urbanowicz T, Olasińska-Wiśniewska A, Gładki M, et al. Neutrophil count as atrioventricular block (AVB) predictor following pediatric heart surgery. Int J Mol Sci. 2022;23(20):12409. doi:10.3390/ijms232012409
  29. Chang LS, Lin YJ, Yan JH, Guo MMH, Lo MH, Kuo HC. Neutrophil-to-lymphocyte ratio and scoring system for predicting coronary artery lesions of Kawasaki disease. BMC Pediatr. 2020;20(1):398. doi:10.1186/s12887-020-02285-5
  30. Smorczewska-Kiljan A, Marszał M, Friedman-Gruszczyńska J, et al. Clinical characteristics of Kawasaki disease in Polish children: A retrospective study. Kardiol Pol. 2022;80(6):657–663. doi:10.33963/KP.a2022.0090
  31. Kanai T, Takeshita S, Kawamura Y, et al. The combination of the neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios as a novel predictor of intravenous immunoglobulin resistance in patients with Kawasaki disease: A multicenter study. Heart Vessels. 2020;35(10):1463–1472. doi:10.1007/s00380-020-01622-z
  32. Yan JH, Chang LS, Lin YJ, Guo MMH, Huang YH, Kuo HC. Clinical characteristics for differentiating febrile children with suspected Kawasaki disease diagnosis. Front Pediatr. 2020;8:221. doi:10.3389/fped.2020.00221
  33. Diez S, Besendörfer M, Weyerer V, et al. DMBT1 expression and neutrophil-to-lymphocyte ratio during necrotizing enterocolitis are influenced by impaired perfusion due to cardiac anomalies. Mol Cell Pediatr. 2022;9(1):1. doi:10.1186/s40348-021-00133-9
  34. Kumar V, Ganguly NK, Anand IS, Wahi PL. Release of oxygen free radicals by macrophages and neutrophils in patients with rheumatic fever. Eur Heart J. 1991;12(Suppl D):163–165. doi:10.1093/eurheartj/12.suppl_D.163
  35. Giray D, Hallioglu O. Are there any novel markers in acute rheumatic fever: Neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and monocyte-to-lymphocyte ratio. Cardiol Young. 2020;30(5):717–721. doi:10.1017/S104795112000089X
  36. Kucuk M, Ozdemir R, Karadeniz C, et al. Red blood cell distribution width: Can it be a predictive marker for long-term valvular involvement in children with acute rheumatic carditis? Int J Lab Hematol. 2016;38(5):569–575. doi:10.1111/ijlh.12544
  37. Yousef AM, Rifaie OA, Hamza MA, Amin SA. Study of the relation between serum levels of long-acting penicillin and the inflammatory markers: C-reactive protein and interleukin-6 in patients with chronic rheumatic heart disease. Egypt Heart J. 2021;73(1):19. doi:10.1186/s43044-021-00141-0
  38. Diamantino Soares AC, Araújo Passos LS, Sable C, et al. Circulating cytokines predict severity of rheumatic heart disease. Int J Cardiol. 2019;289:107–109. doi:10.1016/j.ijcard.2019.04.063
  39. Settin A, Abdel-Hady H, El-Baz R, Saber I. Gene polymorphisms of TNF-alpha(-308), IL-10(-1082), IL-6(-174), and IL-1Ra(VNTR) related to susceptibility and severity of rheumatic heart disease. Pediatr Cardiol. 2007;28(5):363–371. doi:10.1007/s00246-006-0002-7
  40. Bester J, Pretorius E. Effects of IL-1β, IL-6 and IL-8 on erythrocytes, platelets and clot viscoelasticity. Sci Rep. 2016;6:32188. doi:10.1038/srep32188
  41. Skrzypczyk P, Zacharzewska A, Szyszka M, Ofiara A, Pańczyk-Tomaszewska M. Arterial stiffness in children with primary hypertension is related to subclinical inflammation. Cent Eur J Immunol. 2021;46(3):336–343. doi:10.5114/ceji.2021.109156
  42. Rai V, Gładki M, Dudyńska M, et al. Pneumatic paracorporeal ventricular assist device as bridge to transplant in children ≤ 20 kg: Krakow experience. Indian J Thorac Cardiovasc Surg. 2018;34(1):19–24. doi:10.1007/s12055-017-0583-1
