Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1 (5-Year IF – 2.0)
Journal Citation Indicator (JCI) (2023) – 0.4
Scopus CiteScore – 3.7 (CiteScore Tracker – 4.2)
Index Copernicus  – 171.00; MNiSW – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2023, vol. 32, nr 7, July, p. 723–731

doi: 10.17219/acem/158474

Publication type: meta-analysis

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Cite as:


Wang C, Zhang C. Meta-analysis to assess the role of maternal characteristics and risk factors on postpartum hemorrhage. Adv Clin Exp Med. 2023;32(7):723–731. doi:10.17219/acem/158474

Meta-analysis to assess the role of maternal characteristics and risk factors on postpartum hemorrhage

Chunxiu Wang1,A,B,C,D,E,F, Cuicui Zhang2,A,B,C,D,E,F

1 Emergency Obstetrics and Gynecology Department, Northwest Women’s and Children’s Hospital, Xi’an, China

2 Emergency Department, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China

Graphical abstract


Graphical abstracts

Abstract

Background. Postpartum hemorrhage (PPH) is a serious condition that can lead to several complications. Many different factors precipitate PPH.

Objectives. To assess the role and impact of different factors such as body mass index (BMI), age, hypertension, parity, and embryo transfer on PPH.

Materials and methods. Thirty-one studies have been included in the current meta-analysis. The outcomes of these studies were analyzed using a random-effects model and it was used to calculate the mean difference (MD) with 95% confidence interval (95% CI) in order to quantify the impact of different risk factors on PPH.

Results. Regarding the maternal age, older subjects (≥35 years) showed a significantly higher incidence of PPH (MD = 1.15, 95% CI: 1.03–1.27, p = 0.01). On the other hand, BMI had no impact on the incidence of PPH (MD = 0.76, 95% CI: 0.26–2.24, p = 0.62). At the same time, primiparous subjects, those with hypertension and those in whom frozen–thawed embryo transfer (FTET) was performed showed a significantly higher PPH incidence (MD = 1.27, 95% CI: 1.02–1.56, p = 0.03; MD = 1.51, 95% CI: 1.42–1.61, p < 0.001; and MD = 1.43, 95% CI: 1.11–1.85, p = 0.006, respectively).

Conclusions. The weight of the subjects is not a risk factor for PPH. However, a higher incidence of the disease can be observed in older, hypertensive and primiparous subjects, as well as those in whom FTET performed.

Key words: BMI, postpartum hemorrhage, maternal, pregnancy, age

 

Introduction

Postpartum hemorrhage (PPH) is a medical emergency, regardless of the type of delivery.1 Postpartum hemorrhage is defined as blood loss after delivery greater than 500 mL and it occurs in 18% of births. About 3% of all vaginal births are accompanied by severe PPH,2 and this condition is a leading cause of maternal mortality. Severe PPH is defined as blood loss of more than 1000 mL.1

Each year, about 14 million of people lose their lives due to PPH.3 About half of all postpartum deaths occur during the first 24 h, and the majority (66%) happen within the first week. It is difficult to recognize the signs of a medical emergency during labor and the first 24 h after giving birth, which contributes to maternal mortality.4 The global prevalence of PPH is estimated at 6% and 10%.5 According to the previous systematic review of the epidemiology of PPH,6 the overall prevalence of PPH is between 6.09 and 10.55% (7.23% when objectively examined and 5.40% when evaluated subjectively). The evaluation of prevalence according to study design revealed a 5.95% prevalence in observational studies and a 13.94% prevalence in randomized controlled studies.7

Postpartum hemorrhage-related deaths are more prevalent in places with limited access to medical care. The consequences of PPH may be exacerbated in such settings by factors such as malnutrition, malaria and anemia. In places with suitable infrastructure and medical care, PPH-related deaths are quite uncommon.8 To reduce the occurrence of PPH, midwives should assess the expectant mother’s risk factors during each prenatal appointment.9 Pregnant women should be included in the care plan design, and high-quality medical care should be made available to them.7 Midwives play an integral role in assessing risks, implementing safeguards and obtaining medical attention.10

According to the World Health Organization (WHO), postpartum care should cater to the individual requirements of both mothers and newborns, to avoid potential health problems and provide prompt medical attention in the event of any.11 Over 2/3 of women with PPH have no identifiable risk factors.12 No risk factors for PPH have been discovered, and the risk of PPH associated with high multiparity and many pregnancies has grown, according to the World Health Organization’s Recommendations for the Prevention and Treatment of PPH.3 A history of PPH, being nulliparous, being multiparous (going into labor more than 5 times), having coagulopathy (congenital or acquired, use of drugs such as aspirin or heparin), abnormal placental attachment, being older than 30, anemia, excessive stretching of the uterus (multiple pregnancies, polyhydramnios), and fetal macrosomia are all risk factors for PPH in the antepartum period.1, 13, 14 The meta-analysis approach has been used to analyze some of the maternal characteristics in the antepartum period that either increase or decrease the risk of PPH, in order to identify risk factors that are directly associated with PPH.

