Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
5-Year IF – 2.0, IF – 1.9, JCI (2024) – 0.43
Scopus CiteScore – 4.3
Q1 in SJR 2024, SJR score – 0.598, H-index: 49 (SJR)
ICV – 161.00; MNiSW – 70 pts
Initial editorial assessment and first decision within 24 h

ISSN 1899–5276 (print), ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2022, vol. 31, nr 6, June, p. 597–606

doi: 10.17219/acem/146776

Publication type: meta-analysis

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Cite as:


Nie W, Zhu L, Yan P, Sun J. Thyroid nodule ultrasound accuracy in predicting thyroid malignancy based on TIRADS system. Adv Clin Exp Med. 2022;31(6):597–606. doi:10.17219/acem/146776

Thyroid nodule ultrasound accuracy in predicting thyroid malignancy based on TIRADS system

Wanlu Nie1,A, Lili Zhu2,C, Ping Yan1,B, Jie Sun1,E,F

1 Department of Ultrasound, Penglai People’s Hospital, Yantai, China

2 Deptartment of Endocrinology, Penglai People’s Hospital, Yantai, China

Abstract

Background. A frequent prevalence of thyroid nodules in patients prioritizes the need for an accurate method that characterizes them as benign or malignant. Fine-needle aspiration biopsy (FNAB) and thyroid ultrasonography (USG) are currently used for this purpose. However, since FNAB is complicated, time-consuming and expensive, thyroid USG, a fast and highly sensitive method, is preferably used. Although USG is reported as a suitable method for characterization of thyroid nodules, there are some contrasting studies available which report its limited use in the differentiation of benign and malignant thyroid nodules.
Objectives. This meta-analysis aims to assess the accuracy of ultrasound in predicting thyroid cancer in terms of sensitivity, specificity and diagnostic odds ratios (ORs) for positive and negative results.
Material and Methods. Systematic and extensive literature search on the use of ultrasound (US) to predict thyroid cancer was conducted in the databases of Scopus, CINAHL (via EBSCO), MEDLINE (via PubMed), and Web of Science, covering the period from 2010 till 2021. The morphological features of thyroid nodules observed during the USG were analyzed based on Thyroid Imaging Reporting And Data System (TIRADS) guidelines. The accuracy of thyroid US was determined using parameters such as sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic ORs. Moreover, the respective forest plot and hierarchical summary receiver operating characteristics (HSROC) curve were plotted.
Results. A total of 2765 reference studies were examined, and among them, 15 relevant references were selected. The selected studies were heterogeneous and included retrospective and prospective studies. The risk of publication bias is low as the p-value for both Egger’s and Begg’s tests is >0.05. The overall sensitivity of 92.53% (95% confidence interval (95% CI): [84.55%; 96.33%]), specificity of 33.88% (95% CI: [23.16%; 45.53%]) and diagnostic OR of 12.36 (95% CI: [3.90%; 54.11%]) are achieved. These results were statistically significant with a p-value < 0.001 and are predictive of US accuracy in detecting cancer.
Conclusion. The present meta-analysis, on the basis of statistically significant results, demonstrated the high accuracy of thyroid ultrasound in detection of malignant nature of nodules in patients suspected with a worrisome thyroid nodule.

Key words

ultrasound, thyroid nodule, fine-needle aspiration biopsy (FNAB), thyroid imaging – reporting and data system (TIRADS), benign and malignant nodule

Tables


Table 1. Demographic summary of included studies with thyroid ultrasound in suspected cases of thyroid malignancy

Study ID and year

Study type

Study duration

Total sample size

Age

[years]

Gender

M/F

Type of US probe

Arpana et al. 201812

cross-sectional

1 year

85

14–70

15/70

NR

Al-Ghanimi et al. 202013

retrospective

2 years

68

8–82

20/48

Esaote US machine (MyLab™ ClassC, Esaote, Genoa, Italy) and electronically focused near-field probes with a bandwidth of 7–12 MHz

