Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
5-Year IF – 2.0, IF – 1.9, JCI (2024) – 0.43
Scopus CiteScore – 4.3
Q1 in SJR 2024, SJR score – 0.598, H-index: 49 (SJR)
ICV – 161.00; MNiSW – 70 pts
Initial editorial assessment and first decision within 24 h

ISSN 1899–5276 (print), ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2019, vol. 28, nr 1, January, p. 109–112

doi: 10.17219/acem/85039

Publication type: original article

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Corneal biomechanical properties in patients with Hashimoto’s thyroiditis

Ahmet Kırgız1,A,C,D,F, Kübra Şerefoğlu Çabuk1,A,B, Mikail Yetmis2,B, Kürşat Atalay1,C,E

1 Department of Ophthalmology, Bağcılar Training and Research Hospital, Istanbul, Turkey

2 Department of Internal Medicine, Bağcılar Training and Research Hospital, Istanbul, Turkey

Abstract

Background. Hashimoto’s thyroiditis (HT) is an autoimmune endocrine disorder that results from a dysregulation of the immune system leading to an immune attack on the thyroid gland. It has potential effects on different organs and tissues.
Objectives. The aim of the study was to investigate the effect of HT on corneal biomechanical properties using the ocular response analyzer (ORA).
Material and Methods. A total of 48 patients with HT and 49 healthy subjects were enrolled in the study. The mean age of the patients and healthy subjects was 42.33 ±11.96 and 40.20 ±12.60 years, respectively (p = 0.39). All of the subjects underwent a full ophthalmological examination, including visual acuity, corneal pachymetry with topography, biomicroscopy, and funduscopy. Corneal biomechanical properties, including corneal hysteresis (CH) and corneal resistance factor (CRF), Goldmann-correlated intraocular pressure (IOPg) and corneal compensated IOP (IOPcc) were measured with the ORA.
Results. Central corneal thickness (CCT) in the patient group and the control group were not significantly different (p = 0.65). Corneal hysteresis of the HT patients was significantly lower than that of the control group (p = 0.005). There were no statistically significant differences in CRF between the 2 groups (p = 0.53). Goldmann-correlated IOP and IOPcc were higher in the HT patients, but only IOPcc showed a statistically significant difference (p = 0.001).
Conclusion. In conclusion, our data shows that HT affects corneal biomechanical properties by decreasing CH. Thus, IOPcc measured with the ORA should be taken into account when determining accurate IOP values in patients with HT.

Key words

corneal hysteresis, corneal resistance factor, Hashimoto’s thyroiditis, ocular response analyzer

References (30)