Over 5 million babies have been born thanks to in vitro fertilization (IVF) as a therapy method of infertility.15 The use of frozen–thawed embryos has become commonplace ever since the first successful live birth was reported using a cryopreserved embryo transfer in 1984.16, 17, 18 Improved perinatal outcomes of frozen–thawed embryo transfer (FTET) due to the fast refining of embryo cryopreservation procedures have made FTET a competitive option for fresh embryo transfer (FET).19, 20 In light of the mounting evidence showing that FET is superior to FET, “freeze-all” cycles are replacing FETs in clinical practice.15, 21 The current data that support embryo cryopreservation are based on low-quality randomized controlled trials and individual observational studies,8, 9 which lack the power to demonstrate statistically significant differences in some perinatal outcomes when low background risk of complications exists. There is still some debate as to whether FTET provides better clinical outcomes. Quantifying the risks of complications and bad birth outcomes calls for a meta-analysis.

Objectives

The study aims to assess the role and impact of different factors such as body mass index (BMI), age, hypertension, parity, and embryo transfer on the incidence of PPH.

Materials and methods

Study design

This systematic review and meta-analysis of clinical trials was included in the epidemiological declaration and had a set study protocol. For data collection and analysis, several of databases were searched.

Data pooling

Prospective and retrospective cohort studies focusing on the assessment of the impact of several risk factors on the incidence of PPH were chosen for this analysis. Human-related studies were included, regardless of language. There were no restrictions regarding the sample size. We did not include reviews, editorials or letters to the editor because they do not report a measure of association. The study procedure is depicted in Figure 1.

Eligibility and inclusion

Analysis of the impact of different maternal characteristics and embryo transfer on the incidence of PPH was used to construct a summary.

The sensitivity analysis comprised only papers reporting the role of age, BMI, hypertension, parity, and embryo transfer on PPH. Several methods of analysis were employed to demonstrate the impact of different factors on PPH.

The inclusion criteria were as follows:

1. Retrospective, prospective or cohort studies;

2. The target population consisted of individuals with certain maternal characteristics related to age, BMI, parity, hypertension, and embryo transfer;

3. The intervention regimen of the included studies was based on comparing the incidence of PPH among subjects with different levels/scores for each analyzed outcome.

The exclusion criteria were as follows:

1. Studies that failed to identify the incidence rate (event number or percent) of PPH;

2. Review articles, letters, books, and book chapters;

3. Studies not focusing on the comparison between different groups regarding the outcomes of the study.

Identification

According to the PICOS principle, a protocol of search strategy was developed32 and defined as follows: P (population) – female subjects with a previous history of pregnancy; I (intervention/exposure) – PPH incidence; C (comparison) – age (<35 years and ≥35 years), BMI (<25 kg/m2 and ≥25 kg/m2), blood pressure (hypertensive and nonhypertensive women), parity (primiparity and multiparity), and embryo transfer method (FTET and FET); O (outcome) – number or percent of occurrence for each parameter in different conditions; S (study design) – cohort studies.33

Using the keywords and associated phrases listed in Table 1, we conducted a complete search of the PubMed, OVID, Cochrane Library, Embase, and Google Scholar databases concerning studies published between January 2000 and August 2022. The titles and abstracts of all the publications that had been collated into reference managing software have been reviewed. The 2 authors (CZ and CW) indentified suitable studies.

Screening

According to the following criteria, data were compiled to include: study- and subject-related features in a standard format, the surname of the first author, the period of the study, the year of publication, the country of the study, the design of the study, the population type recruited in the study, the total number of subjects, qualitative and quantitative evaluation method, demographic data, clinical and treatment characteristics, information source, outcome evaluation, and statistical analysis results.34 Each study was assessed for bias, and the methodological quality of the chosen studies was evaluated by 2 abovementioned authors in a blinded fashion.

The Newcastle–Ottawa Scale (NOS), a quality and bias assessment tool developed specifically for observational research, was used to evaluate the quality and bias of the study. The NOS examines the sample, the comparability of cases and controls, and the exposure in observational studies, and the resuls is expressed by assigning values between 0 and 9. Studies with a rating of 7–9 are of the highest quality and have the lowest risk of bias compared to those with a rating of 4. Studies with a rating of 4–6 are considered to be of moderate quality. Each study underwent a methodological evaluation by the 2 abovementioned authors (CW and CZ).

Statistical analyses

In the current meta-analysis, the mean difference (MD) with a 95% confidence interval (95% CI) was calculated using a random-effects model. Since using the fixed-effects model requires a high similarity between included studies and low heterogeneity (I2) level, all groups were analyzed using the random-effects model due to high heterogeneity in some groups and inconsistent methodology in other groups. The I2 index (determined using Reviewer Manager v. 5.3 (The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, Denmark) and expressed in the form of forest plots), in a form of a numeric value ranging from 0% to 100%, was calculated. Values ranging from 0% to 25%, 50% and 75% indicated no, low, moderate, and high heterogeneity, respectively. As previously stated, the subcategory analysis was performed by stratifying the initial evaluation into result categories. Publication bias was investigated quantitatively using the Begg’s test and publication bias was considered present if p > 0.05.37 To obtain the p-values, a two-tailed test was used. The statistical analysis and graphs were presented with Reviewer Manager v. 5.3 and jamovi software v. 2.3 (https://www.jamovi.org/) using the dichotomous model.