Smith-Bindman
et al. 201314

retrospective

5 years

11618

30–70

2277/9341

NR

Liu et al. 201915

retrospective

5 years

1568

18–80

412/1156

IU22 device (Philips Medical Systems, Bothell, USA; 5–12 MHz linear probe) or the S3000 device (Siemens Medical Solutions, Mountain View, USA; 5–14 MHz linear probe)

Luo et al. 202016

retrospective

2 years

296

30–50

54/168

The Mylab™ 90 (Esaote SpA, Genoa, Italy) ultrasound image system was used for US examination, the L522 probe (4–9 MHz; Esaote SpA) for CEUS and the L523 probe (7.5–13.0 MHz, Esaote SpA) for conventional gray-scale US, CDUS and ES.

Kwak et al. 201117

retrospective

8 months

1638

11–81

265/1373

5–12 MHz linear-array transducer (iU22; Philips Medical Systems.

Srinivas et al. 201618

prospective

4 years

365

18–68

22/334

GE VOLUSON 730 PRO machine (GE Healthcare, Milwaukee, USA) equipped with a 7.5–12 MHz high-frequency linear array transducer with color and power Doppler capability.

Mohanty et al. 201919

prospective

1 year

50

40–50

10/40

GE Logic F8 ultrasound machine with a 6–12 MHz linear array transducer and Samsung HS70A ultrasound machine with 4–18 MHz linear array transducer (Samsung Neurologica Corp., Danvers, USA)

Nabahati et al. 201920

cross-sectional

2 years

718

14–83

NR

Samsung H60 ultrasound machine, with a 3–14 MHz linear array transducer (Samsung Neurologica Corp.)

Ghani et al. 201821

retrospective

2 years

91

27–80

21/83

linear array transducer (5–12 MHz)

on ultrasound scanners HD11/HD11 XE/iU22 (Phillips Medical Systems) or Toshiba Xario200 (Toshiba Corp., Tokyo, Japan)

Ram et al. 201522

cross-sectional

2 years

101

15–73

20/81

High frequency linear probe with 7.5 MHz bandwidth (models Zario and Nemio; Toshiba Corp.)

Wettasinghe et al. 201923

prospective

1.5 years

263

16–74

16/247

NR

Azizi et al. 202124

prospective

1 year

355

40–50

45/310

virtual organ computer-aided analysis; (VOCAL; GE Healthcare) and a 3-D multi-planar display with rendering in HDLive and HDLive Silhouette (GE Healthcare).

Zayadeen et al. 201625

retrospective

3 years

1466

11–96

265/1201

5–12 MHz linear probe (iU22, Philips Healthcare) or a 6–15-MHz linear probe (Logiq E9, GE Healthcare)

Richie and Mellonie 202126

retrospective

2 years

226

18–62

39/187

NR

US – ultrasound; NR – not reported; CEUS – contrast-enhanced ultrasound; CDUS – color Doppler ultrasonography: ES – elastosonography.
Table 2. Exploration of heterogeneity sources; the impact of sample subgroups or participant characteristics on overall sensitivity and specificity

Subgroup

p-value

Full texts compared to abstracts

NA

High compared to low risk of bias

NA

Prospective compared to retrospective studies

0.024*

Adults compared to mixed population

0.924

Proportion of female participants

0.05*

Proportion of obese participants

NA

Type of ultrasound probe

0.034*

Ultrasonographer experience

0.001*

Clinical probability of TC

0.001*

TC – thyroid cancer; NA – not available. The details could not be retrieved from the report, or only one party was present; *significant impact of the subgroup on summary results.
Table 3. Sensitivity and specificity of different studies

Study ID and year

Specificity [%]

95% CI upper limit

95% CI lower limit

Sensitivity [%]

