Advances in Clinical and Experimental Medicine
2018, vol. 27, nr 11, November, p. 1601–1608
doi: 10.17219/acem/98916
Publication type: original article
Language: English
Download citation:
The application of capillary electrophoresis, mass spectrometry and Brdicka reaction in human and rabbit metallothioneins analysis
1 Department of Biomedical and Environmental Analysis, Faculty of Pharmacy with Division of Laboratory Medicine, Wroclaw Medical University, Poland
2 Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Czech Republic
3 Central European Institute of Technology, Brno University of Technology, Czech Republic
Abstract
Background. Metallothioneins (MTs) constitute a family of evolutionary conserved low molecular weight proteins with small variations in their amino acid sequences. They play a role in the regulation of trace metals metabolism, in the detoxification of heavy metal ions and in mechanisms controlling growth, differentiation and proliferation of cells.
Objectives. The aim of this study was to evaluate the human and rabbit MTs purity and characterization using advanced analytical approaches. Due to the common use of MT from rabbit liver as a model protein, the properties of the rabbit and human MTs were compared.
Material and Methods. Capillary electrophoresis (CE), matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and Brdicka reaction were used for human and rabbit MTs characterization.
Results. In chip CE analysis, changes in the range of 5–8 kDa corresponding to the MT monomer, as well as some peaks of 13–14 kDa corresponding to dimers in both species, were observed. Using MALDI-MS, rabbit (MT-2D) and human (MT-1A, MT-1G, MT-1G + Cd and MT-2A) MTs were identified. In the Brdicka reaction analysis, a lower concentration of MTs from both organisms coincided with a decrease in the signal corresponding to MT level (Cat2). However, human MT gave higher Cat2 peak than the same concentration (0.025 mg/mL) of rabbit MT.
Conclusion. The applied methods allowed for the characterization of MTs and gave complementary information about MT isoforms. Altered electrochemical activity of human and rabbit MTs, despite the same number of –sulfhydryl (−SH) groups, was observed, which may be due to different availability of MT cysteinyl groups.
Key words
metallothionein, mass spectrometry, capillary electrophoresis, Brdicka reaction
References (37)
- Osobová M, Urban V, Jedelský PL, et al. Three metallothionein isoforms and sequestration of intracellular silver in the hyperaccumulator Amanita strobiliformis. New Phytol. 2011;190(4):916–926.
- Zalewska M, Trefon J, Milnerowicz H. The role of metallothionein interactions with other proteins. Proteomics. 2014;14(11):1343–1356.
- Křížková S, Kepinska M, Emri G, et al. An insight into the complex roles of metallothioneins in malignant diseases with emphasis on (sub)isoforms/isoforms and epigenetics phenomena. Pharmacol Ther. 2017; 183:90–117.
- Torreggiani A, Chatgilialoglu C, Ferreri C, Melchiorre M, Atrian S, Capdevila M. Non-enzymatic modifications in metallothioneins connected to lipid membrane damages: Structural and biomimetic studies under reductive radical stress. J Proteomics. 2013;92:204–215.
- Macirella R, Brunelli E. Morphofunctional alterations in zebrafish (Danio rerio) gills after exposure to mercury chloride. Int J Mol Sci. 2017;18(4):824.
- Sanz-Nebot V, Andón B, Barbosa J. Characterization of metallothionein isoforms from rabbit liver by liquid chromatography coupled to electrospray mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;796(2):379–393.
- Ruttkay-Nedecky B, Nejdl L, Gumulec J, et al. The role of metallothionein in oxidative stress. Int J Mol Sci. 2013;14(3):6044–6066.
- Artells E, Palacios O, Capdevila M, Atrian S. In vivo-folded metal-metallothionein 3 complexes reveal the Cu-thionein rather than Zn-thionein character of this brain-specific mammalian metallothionein. FEBS J. 2014;281(6):1659–1678.
- Thirumoorthy N, Shyam Sunder A, Manisenthil Kumar K, Senthil Kumar M, Ganesh G, Chatterjee M. A review of metallothionein isoforms and their role in pathophysiology. World J Surg Oncol. 2011;9:54.
- Milnerowicz H, Bizoń A. Determination of metallothionein in biological fluids using enzyme-linked immunoassay with commercial antibody. Acta Biochim Pol. 2010;57(1):99–104.
- Zalewska M, Bizoń A, Milnerowicz H. Comparison of capillary electrophoretic techniques for analysis and characterization of metallothioneins. J Sep Sci. 2011;34(21):3061–3069.
- Guszpit E, Křížková S, Kepinska M, et al. Fluorescence-tagged metallothionein with CdTe quantum dots analyzed by the chip-CE technique. J Nanopart Res. 2015;17(11):423.
- Guszpit E, Krejčová L, Křížková S, et al. Kinetic analysis of human metallothionein and CdTe quantum dot complexes using fluorescence and voltammetry techniques. Colloids Surf B Biointerfaces. 2017; 160:381–389.