Results

After a review of 1526 relevant articles, a total of 31 studies published between January 2000 and August 2022 were included in the meta-analysis because they fit the inclusion criteria.22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52 Table 2 summarizes the findings of these investigations.

Age

Ten studies (the study by Butwock et al. was presented twice in the same analysis, one for American subjects and the other for Swedish subjects) including 3,168,287 subjects reported data stratified according to age (subjects ≥35 years compared subjects <35 years; Figure 2). Older subjects had a higher incidence of PPH compared with subjects younger than 35 years (MD = 1.15, 95% CI: 1.03–1.27, p = 0.01, I2 = 92%).

BMI

Nine studies including 791,597 subjects reported data stratified according to BMI (BMI ≥ 25 kg/m2 compared to BMI < 25 kg/m2; Figure 3). The weight of included subjects had no impact on the incidence rate of PPH, as both groups showed nonsignificant rates (MD = 0.76, 95% CI: 0.26–2.24, p = 0.62, I2 = 100%).

Parity

Eight studies including 1,120,995 subjects reported data stratified according to parity (primiparous compared to multiparous subjects; Figure 4). Multiparous subjects were associated with a lower incidence of PPH compared to primiparous subjects (MD = 1.27, 95% CI: 1.02–1.56, p = 0.03, I2 = 39%).

Hypertension

Six studies including 365,354 subjects reported data stratified according to the presence of hypertension during pregnancy (hypertensive compared to nonhypertensive subjects; Figure 5). Hypertensive subjects had a higher PPH incidence compared with nonhypertensive pregnant subjects (MD = 1.51, 95% CI: 1.42–1.61, p < 0.00001, I2 = 0%).

Embryo transfer

Three studies including 8610 subjects analyzed the impact of embryo transfer method (FTET compared to FET; Figure 6). Frozen–thawed embryo transfer showed a significantly higher incidence of PPH compared with FET (MD = 1.43, 95% CI: 1.11–1.85, p = 0.006, I2 = 48%).

It was not possible to assess the impact of individual characteristics such as ethnicity on the comparison results because no data on these variables had been analyzed in the study. In addition, publication bias was assessed using the Begg’s test and it showed a nonsignificant bias for all included groups with a value of p > 0.05. The obtained p-values for age, BMI, parity, hypertension, and embryo transfer method analysis were p = 0.65, p = 0.61, p = 0.4, p = 0.47, and p = 0.99, respectively.

The risk of bias assessment was evaluated using NOS (Table 2). Twenty-one studies had a score between 7 and 9, which reflect a low risk of bias and high methodological quality. Ten studies showed a moderate risk of bias, achieving a score ranging from 4 to 6 points.

Discussion

A total of 5,454,843 subjects from different countries examined in 31 cohort studies were included in the current meta-analysis.

Every successful PPH treatment must begin with a prompt diagnosis. Learning about the potential causes of PPH is crucial. According to the National Institute for Health and Care Excellence (NICE), women with PPH risk factors should give birth in a unit equipped to handle emergencies.53 This meta-analysis found that a BMI of 25 kg/m2 or higher has no impact on the PPH incidence rate. Regarding maternal age, older subjects (≥35 years) showed a significantly higher incidence of PPH (MD = 1.15, 95% CI: 1.03–1.27, p = 0.01). On the other hand, BMI had no impact on the incidence of PPH (MD = 0.76, 95% CI: 0.26–2.24, p = 0.62). At the same time, primiparous subjects, those with hypertension, and those with FTET showed a significantly higher PPH incidence (MD = 1.27, 95% CI: 1.02–1.56, p = 0.03; MD = 1.51, 95% CI: 1.42–1.61, p < 0.001; and MD = 1.43, 95% CI: 1.11–1.85, p = 0.006, respectively).

According to the Society of Obstetricians and Gynaecologists of Canada, women older than 35 are more likely to have adverse birth outcomes, such as miscarriage, complications during pregnancy, premature delivery, or to bear more than 2 babies in 1 delivery (i.e., twins or more).54 Maternal age ≥40 years increases the risk of PPH, according to both the NICE53 and the Royal College of Obstetricians and Gynecologists (RCOG) clinical guidelines55 for the prevention and management of PPH. Pregnant women aged ≥35 years had a higher risk of adverse pregnancy and delivery outcome.56 After conducting a meta-analysis, Walker et al. found that inducing labor did not increase the incidence of cesarean section for women aged ≥35 years.57 In their meta-analysis, Wood et al. found that inducing labor had no effect on cesarean section rates among women aged ≥45 years in a subgroup analysis.58 The current meta-analysis indicated that older age is related to adverse events such as PPH, which is consistent with the recommendations of RCOG.55 The studies included in the meta-analysis covered study populations different countries. Maternal age is a significant risk factor for PPH in many nations because of the low quality of care provided to mothers aged ≥35 years throughout pregnancy, delivery and the postpartum period.