  1. Jacobson DL, Gange SJ, Rose NR, Graham NM. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin Immunol Immunopathol. 1997;84(3):223–243.
  2. McLeod DS, Cooper DS. The incidence and prevalence of thyroid autoimmunity. Endocrine. 2012;42(2):252–265.
  3. Golden SH, Robinson KA, Saldanha I, Anton B, Ladenson PW. Clinical review. Prevalence and incidence of endocrine and metabolic disorders in the United States: A comprehensive review. J Clin Endocrinol Metab. 2009;94(6):1853–1878.
  4. Vanderpump MP. The epidemiology of thyroid disease. Br Med Bull. 2011;99:39–51.
  5. Pearce EN, Farwell AP, Braverman LE. Thyroiditis. N Engl J Med. 2003;348(26):2646–2655.
  6. Jacobson DM. Dysthyroid orbitopathy. Sem Neurol. 2000;20(1):43–54.
  7. El-Kaissi S, Frauman AG, Wall JR. Thyroid-associated ophthalmopathy: A practical guide to classification, natural history and management. Intern Med J. 2004;34(8):482–491.
  8. Bartley GB, Fatourechi V, Kadrmas EF, et al. Clinical features of Graves’ ophthalmopathy in an incidence cohort. Am J Ophthalmol. 1996;121(3):284–290.
  9. Garrity JA, Bahn RS. Pathogenesis of Graves ophthalmopathy: Implications for prediction, prevention and treatment. Am J Ophthalmol. 2006;142(1):147–153.
  10. Grzesiuk W, Szydlarska D, Pragacz A, Bar-Andziak E. Thyroid-associated orbitopathy in patients with Hashimoto’s thyroiditis: A case report. Pol Arch Med Wewn. 2008;118(5):318–321.
  11. Hiraga A, Mimura M, Kamitsukasa I. Isolated inferior rectus muscle myopathy due to Hashimoto’s thyroiditis. Intern Med. 2008;47(13):1283–1284.
  12. Kan E, Kan EK, Ecemis G, Colak R. Presence of thyroid-associated ophthalmopathy in Hashimoto’s thyroiditis. Int J Ophthalmol. 2014;7(4):644–647.
  13. Karabulut GO, Kaynak P, Altan C, et al. Corneal biomechanical properties in thyroid eye disease. Kaohsiung J Med Sci. 2014;30(6):299–304.
  14. Moghimi S, Safizadeh M, Mazloumi M, Hosseini H, Vahedian Z, Rajabi MT. Evaluation of corneal biomechanical properties in patients with thyroid eye disease using ocular response analyzer. J Glaucoma. 2016;25(3):269–273.
  15. Konuk O, Aktas Z, Aksoy S, Onol M, Unal M. Hyperthyroidism and severity of orbital disease do not change the central corneal thickness in Graves’ ophthalmopathy. Eur J Ophthalmol. 2008;18(1):125–127.
  16. Villani E, Viola F, Sala R, et al. Corneal involvement in Graves’ orbitopathy: An in vivo confocal study. Invest Ophthalmol Vis Sci. 2010;51(9):4574–4578.
  17. Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005;31(1):156–162.
  18. Mandalos A, Anastasopoulos E, Makris L, Dervenis N, Kilintzis V, Topouzis F. Inter-examiner reproducibility of ocular response analyzer using the waveform score quality index in healthy subjects. J Glaucoma. 2013;22(2):152–155.
  19. Shah S, Laiquzzaman M, Bhojwani R, Mantry S, Cunliffe I. Assessment of the biomechanical properties of the cornea with ocular response analyzer in normal and keratoconic eyes. Invest Ophthalmol Vis Sci. 2007;48(7):3026–3031.
  20. Fontes BM, Junior RA, Jardim D, Velarde GC, Nose W. Ability of corneal biomechanical metrics and anterior segment data in the differentiation of keratoconus and healthy corneas. Ophthalmology. 2010;117(4):673–679.
  21. Altan C, Demirel B, Azman E, et al. Biomechanical properties of axially myopic cornea. Eur J Ophthalmol. 2012;22(Suppl 7):S24–28.
  22. Goldich Y, Barkana Y, Gerber Y, et al. Effect of diabetes mellitus on biomechanical parameters of the cornea. J Cataract Refract Surg. 2009;35(4):715–719.
  23. Ortiz D, Piñero D, Shabayek MH, Arnalich-Montiel F, Alió JL. Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes. J Cataract Refract Surg. 2007;33(8):1371–1375.
  24. Shin JY, Choi JS, Oh JY, Kim MK, Lee JH, Wee WR. Evaluation of corneal biomechanical properties following penetrating keratoplasty using the ocular response analyzer. Korean J Ophthalmol. 2010;24(3):139–142.
  25. Yazici AT, Kara N, Yüksel K, et al. The biomechanical properties of the cornea in patients with systemic lupus erythematosus. Eye (Lond). 2011;25(8):1005–1009.
  26. Can ME, Erten S, Can GD, Cakmak HB, Sarac O, Cagil N. Corneal biomechanical properties in rheumatoid arthritis. Eye Contact Lens. 2015;41(6):382–385.
  27. Kara N, Bozkurt E, Baz O, et al. Corneal biomechanical properties and intraocular pressure measurement in Marfan patients. J Cataract Refract Surg. 2012;38(2):309–314.
  28. Congdon NG, Broman MA, Bandeen-Roche K, Grover D, Quigley HA. Central corneal thickness and hysteresis associated with glaucoma damage. Am J Ophthalmol. 2006;141(5):868–875.
  29. Shah S, Laiquzzaman M, Cunliffe I, Mantry S. The use of the Reichert ocular response analyzer to establish the relationship between ocular hysteresis, corneal resistance factor and central corneal thickness in normal eyes. Cont Lens Anterior Eye. 2006;29(5):257–262.
  30. Tomer Y. Genetic susceptibility to autoimmune thyroid disease: Past, present and future. Thyroid. 2010;20(7):715–725.