- Dabrio M, Virtanen V, Bordin G, Rodriguez AR. Contribution to the study of complexing properties of Zn-metallothioneins by CZE-DAD. Talanta. 2000;53(3):587–598.
- Mounicou S, Ouerdane L, L’Azou B, et al. Identification of metallothionein subisoforms in HPLC using accurate mass and online sequencing by electrospray hybrid linear ion trap-orbital ion trap mass spectrometry. Anal Chem. 2010;82(16):6947–6957.
- Artells E, Palacios Ò, Capdevila M, Atrian S. Mammalian MT1 and MT2 metallothioneins differ in their metal binding abilities. Metallomics. 2013;5(10):1397–1410.
- Hunziker PE, Kaur P, Wan M, Känzig A. Primary structures of seven metallothioneins from rabbit tissue. Biochem J. 1995;306(Pt 1):265–270.
- Beattie JH. Strategies for the qualitative and quantitative analysis of metallothionein isoforms by capillary electrophoresis. Talanta. 1998;46(2):255–270.
- Kojima Y, Hunziker PE. Amino acid analysis of metallothionein. Methods Enzymol. 1991;205:419–421.
- Mehus AA, Muhonen WW, Garrett SH, Somji S, Sens DA, Shabb JB. Quantitation of human metallothionein isoforms: A family of small, highly conserved, cysteine-rich proteins. Mol Cell Proteomics. 2014; 13(4):1020–1033.
- Braun W, Vasák M, Robbins AH, et al. Comparison of the NMR solution structure and the x-ray crystal structure of rat metallothionein-2. Proc Natl Acad Sci U S A. 1992;89(21):10124–10128.
- Aras MA, Hara H, Hartnett KA, Kandler K, Aizenman E. Protein kinase C regulation of neuronal zinc signaling mediates survival during preconditioning. J Neurochem. 2009;110(1):106–117.
- Ryvolova M, Hynek D, Skutkova H, Adam V, Provaznik I, Kizek R. Structural changes in metallothionein isoforms revealed by capillary electrophoresis and Brdicka reaction. Electrophoresis. 2012;33(2):270–279.
- Křížková S, Adam V, Kizek R. Study of metallothionein oxidation by using of chip CE. Electrophoresis. 2009;30(23):4029–4033.
- Křížková S, Masařík M, Eckschlager T, Adam V, Kizek R. Effects of redox conditions and zinc(II) ions on metallothionein aggregation revealed by chip capillary electrophoresis. J Chromatogr A. 2010;1217(51):7966–7971.
- Merlos Rodrigo MA, Molina-López J, Jimenez Jimenez AM, et al. The application of curve fitting on the voltammograms of various isoforms of metallothioneins-metal complexes. Int J Mol Sci. 2017; 18(3):610.
- van Vyncht G, Bordin G, Rodriguez AR. Rabbit liver metallothionein subisoform characterization using liquid chromatography hyphenated to diode array detection and electrospray ionization mass spectrometry. Chromatographia. 2000;52(11–12):745–752.
- Chassaigne H, Lobinski R. Polymorphism and identification of metallothionein isoforms by reversed-phase HPLC with on-line ion-spray mass spectrometric detection. Anal Chem. 1998;70(13):2536–2543.
- Tomalová I, Foltynová P, Kanický V, Preisler J. MALDI MS and ICP MS detection of a single CE separation record: A tool for metalloproteomics. Anal Chem. 2014;86(1):647–654.
- Irvine GW, Pinter TBJ, Stillman MJ. Defining the metal binding pathways of human metallothionein 1a: Balancing zinc availability and cadmium seclusion. Metallomics. 2016;8(1):71–81.
- Irvine GW, Heinlein L, Renaud JB, Sumarah MW, Stillman MJ. Formation of oxidative and non-oxidative dimers in metallothioneins: Implications for charge-state analysis for structural determination. Rapid Commun Mass Spectrom. 2017;31(24):2118–2124.
- Brdička R. Polarographic studies with the dropping mercury electrode. Part IV. The influence of circuit resistance on maxima of current-voltage curves. Collect Czechoslov Chem Commun. 1936;8:419–433.
- Raspor B, Paić M, Erk M. Analysis of metallothioneins by the modified Brdicka procedure. Talanta. 2001;55(1):109–115.
- Křížková S, Blahova P, Nakielna J, et al. Comparison of metallothionein detection by using Brdicka reaction and enzyme-linked immunosorbent assay employing chicken yolk antibodies. Electroanalysis. 2009;21(23):2575–2583.
- Kruseova J, Hynek D, Adam V, et al. Serum metallothioneins in childhood tumors: A potential prognostic marker. Int J Mol Sci. 2013;14(6): 12170–12185.
- Adam V, Chudobova D, Tmejova K, et al. An effect of cadmium and lead ions on Escherichia coli with the cloned gene for metallothionein (MT-3) revealed by electrochemistry. Electrochimica Acta. 2014;140:11–19.
- Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25(24):4876–4882.