According to the WHO, having a BMI ≥ 25 kg/m2 is associated with an increased chance of comorbidities, and the risk of complications increases with increasing obesity. According to NICE guidelines, an increased risk was associated with a BMI ≥ 35 kg/m2.53 According to RCOG (2011), having a BMI ≥ 35 kg/m2 is associated with an increased risk of PPH. Obese pregnant women have a higher risk of perinatal problems and interventionist delivery, according to research by Bogaerts et al.59 The current meta-analysis found no significant difference between the ideal body weight and obese subjects regarding the PPH rate. In addition, the current study included obese subjects with a BMI ≥ 25 kg/m2, and the studies that showed a significantly lower impact of obesity stated that a BMI ≥ 35 kg/m2 is related to such adverse events. Hence, we cannot make a general conclusion indicating that obesity is related to PPH.

Post-term birth is more common in first-time mothers, as indicated by the American College of Obstetricians and Gynecologists in their clinical management guide for obstetricians/gynecologists (OB/GYNs).60 According to a comprehensive review and meta-analysis by McDonald et al.,61 parity increased the risk of premature delivery in IVF and twin pregnancies; however, this association was not statistically significant. A comprehensive review conducted by Wang et al. found that primiparity is a risk factor in perineal lacerations.62 According to the results of the present research, first-time mothers are at a higher risk of developing PPH.

According to research published in 2013, hypertension rates increase in pregnancy, and preeclampsia rates are 4 times greater than the mean in 5% of pregnant women worldwide. The risk of PPH is increased by prenatal hypertension, preeclampsia and eclampsia, according to the RCOG clinical guidelines for the prevention and management of PPH.55 In this way, the current results are consistent with the clinical standards. Postpartum hemorrhage is a potential complication of maternal hypertension.

Postpartum hemorrhage was more common in the FTET group, as shown in the current study. Whether or not the embryo cryopreservation process had a negative impact on the increased risk ratios of these events is unknown. The risk of hypertension problems was found to be greater in a FTET compared to FET in observational cohort research comparing outcomes in sibling pregnancies in women.63 Somewhat inconclusive results came from a short study conducted in China that compared FET with vitrified and slow-frozen embryo transfer.64

Limitations

This study may have been skewed by the exclusion of many trials from the meta-analysis. However, our meta-analysis excluded studies that did not meet the inclusion criteria. In addition, some of the included studies have not evaluated the impact of race on the represented outcomes. Thus, it was not possible to assess the impact of ethnicity on the results. Some of the included studies have moderate methodology quality, as evaluated using the NOS score. Variables such as nutritional status were not considered in the included studies, which may have skewed the results. Study results could be biased if there are unpublished articles and uncollected data.

Conclusions

The weight of the subjects is not a risk factor for PPH. However, a higher incidence of the disease can be observed in older (≥35 years), hypertensive and primiparous subjects, as well as those in whom FTET was performed. Hence, controlling the blood pressure and using the optimum embryo transfer method could result in beneficial outcomes regarding PPH. Nevertheless, future clinical multicenter studies are needed to reach a more sensible conclusion.

Tables


Table 1. Search strategy for each database

Database

Search strategy

PubMed

#1 “postpartum hemorrhage” [MeSH terms] OR “maternal” [all fields]

#2 “age” [MeSH terms] OR “risk factors” [all fields]

#3 #1 AND #2

OVID

#1 “postpartum hemorrhage” [all fields] OR “maternal” [all fields]

#2 “age” [all fields] OR “risk factors” [all fields]

#3 #1 AND #2

Google Scholar

#1 “postpartum hemorrhage” OR “maternal”

#2 “age” OR “risk factors”

#3 #1 AND #2

Embase

#1 “postpartum hemorrhage”/exp OR “maternal”

#2 “age”/exp OR “risk factors”

#3 #1 AND #2

Cochrane Library

#1 “postpartum hemorrhage”: ti,ab,kw OR “maternal”: ti,ab,kw (word variations have been searched)

#2 “age”: ti,ab,kw OR “risk factors”: ti,ab,kw (word variations have been searched)

#3 #1 AND #2

ti,ab,kw – terms in either title or abstract or keyword fields; exp – exploded indexing term.
Table 2. Characteristics of the studies selected for the meta-analysis