95% CI upper limit

95% CI lower limit

Kwak et al. 201117

24.06

21.51

26.75

96.66

94.88

97.95

Smith-Bindman et al. 201314

23.61

18.83

28.95

87.94

83.56

91.50

Ram et al. 201522

8.06

2.67

17.83

97.50

86.84

99.94

Zayadeen et al. 201625

14.25

11.98

16.78

97.57

96.46

98.41

Srinivas et al. 201618

48.15

28.67

68.05

96.45

93.88

98.15

Ghani et al. 201821

23.08

11.13

39.33

93.62

82.46

98.66

Arpana et al. 201812

32.35

17.39

50.53

88.57

73.26

96.80

Wettasinghe et al. 201923

13.68

9.55

18.75

96.55

82.24

99.91

Luo et al. 202016

84.52

77.84

89.82

74.63

62.51

84.47

Liu et al. 201915

57.93

55.12

60.71

84.00

79.89

87.56

Nabahati et al. 201920

8.98

6.37

12.21

96.18

94.09

97.68

Mohanty et al. 201919

60.00

36.05

80.88

95.45

77.16

99.88

Azizi et al. 202124

14.08

10.21

18.74

92.65

83.67

97.57

Al-Ghanimi et al. 202013

50.00

15.70

84.30

91.67

81.61

97.24

Richie and Mellonie 202126

45.45

24.39

67.79

98.53

95.76

99.70

95% CI – 95% confidence interval.
Table 4. Diagnostic OR of cases studied

Study ID and year

Benign nodule (simple cyst)

Benign nodule (solid cyst)

Malignant nodule (solid cyst)

Malignant nodule (simple/mixed cyst)

Diagnostic odds ratio

95% CI upper limit

95% CI lower limit

Kwak et al. 201117

578.00

805.00

255.00

20.00

9.15

5.74

14.61

Bindmann et al. 201314

248.00

220.00

68.00

34.00

2.25

1.44

3.54

Ram et al. 201522

39.00

57.00

5.00

1.00

3.42

0.38

30.43

Zayadeen et al. 201625

1043.00

734.00

122.00

26.00

6.67

4.32

10.29

Srinivas et al. 201618

326.00

14.00

13.00

12.00

25.23

9.76

65.20

Ghani et al. 201721

44.00

30.00

9.00

3.00

4.40

1.09

17.60

Arpana et al. 201812

31.00

23.00

11.00

4.00

3.71

1.05

13.13

Wettasinghe et al. 201923

28.00

202.00

32.00

1.00

4.44

0.58

33.75

Luo et al. 202016

50.00

24.00

131.00

17.00

16.05

7.50

32.37

Liu et al. 201915

315.00

517.00

712.00

60.00

7.23

5.36

9.74

Nabahati et al. 201920

478.00

365.00

36.00

19.00

2.48

1.40

4.39

Mohanty et al. 201919

21.00

8.00

12.00

1.00

31.50

3.50

283.30

Azizi et al. 202124

63.00

238.00

39.00

5.00

2.06

0.78

5.45

Ghanimi et al. 202113

55.00

4.00

4.00

5.00

11.00

2.08

57.91

Richi et al. 202126

201.00

3.00

10.00

12.00

55.80

13.50

229.90

OR – odds ratio; 95% CI – 95% confidence interval.

Figures


Fig. 1. Thyroid Imaging Reporting and Data System (TIRADS) guidelines
Fig. 2. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) diagram
TIRADS – Thyroid Imaging Reporting And Data System; 18-FDG PET – 18-fluorodeoxyglucose, positron emission tomography.
Fig. 3. Duke funnel plot test for publication bias
Fig. 4. Hierarchical summary receiver operating characteristics (HSROC) curve sensitivity compared to specificity
Fig. 5. Box and whisker plot for cumulative positive value (CPV) compared to cumulative negative value (CNV) of samples studied
Fig. 6. Forest plot for the diagnostic odds ratio (OR) of case studies100100

References (28)