  43. Patel MS, Berg AM, Vincent RN, Mahle WT. Serum parameters and echocardiographic predictors of death or need for transplant in newborns, children, and young adults with heart failure. Am J Cardiol. 2010;105(12):1798–1801. doi:10.1016/j.amjcard.2010.01.357
  44. Araújo F da R, Silva RF da L, Lima Oliveira C, Meira ZA. Neutrophil-to-lymphocyte ratio used as prognostic factor marker for dilated cardiomyopathy in childhood and adolescence. Ann Pediatr Card. 2019;12(1):18–24. doi:10.4103/apc.APC_47_18
  45. Gursoy M, Salihoglu E, Hatemi AC, Hokenek AF, Ozkan S, Ceyran H. Inflammation and congenital heart disease associated pulmonary hypertension. Heart Surg Forum. 2015;18(1):E38–E41. doi:10.1532/hsf.1228
  46. Gao P, Liu J, Wang X, et al. The association between neutrophil–lymphocyte ratio and poor outcomes following infant cardiac surgery. BMC Cardiovasc Disord. 2021;21(1):529. doi:10.1186/s12872-021-02345-3
  47. Nasser BA, Mesned AR, Tageldein M, Kabbani MS, Sayed NS. Can acute-phase response biomarkers differentiate infection from inflammation postpediatric cardiac surgery? Avicenna J Med. 2017;7(4):182–188. doi:10.4103/ajm.AJM_51_17
  48. Garcia IJ, Gargallo MB, Torné EE, et al. Procalcitonin: A useful biomarker to discriminate infection after cardiopulmonary bypass in children. Pediatr Crit Care Med. 2012;13(4):441–445. doi:10.1097/PCC.0b013e31823890de
  49. Séguéla PE, Joram N, Romefort B, et al. Procalcitonin as a marker of bacterial infection in children undergoing cardiac surgery with cardiopulmonary bypass. Cardiol Young. 2011;21(4):392–399. doi:10.1017/S104795111100014X
  50. Haponiuk I, Jaworski R, Paczkowski K, et al. Postoperative kinetics of common inflammatory biomarkers after congenital heart defect procedures with extracorporeal circulation in children. Kardiol Pol. 2018;76(6):968–973. doi:10.5603/KP.a2018.0038
  51. Manuel V, Miana LA, Solla DJF, Fernandes N, Carrillo G, Jatene MB. Preoperative level of neutrophil‐lymphocyte ratio: Comparison between cyanotic and acyanotic congenital heart disease. J Card Surg. 2021;36(4):1376–1380. doi:10.1111/jocs.15413
  52. Qing M, Schumacher K, Heise R, et al. Intramyocardial synthesis of pro- and anti-inflammatory cytokines in infants with congenital cardiac defects. J Am Coll Cardiol. 2003;41(12):2266–2274. doi:10.1016/S0735-1097(03)00477-7
  53. Hövels-Gürich HH, Schumacher K, Vazquez-Jimenez JF, et al. Cytokine balance in infants undergoing cardiac operation. Ann Thorac Surg. 2002;73(2):601–608. doi:10.1016/S0003-4975(01)03391-4
  54. Manuel V, Miana LA, Jatene MB. Neutrophil-lymphocyte ratio in congenital heart surgery: What is known and what is new? World J Pediatr Congenit Heart Surg. 2022;13(2):208–216. doi:10.1177/21501351211064143
  55. Manuel V, Miana LA, Guerreiro GP, et al. Prognostic value of the preoperative neutrophil–lymphocyte ratio in patients undergoing the bidirectional Glenn procedure. J Card Surg. 2020;35(2):328–334. doi:10.1111/jocs.14381
  56. Moosmann J, Schroeder C, Cesnjevar R, Rottermann K, Weigelt A, Dittrich S. Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratio in univentricular patients from birth to follow-up after fontan-predicting lymphatic abnormalities. Front Pediatr. 2021;9:740951. doi:10.3389/fped.2021.740951
  57. Walian A, Kohli JK, Magoon R, et al. Retrospective evaluation of platelet-leukocyte indices and cardiac surgical outcomes in acyanotic heart disease patients with pulmonary hypertension (REPLICA-PH). Braz J Cardiovasc Surg. 2022;37(6):866–874. doi:10.21470/1678-9741-2020-0648