Study

Year

Country

Total, n

Group 1, n

Group 2, n

Group 1 characteristics

Group 2 characteristics

NOS

Bais et al.22

2004

Netherlands

3464

149

3315

≥35 years

<35 years

9

Baker and Haeri23

2012

USA

730

65

665

hypertensive

not hypertensive

7

Basak et al.24

2022

Bangladesh

104

53

51

primiparous

multiparous

6

Biguzzi et al.25

2012

Italy

2699

2074

625

primiparous

multiparous

8

Blomberg26

2011

Sweden

1,114,071

494,162

619,909

primiparous

multiparous

9

2011

Sweden

206,817

206,817

206,817

≥35 years

<35 years

Bujold et al.27

2005

Germany

8217

5916

66

BMI ≥ 25 kg/m2

BMI < 25 kg/m2

7

Butwick et al.28

2021

USA

1,485,629

1,434,821

50,808

≥35 years

<35 years

9

2021

Sweden

328,729

323,344

5385

≥35 years

<35 years

Driessen et al.29

2011

France

4546

700

3846

≥35 years

<35 years

9

Ford et al.30

2007

Australia

164,133

21,983

142,150

≥35 years

<35 years

9

2007

Australia

164,043

15,343

148,700

hypertensive

not hypertensive

Gofton et al.31

2001

Canada

12,765

1331

11,434

hypertensive

not hypertensive

9

Guo et al.32

2016

China

1516

587

929

FTET

FTET

6

Halloran et al.33

2012

USA

160,362

7912

1346

BMI ≥ 25 kg/m2

BMI < 25 kg/m2

9

Healy et al.34

2010

Australia

6730

2503

4227

FTET

FTET

8

Lao et al.35

2014

China

64,886

12,686

52,200

≥35 years

<35 years

8

Liu et al.36

2021

China

1012

506

506

≥35 years

<35 years

8

2021

China

506

506

395

BMI ≥ 25 kg/m2

BMI < 25 kg/m2

2021

China

33,334

506

32,828

hypertensive

not hypertensive

Lu et al.37

2022

China

986

230

756

≥35 years

<35 years

6

Magann et al.38

2011

USA

27,563

2256

412

BMI ≥ 25 kg/m2 or more

BMI < 25 kg/m2

8

Marzieh et al.39

2010

Iran

538

245

293

≥35 years

<35 years

6

Miller et al.40

2017

USA

159

159

132

BMI ≥ 25 kg/m2

BMI < 25 kg/m2

6

Nove et al.41

2012

UK

481,171

121,422

20,247

BMI ≥ 25 kg/m2

BMI < 25 kg m2

8

Otigbah et al.42

2000

UK

602

266

336

primiparous

multiparous

6

Puri et al.43

2011

India

38

18

20

primiparous

multiparous

6

Sebire et al.44

2001

UK

111,092

110,290

6

BMI ≥ 25 kg/m2

BMI < 25 kg/m2

7

Shabbir et al.45

2014

Pakistan

2401

682

1719

primiparous

multiparous

6

Sharma et al.46

2005

India

958

320

638

primiparous

multiparous

7

Sheiner et al.47

2005

Israel

154,311

9591

144,720

hypertensive

not hypertensive

8

Suzuki et al.48

2007

Japan

171

14

157

hypertensive

not hypertensive

7

Tixier et al.49

2011

France

122

52

70

primiparous

multiparous

6

Tsukamoto et al.50

2007

Japan

2243

277

52

BMI ≥ 25 kg/m2

BMI < 25 kg/m2

8

Wang et al.51

2022

China

293

53

240

≥35 years

<35 years

6

2022

China

284

50

37

BMI ≥ 25 kg/m2

BMI < 25 kg m2

Wikland et al.52

2010

Sweden

364

214

150

FTET

FTET

7

NOS – Newcastle–Ottawa Scale; BMI – body mass index; FTET – frozen–thawed embryo transfer; ET – fresh embryo transfer.

Figures


Fig. 1. Schematic diagram of the study procedure
BMI – body mass index.
Fig. 2. Forest plot showing the impact of age (<35 years and ≥35 years) on postpartum hemorrhage (PPH)
95% CI – 95% confidence interval; df – degrees of freedom.
Fig. 3. Forest plot showing the impact of body mass index (BMI) (<25 kg/m2 and ≥25 kg/m2) on postpartum hemorrhage (PPH)
95% CI – 95% confidence interval; df – degrees of freedom.
Fig. 4. Forest plot showing the impact of parity (primiparity and multiparity) on postpartum hemorrhage (PPH)
95% CI – 95% confidence interval; df – degrees of freedom.
Fig. 5. Forest plot showing the impact of hypertension (hypertensive and nonhypertensive women) on postpartum hemorrhage (PPH)
95% CI – 95% confidence interval; df – degrees of freedom.
Fig. 6. Forest plot showing the impact of embryo transfer (frozen–thawed embryo transfer (FTET) and fresh embryo transfer (FET)) on postpartum hemorrhage (PPH)
95% CI – 95% confidence interval; df – degrees of freedom.

References (64)