  1. Chaturvedi R, Kumar A, Balasubramanian B, Sreehari S. A retrospective study correlating ultrasound based Thyroid Imaging Reporting and Data System (TIRADS) with Bethesda system for thyroid cytopathology in thyroid nodule risk stratification. NEMJ. 2021;2(2):121–128. doi:10.2174/0250688203666210111152307
  2. Chen H, Ye J, Song J, You Y, Chen W, Liu Y. Comparison of different ultrasound classification systems of thyroid nodules for identifying malignant potential: A cross-sectional study. Clinics (Sao Paulo). 2021;76:e2126. doi:10.6061/clinics/2021/e2126
  3. Hahn SY, Shin JH, Oh YL, Park KW. Ultrasound-guided core needle biopsy techniques for intermediate or low suspicion thyroid nodules: Which method is effective for diagnosis? Korean J Radiol. 2019;20(10): 1454–1461. doi:10.3348/kjr.2018.0841
  4. Al-Salam S, Sharma C, Abu Sa’a MT, et al. Ultrasound-guided fine needle aspiration cytology and ultrasound examination of thyroid nodules in the UAE: A comparison. PLoS One. 2021;16(4):e0247807. doi:10.1371/journal.pone.0247807
  5. Kim SC, Kim JH, Choi SH, et al. Off-site evaluation of three-dimensional ultrasound for the diagnosis of thyroid nodules: Comparison with two-dimensional ultrasound. Eur Radiol. 2016;26(10):3353–3360. doi:10.1007/s00330-015-4193-2
  6. Xie C, Cox P, Taylor N, LaPorte S. Ultrasonography of thyroid nodules: A pictorial review. Insights Imaging. 2016;7(1):77–86. doi:10.1007/s13244-015-0446-5
  7. Tessler FN, Middleton WD, Grant EG, et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White paper of the ACR TI-RADS committee. J Am Coll Radiol. 2017;14(5):587–595. doi:10.1016/j. jacr.2017.01.046
  8. Nam SJ, Kwak JY, Moon HJ, Yoon JH, Kim EK, Koo JS. Large (≥3cm) thyroid nodules with benign cytology: Can Thyroid Imaging Reporting and Data System (TIRADS) help predict false-negative cytology? PLoS One. 2017;12(10):e0186242. doi:10.1371/journal.pone.0186242
  9. Russ G, Bonnema SJ, Erdogan MF, Durante C, Ngu R, Leenhardt L. European Thyroid Association guidelines for ultrasound malignancy risk stratification of thyroid nodules in adults: The EU-TIRADS. Eur Thyroid J. 2017;6(5):225–237. doi:10.1159/000478927
  10. Trimboli P, Durante C. Ultrasound risk stratification systems for thyroid nodule: Between lights and shadows, we are moving towards a new era. Endocrine. 2020;69(1):1–4. doi:10.1007/s12020-020-02196-6
  11. Colakoglu B, Yildirim D, Alis D, et al. Elastography in distinguishing benign from malignant thyroid nodules. J Clin Imaging Sci. 2016;6:51. doi:10.4103/2156-7514.197074
  12. Arpana, Panta OB, Gurung G, Pradhan S. Ultrasound findings in thyroid nodules: A radio-cytopathologic correlation. J Med Ultrasound. 2018;26(2):90–93. doi:10.4103/JMU.JMU_7_17
  13. Al-Ghanimi IA, Al-Sharydah AM, Al-Mulhim S, et al. Diagnostic accuracy of ultrasonography in classifying thyroid nodules compared with fine-needle aspiration. Saudi J Med Med Sci. 2020;8(1):25–31. doi:10.4103/sjmms.sjmms_126_18
  14. Smith-Bindman R, Lebda P, Feldstein VA, et al. Risk of thyroid cancer based on thyroid ultrasound imaging characteristics: Results of a population-based study. JAMA Intern Med. 2013;173(19):1788–1796. doi:10.1001/jamainternmed.2013.9245