  58. Yin X, Xin M, Ding S, et al. Predictive role of perioperative neutrophil to lymphocyte ratio in pediatric congenital heart disease associated with pulmonary arterial hypertension. BMC Surg. 2021;21(1):3. doi:10.1186/s12893-020-01009-x
  59. Xu H, Sun Y, Zhang S. The relationship between neutrophil to lymphocyte ratio and clinical outcome in pediatric patients after cardiopulmonary bypass surgery: A retrospective study. Front Pediatr. 2019;7:308. doi:10.3389/fped.2019.00308
  60. Şişli E, Yalçınbaş YK, Türkekul Y, Yüksek A, Saygılı A, Sarıoğlu C. Does preoperative neutrophil-lymphocyte ratio indicate postoperative morbidity after repair of tetralogy of Fallot? Turk Gogus Kalp Dama. 2016;24(2):220–226. doi:10.5606/tgkdc.dergisi.2016.12043
  61. Savluk OF, Guzelmeric F, Yavuz Y, et al. The neutrophil lymphocyte ratio as a successful extubation predictor of prolonged intubation in pediatric heart surgery. Iran J Pediatr. 2017;27(5):e9416. doi:10.5812/ijp.9416
  62. Manuel V, Miana LA, Turquetto A, Guerreiro GP, Fernandes N, Jatene MB. The role of the neutrophil–lymphocyte ratio for pre-operative risk stratification of acute kidney injury after tetralogy of Fallot repair. Cardiol Young. 2021;31(6):1009–1014. doi:10.1017/S1047951121001943
  63. Savluk OF, Guzelmeric F, Yavuz Y, et al. Neutrophil–lymphocyte ratio as a mortality predictor for Norwood stage I operations. Gen Thorac Cardiovasc Surg. 2019;67(8):669–676. doi:10.1007/s11748-019-01081-y
  64. Cabrera AG, Dyamenahalli U, Gossett J, et al. Preoperative lymphopenia is a predictor of postoperative adverse outcomes in children with congenital heart disease. J Thorac Cardiovasc Surg. 2009;138(5):1172–1179. doi:10.1016/j.jtcvs.2009.06.016
  65. Jones SM, McCracken C, Alsoufi B, Mahle WT, Oster ME. Association of preoperative cell counts with outcomes after operation for congenital heart disease. Ann Thorac Surg. 2018;106(4):1234–1240. doi:10.1016/j.athoracsur.2018.04.022
  66. Wu X, Luo Q, Su Z, et al. Prognostic value of preoperative absolute lymphocyte count in children with tetralogy of Fallot. J Am Heart Assoc. 2021;10(11):e019098. doi:10.1161/JAHA.120.019098
  67. Gupta-Malhotra M, Kern JH, Flynn PA, Schiller MS, Quaegebeur JM, Friedman DM. Early pleural effusions related to the myocardial injury after open-heart surgery for congenital heart disease. Congenit Heart Dis. 2010;5(3):256–261. doi:10.1111/j.1747-0803.2010.00403.x
  68. Yakuwa K, Miyaji K, Kitamura T, Miyamoto T, Ono M, Kaneko Y. Neutrophil-to-lymphocyte ratio is prognostic factor of prolonged pleural effusion after pediatric cardiac surgery. JRSM Cardiovasc Dis. 2021;10:204800402110094. doi:10.1177/20480040211009438
  69. Gupta M, Johann-Liang R, Sison CP, Quaegebeur J, Friedman DM. Relation of early pleural effusion after pediatric open heart surgery to cardiopulmonary bypass time and systemic inflammation as measured by serum interleukin-6. Am J Cardiol. 2001;87(10):1220–1223. doi:10.1016/S0002-9149(01)01503-X
  70. Bocsi J, Hambsch J, Osmancik P, Schneider P, Valet G, Tárnok A. Preoperative prediction of pediatric patients with effusions and edema following cardiopulmonary bypass surgery by serological and routine laboratory data. Crit Care. 2002;6(3):226–233. doi:10.1186/cc1494
  71. Iliopoulos I, Alder MN, Cooper DS, et al. Pre-operative neutrophil–lymphocyte ratio predicts low cardiac output in children after cardiac surgery. Cardiol Young. 2020;30(4):521–525. doi:10.1017/S1047951120000487