  1. Su CW. Postpartum hemorrhage. Prim Care. 2012;39(1):167–187. doi:10.1016/j.pop.2011.11.009
  2. Anderson JM, Etches D. Prevention and management of postpartum hemorrhage. Am Fam Physician. 2007;75(6):875–882. PMID:17390600.
  3. World Health Organization. WHO postpartum haemorrhage (PPH) summit. HRP Project Brief. World Health Organization. September 29, 2022. https://cdn.who.int/media/docs/default-source/hrp/projects/mph/project-brief-pph-summit.pdf?sfvrsn=3b0e505a_6&download=true.
  4. Nour NM. An introduction to maternal mortality. Rev Obstet Gynecol. 2008;1(2):77–81. PMID:18769668.
  5. Burke C. Active versus expectant management of the third stage of labor and implementation of a protocol. J Perinatal Pediatr Neonatal Nurs. 2010;24(3):215–228. doi:10.1097/JPN.0b013e3181e8ce90
  6. Carroli G, Cuesta C, Abalos E, Gulmezoglu AM. Epidemiology of postpartum haemorrhage: A systematic review. Best Pract Res Clin Obstet Gynaecol. 2008;22(6):999–1012. doi:10.1016/j.bpobgyn.2008.08.004
  7. Ward A. The midwife confronts postpartum hemorrhage. In: Arulkumaran S, Karoshi M, Keith L, Lalonde A, Lynch C, eds. A Comprehensive Textbook of Postpartum Hemorrhage: An Essential Clinical Reference for Effective Management. 2nd ed. The Global Library of Women’s Medicine. London, UK: Sapiens Publishing; 2012:549–554. ISBN:978-0-9552282-7-8.
  8. Hofmeyr GJ, Abdel-Aleem H, Abdel-Aleem MA. Uterine massage for preventing postpartum haemorrhage. Cochrane Database Syst Rev. 2013;2014(7):CD006431. doi:10.1002/14651858.CD006431.pub3
  9. Haftu A, Hagos H, Mehari MA, G/Her B. Pregnant women adherence level to antenatal care visit and its effect on perinatal outcome among mothers in Tigray public health institutions, 2017: Cohort study. BMC Res Notes. 2018;11(1):872. doi:10.1186/s13104-018-3987-0
  10. Royal College of Midwifery. High quality midwifery care. 2014. https://www.rcm.org.uk/media/2354/high-quality-midwifery-care.pdf. Accessed October 9, 2022.
  11. World Health Organization. Postpartum care of the mother and newborn: A practical guide. 1998. http://apps.who.int/iris/bitstream/10665/66439/1/WHO_RHT_MSM_98.3.pdf. Accessed October 9, 2022.
  12. Buzaglo N, Harlev A, Sergienko R, Sheiner E. Risk factors for early postpartum hemorrhage (PPH) in the first vaginal delivery, and obstetrical outcomes in subsequent pregnancy. J Matern Fetal Neonatal Med. 2015;28(8):932–937. doi:10.3109/14767058.2014.937698
  13. Fukami T, Koga H, Goto M, et al. Incidence and risk factors for postpartum hemorrhage among transvaginal deliveries at a tertiary perinatal medical facility in Japan. PLoS One. 2019;14(1):e0208873. doi:10.1371/journal.pone.0208873
  14. Ononge S, Mirembe F, Wandabwa J, Campbell OMR. Incidence and risk factors for postpartum hemorrhage in Uganda. Reprod Health. 2016;13(1):38. doi:10.1186/s12978-016-0154-8
  15. Evans J, Hannan NJ, Edgell TA, et al. Fresh versus frozen embryo transfer: Backing clinical decisions with scientific and clinical evidence. Hum Reprod Update. 2014;20(6):808–821. doi:10.1093/humupd/dmu027
  16. Zeilmaker GH, Alberda AT, van Gent I, Rijkmans CMPM, Drogendijk AC. Two pregnancies following transfer of intact frozen-thawed embryos. Fertil Steril. 1984;42(2):293–296. doi:10.1016/S0015-0282(16)48029-5
  17. Pereira N, Rosenwaks Z. A fresh(er) perspective on frozen embryo transfers. Fertil Steril. 2016;106(2):257–258. doi:10.1016/j.fertnstert.2016.06.028
  18. Kushnir VA, Barad DH, Albertini DF, Darmon SK, Gleicher N. Systematic review of worldwide trends in assisted reproductive technology 2004–2013. Reprod Biol Endocrinol. 2017;15(1):6. doi:10.1186/s12958-016-0225-2
  19. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C. Clinical rationale for cryopreservation of entire embryo cohorts in lieu of fresh transfer. Fertil Steril. 2014;102(1):3–9. doi:10.1016/j.fertnstert.2014.04.018
  20. Özgür K, Berkkanoğlu M, Bulut H, Isikli A, Coetzee K. Higher clinical pregnancy rates from frozen–thawed blastocyst transfers compared to fresh blastocyst transfers: A retrospective matched-cohort study. J Assist Reprod Genet. 2015;32(10):1483–1490. doi:10.1007/s10815-015-0576-1
  21. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C, Thomas S. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: A prospective randomized trial comparing fresh and frozen–thawed embryo transfer in normal responders. Fertil Steril. 2011;96(2):344–348. doi:10.1016/j.fertnstert.2011.05.050
  22. Bais JMJ, Eskes M, Pel M, Bonsel GJ, Bleker OP. Postpartum haemorrhage in nulliparous women: Incidence and risk factors in low and high risk women. Eur J Obstet Gynecol Reprod Biol. 2004;115(2):166–172. doi:10.1016/j.ejogrb.2003.12.008