  15. Liu T, Guo Q, Lian C, et al. Automated detection and classification of thyroid nodules in ultrasound images using clinical-knowledge-guided convolutional neural networks. Med Image Anal. 2019;58:101555. doi:10.1016/j.media.2019.101555
  16. Luo W, Zhang Y, Yuan J, et al. Differential diagnosis of thyroid nodules through a combination of multiple ultrasonography techniques: A decision-tree model. Exp Ther Med. 2020;19(6):3675–3683. doi:10. 3892/etm.2020.8621
  17. Kwak JY, Han KH, Yoon JH, et al. Thyroid imaging reporting and data system for US features of nodules: A step in establishing better stratification of cancer risk. Radiology. 2011;260(3):892–899. doi:10.1148/radiol.11110206
  18. Srinivas MN, Amogh VN, Gautam MS, et al. A prospective study to evaluate the reliability of thyroid imaging reporting and data system in differentiation between benign and malignant thyroid lesions. J Clin Imaging Sci. 2016;6:5. doi:10.4103/2156-7514.177551
  19. Mohanty J, Sanket, Mishra P. Role of ACR-TIRADS in risk stratification of thyroid nodules. Int J Res Med Sci. 2019;7(4):1039–1043. doi:10.18203/2320-6012.ijrms20191076
  20. Nabahati M, Moazezi Z, Fartookzadeh S, Mehraeen R, Ghaemian N, Sharbatdaran M. The comparison of accuracy of ultrasonographic features versus ultrasound-guided fine-needle aspiration cytology in diagnosis of malignant thyroid nodules. J Ultrasound. 2019;22(3):315–321. doi:10.1007/s40477-019-00377-2
  21. Ghani FA, Nurismah MI, Husyairi H, Shahrun Niza AS, Radhika S. Reliability of the ultrasound classification system of thyroid nodules in predicting malignancy. Med J Malaysia. 2018;73(5):263–271. PMID:30350802.
  22. Ram N, Hafeez S, Qamar S, et al. Diagnostic validity of ultrasonography in thyroid nodules. J Pak Med Assoc. 2015;65(8):875–878. PMID:26228335.
  23. Wettasinghe MC, Rosairo S, Ratnatunga N, Wickramasinghe ND. Diagnostic accuracy of ultrasound characteristics in the identification of malignant thyroid nodules. BMC Res Notes. 2019;12(1):193. doi:10.1186/s13104-019-4235-y
  24. Azizi G, Faust K, Ogden L, et al. 3-D ultrasound and thyroid cancer diagnosis: A prospective study. Ultrasound Med Biol. 2021;47(5):1299–1309. doi:10.1016/j.ultrasmedbio.2021.01.010
  25. Zayadeen AR, Abu-Yousef M, Berbaum K. Retrospective evaluation of ultrasound features of thyroid nodules to assess malignancy risk: A step toward TIRADS. AJR Am J Roentgenol. 2016;207(3):460–469. doi:10.2214/AJR.15.15121
  26. Richie AJ, Mellonie P. Accuracy of thyroid imaging and reporting data systems in risk stratification of thyroid nodules: A retrospective observational study. Int J Anat Radio Surg. 2021;10(1):58–61. doi:10.7860/IJARS/2021/47306:2627
  27. Latif MA, El Rakhawy MM, Saleh MF. Diagnostic accuracy of B-mode ultrasound, ultrasound elastography and diffusion weighted MRI in differentiation of thyroid nodules (prospective study). Egypt J Radiol Nucl Med. 2021;52:256. doi:10.1186/s43055-021-00640-9
  28. Jiang D, Zang Y, Jiang D, Zhang X, Zhao C. Value of rapid on-site evaluation for ultrasound-guided thyroid fine needle aspiration. J Int Med Res. 2019;47(2):626–634. doi:10.1177/0300060518807060