  23. Baker AM, Haeri S. Estimating risk factors for development of preeclampsia in teen mothers. Arch Gynecol Obstet. 2012;286(5):1093–1096. doi:10.1007/s00404-012-2418-z
  24. Basak R, Sarker A, Roy N, et al. Comparative study on breech deliveries among the primiparous and multiparous women in a tertiary care hospital. Sch Int J Obstet Gynec. 2022;5(3):95–100. doi:10.36348/sijog.2022.v05i03.006
  25. Biguzzi E, Franchi F, Ambrogi F, et al. Risk factors for postpartum hemorrhage in a cohort of 6011 Italian women. Thromb Res. 2012;129(4):e1–e7. doi:10.1016/j.thromres.2011.09.010
  26. Blomberg M. Maternal obesity and risk of postpartum hemorrhage. Obstet Gynecol. 2011;118(3):561–568. doi:10.1097/AOG.0b013e31822a6c59
  27. Bujold E, Hammoud A, Schild C, Krapp M, Baumann P. The role of maternal body mass index in outcomes of vaginal births after cesarean. Am J Obstet Gynecol. 2005;193(4):1517–1521. doi:10.1016/j.ajog.2005.03.041
  28. Butwick AJ, Liu C, Guo N, et al. Association of gestational age with postpartum hemorrhage: An international cohort study. Anesthesiology. 2021;134(6):874–886. doi:10.1097/ALN.0000000000003730
  29. Driessen M, Bouvier-Colle MH, Dupont C, Khoshnood B, Rudigoz RC, Deneux-Tharaux C. Postpartum hemorrhage resulting from uterine atony after vaginal delivery: Factors associated with severity. Obstet Gynecol. 2011;117(1):21–31. doi:10.1097/AOG.0b013e318202c845
  30. Ford JB, Roberts CL, Simpson JM, Vaughan J, Cameron CA. Increased postpartum hemorrhage rates in Australia. Int J Gynaecol Obstet. 2007;98(3):237–243. doi:10.1016/j.ijgo.2007.03.011
  31. Gofton EN, Capewell V, Natale R, Gratton RJ. Obstetrical intervention rates and maternal and neonatal outcomes of women with gestational hypertension. Am J Obstet Gynecol. 2001;185(4):798–803. doi:10.1067/mob.2001.117314
  32. Guo Y, Yin Y, Tian L. The pregnancy outcomes of fresh embryo transfer and frozen embryo transfer [in Chinese]. Chin J Clin Obstet Gynecol. 2015;17:526–529.
  33. Halloran DR, Marshall NE, Kunovich RM, Caughey AB. Obesity trends and perinatal outcomes in black and white teenagers. Am J Obstet Gynecol. 2012;207(6):492.e1–492.e7. doi:10.1016/j.ajog.2012.09.023
  34. Healy DL, Breheny S, Halliday J, et al. Prevalence and risk factors for obstetric haemorrhage in 6730 singleton births after assisted reproductive technology in Victoria, Australia. Hum Reprod. 2010;25(1):265–274. doi:10.1093/humrep/dep376
  35. Lao TT, Sahota DS, Cheng YKY, Law LW, Leung TY. Advanced maternal age and postpartum hemorrhage: Risk factor or red herring? J Matern Fetal Neonatal Med. 2014;27(3):243–246. doi:10.3109/14767058.2013.807240
  36. Liu CN, Yu FB, Xu YZ, et al. Prevalence and risk factors of severe postpartum hemorrhage: A retrospective cohort study. BMC Pregnancy Childbirth. 2021;21(1):332. doi:10.1186/s12884-021-03818-1
  37. Lu L, Li JH, Dai XF, Wei JB, Chen LH, Hu JF. Impact of advanced maternal age on maternal and neonatal outcomes in preterm birth. Ginekol Pol. 2022;93(2):134–141. doi:10.5603/GP.a2021.0224
  38. Magann EF, Doherty DA, Chauhan SP, Klimpel JM, Huff SD, Morrison JC. Pregnancy, obesity, gestational weight gain, and parity as predictors of peripartum complications. Arch Gynecol Obstet. 2011;284(4):827–836. doi:10.1007/s00404-010-1754-0
  39. Nojomi M, Haghighi L, Bijari B, Rezvani L, Tabatabaee S. Delayed childbearing: Pregnancy and maternal outcomes. Iran J Reprod Med. 2010;8(2):80–85. http://ijrm.ir/article-1-178-fa.pdf. Accessed October 10, 2022.
  40. Miller CM, Cohn S, Akdagli S, Carvalho B, Blumenfeld YJ, Butwick AJ. Postpartum hemorrhage following vaginal delivery: Risk factors and maternal outcomes. J Perinatol. 2017;37(3):243–248. doi:10.1038/jp.2016.225
  41. Nove A, Berrington A, Matthews Z. Comparing the odds of postpartum haemorrhage in planned home birth against planned hospital birth: Results of an observational study of over 500,000 maternities in the UK. BMC Pregnancy Childbirth. 2012;12(1):130. doi:10.1186/1471-2393-12-130
  42. Otigbah CM, Dhanjal MK, Harmsworth G, Chard T. A retrospective comparison of water births and conventional vaginal deliveries. Eur J Obstet Gynecol Reprod Biol. 2000;91(1):15–20. doi:10.1016/S0301-2115(99)00238-9
  43. Puri M, Patra S, Singh P, et al. Factors influencing occurrence of postpartum haemorrhage in pregnant women with hepatitis E infection and deranged coagulation profile. Obstet Med. 2011;4(3):108–112. doi:10.1258/om.2011.110031
  44. Sebire N, Jolly M, Harris J, et al. Maternal obesity and pregnancy outcome: A study of 287 213 pregnancies in London. Int J Obes. 2001;25(8):1175–1182. doi:10.1038/sj.ijo.0801670
  45. Shabbir S, Zahid M, Qazi A. To detect outcome of pregnancy in advanced maternal age among Pakistani women. Pak J Med Sci. 2018;8(3):709–712. https://www.pjmhsonline.com/2014/july_sep/pdf/709%20%20%20To%20Detect%20Outcome%20of%20Pregnancy%20in%20Advanced%20Maternal%20Age%20among%20Pakistani%20Women.pdf. Accessed October 9, 2022.
  46. Sharma JB, Pundir P, Malhotra M, Arora R. Evaluation of placental drainage as a method of placental delivery in vaginal deliveries. Arch Gynecol Obstet. 2005;271(4):343–345. doi:10.1007/s00404-004-0619-9
  47. Sheiner E, Sarid L, Levy A, Seidman DS, Hallak M. Obstetric risk factors and outcome of pregnancies complicated with early postpartum hemorrhage: A population-based study. J Matern Fetal Neonatal Med. 2005;18(3):149–154. doi:10.1080/14767050500170088
  48. Suzuki S, Kikuchi F, Ouchi N, et al. Risk factors for postpartum hemorrhage after vaginal delivery of twins. J Nippon Med Sch. 2007;74(6):414–417. doi:10.1272/jnms.74.414
  49. Tixier H, Boucard C, Ferdynus C, Douvier S, Sagot P. Interest of using an underbuttocks drape with collection pouch for early diagnosis of postpartum hemorrhage. Arch Gynecol Obstet. 2011;283(1):25–29. doi:10.1007/s00404-009-1265-z
  50. Tsukamoto H, Fukuoka H, Inoue K, Koyasu M, Nagai Y, Takimoto H. Restricting weight gain during pregnancy in Japan: A controversial factor in reducing perinatal complications. Eur J Obstet Gynecol Reprod Biol. 2007;133(1):53–59. doi:10.1016/j.ejogrb.2006.07.031
  51. Wang K, Qiu J, Meng L, Lai X, Yao Z, Peng S. Postpartum hemorrhage and postpartum depressive symptoms: A retrospective cohort study. Depress Anxiety. 2022;39(3):246–253. doi:10.1002/da.23245
  52. Wikland M, Hardarson T, Hillensjo T, et al. Obstetric outcomes after transfer of vitrified blastocysts. Hum Reprod. 2010;25(7):1699–1707. doi:10.1093/humrep/deq117
  53. National Collaborating Centre for Women’s and Children’s Health. Intrapartum Care. Care of Healthy Women and Their Babies During Childbirth. Clinical Guideline 190 Methods, Evidence and Recommendations. December 2014, Updated February 2017. London, UK: National Institute for Health and Care Excellence; 2017. https://www.nice.org.uk/guidance/cg190/evidence/full-guideline-pdf-248734770
  54. Johnson JA, Tough S, Wilson RD, et al. Delayed child-bearing. J Obstet Gynaecol Can. 2012;34(1):80–93. doi:10.1016/S1701-2163(16)35138-6
  55. Royal College of Obstetricians and Gynaecologists. Prevention and management of postpartum haemorrhage: Green-top guideline No. 52. 2014. https://www.rcog.org.uk/guidance/browse-all-guidance/green-top-guidelines/prevention-and-management-of-postpartum-haemorrhage-green-top-guideline-no-52/. Accessed October 10, 2022.
  56. Grotegut CA, Chisholm CA, Johnson LNC, Brown HL, Heine RP, James AH. Medical and obstetric complications among pregnant women aged 45 and older. PLoS One. 2014;9(4):e96237. doi:10.1371/journal.pone.0096237
  57. Walker KF, Malin G, Wilson P, Thornton JG. Induction of labour versus expectant management at term by subgroups of maternal age: An individual patient data meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2016;197:1–5. doi:10.1016/j.ejogrb.2015.11.004
  58. Wood S, Cooper S, Ross S. Does induction of labour increase the risk of caesarean section? A systematic review and meta-analysis of trials in women with intact membranes. BJOG. 2014;121(6):674–685. doi:10.1111/1471-0528.12328
  59. Bogaerts A, Witters I, Van den Bergh BRH, Jans G, Devlieger R. Obesity in pregnancy: Altered onset and progression of labour. Midwifery. 2013;29(12):1303–1313. doi:10.1016/j.midw.2012.12.013
  60. Doi L, Williams AJ, Marryat L, Frank J. Cohort study of high maternal body mass index and the risk of adverse pregnancy and delivery outcomes in Scotland. BMJ Open. 2020;10(2):e026168. doi:10.1136/bmjopen-2018-026168
  61. McDonald S, Murphy K, Beyene J, Ohlsson A. Perinatal outcomes of in vitro fertilization twins: A systematic review and meta-analyses. Am J Obstet Gynecol. 2005;193(1):141–152. doi:10.1016/j.ajog.2004.11.064
  62. Wang H, Jayasekara R, Warland J. The effect of “hands on” techniques on obstetric perineal laceration: A structured review of the literature. Women Birth. 2015;28(3):194–198. doi:10.1016/j.wombi.2015.02.006
  63. Opdahl S, Henningsen AA, Tiitinen A, et al. Risk of hypertensive disorders in pregnancies following assisted reproductive technology: A cohort study from the CoNARTaS group. Hum Reprod. 2015;30(7):1724–1731. doi:10.1093/humrep/dev090
  64. Liu SY, Teng B, Fu J, Li X, Zheng Y, Sun XX. Obstetric and neonatal outcomes after transfer of vitrified early cleavage embryos. Hum Reprod. 2013;28(8):2093–2100. doi:10.1093/humrep/det104