Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
5-Year IF – 2.0, IF – 1.9, JCI (2024) – 0.43
Scopus CiteScore – 4.3
Q1 in SJR 2024, SJR score – 0.598, H-index: 49 (SJR)
ICV – 161.00; MNiSW – 70 pts
Initial editorial assessment and first decision within 24 h

ISSN 1899–5276 (print), ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2017, vol. 26, nr 9, December, p. 1437–1445

doi: 10.17219/acem/64883

Publication type: review

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Intestinal epithelial barrier: The target for pathogenic Escherichia coli

Barbara Pawłowska1,A,D, Beata M. Sobieszczańska1,A,D

1 Department of Microbiology, Wroclaw Medical University, Poland

Abstract

Diarrheagenic Escherichia coli strains are included in 9 pathotypes (pathovars) that present different virulence factors responsible for the patomechanism of infections they cause. As all other intestinal pathogens, E. coli exerts a significant effect on intestinal epithelium. To initiate the infection, these microorganisms have evolved countless strategies to subvert the epithelial barrier and efficiently colonize the intestinal epithelium. The barrier function of the intestinal epithelium is achieved by the presence of a tight junction protein network surrounding individual cells around their circumference that links neighboring cells and seals the intracellular space. Pathogenic E. coli strains may impair intestinal epithelial barrier in 3 different pathways: (i) through a direct effect of their virulence factors on tight junctions proteins, (ii) by disrupting host cell actin cytoskeleton that indirectly damages epithelial barrier, and (iii) via stimulation of the secretion of proinflammatory cytokines that directly disrupt epithelial tight junctions or trigger neutrophils migration through intestinal epithelium, thus disrupting the intestinal barrier. Most pathogenic E. coli generates all these 3 pathways concomitantly upon interaction with intestinal epithelium.

Key words

Escherichia coli, intestinal barrier, tight junctions

References (40)

  1. Groschwitz KR, Hogan SP. Intestinal barrier function: Molecular regulation and disease pathogenesis. J Allergy Clin Immunol. 2009;124:3–22.
  2. Liévin Le-Moal V, Servin AL. Pathogenesis of human enterovirulent bacteria: Lessons from cultured, fully differentiated human colon cancer cell lines. Microbiol Mol Biol Rev. 2013;77:380–439.
  3. Peterson LW, Artis D. Intestinal epithelial cells: Regulators of barrier function and immune homeostasis. Nat Rev Immunol. 2014;14:141–153.
  4. Blum S, Schiffrin EJ. Intestinal microflora and homeostasis of the mucosal immune response: Implications for probiotic bacteria? Curr Issues Intest Microbiol. 2003;4:53–60.
  5. Bischoff S, Barbara G, Buurman W, et al. Intestinal permeability – A new target for disease prevention and therapy. BMC Gastroenterol. 2014;14:189–214.
  6. van Itallie CM, Holmes J, Bridges A, et al. The density of small tight junction pores varies among cell types and is increased by expression of claudin-2. J Cell Sci. 2008;121:298–305.
  7. Krause G, Winkler L, Mueller SL, Haseloff RF, Piontek J, Blasig IE. Structure and function of claudins. Biochim Biophys Acta. 2008;1778:631–645.
  8. Chiba H, Osanai M, Murata M, Kojima T, Sawada N. Transmembrane proteins of tight junctions. Biochim Biophys Acta. 2008;1778:588–600.
  9. Günzel D, Yu AS. Claudins and the modulation of tight junction permeability. Physiol Rev. 2013;93:525–569.
  10. Förster C. Tight junctions and the modulation of barrier function in disease. Histochem Cell Biol. 2008;130:55–70.
  11. Ebnet K, Suzuki A, Ohno S, Vestweber D. Junctional adhesion molecules (JAMs): More molecules with dual functions? J Cell Sci. 2004;117:19–29.
  12. Garrido-Urbani S, Bradfield PF, Imhoff BA. Tight junction dynamics: The role of junctional adhesion molecules (JAMs). Cell Tissue Res. 2014;355(3):701–715. doi: 10.1007/s00441-014-1820-1
  13. Gumbiner BM. Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol. 2005;6:622–634.
  14. Perez-Moreno M, Jamora C, Fuchs E. Sticky business: Orchestrating cellular signals at adherens junctions. Cell. 2003;112(4):535–548.
  15. Meng W, Takeichi M. Adherens junction: Molecular architecture and regulation. Cold Spring Harb Perspect Biol. 2009;1(6):a002899.
  16. Garrod D, Chidgey M. Desmosome structure, composition and function. Biochim Biophys Acta. 2008;1778:572–587.
  17. Schmidt A, Koch PJ. Desmosomes. Just cell adhesion or is there more? Cell Adh Migr. 2007;1:28–32.
  18. Gassler NC, Rohr A, Schneider J, et al. Inflammatory bowel disease is associated with changes of enterocytic junctions. Am J Physiol Gastrointest Liver Physiol. 2001;281:216–228.
  19. Navarro-Garcia F, Serapia-Palacios A, Ugalde-Silva P, Tapia-Pastrana G, Chavez-Duenas L. Actin cytoskeleton manipulation by effector proteins secreted by diarrheagenic Escherichia coli pathotypes. Biomed Res Int. 2013;2013:1–22. doi: 10.1155/2013/374395
  20. Brown MD, Bry L, Li Z, Sacks DB. Action pedestal formation by enteropathogenic Escherichia coli is regulated by IQGAP1, calcium, and calmodulin. J Biol Chem. 2008;283:35212–35222.
  21. Kim H, White CD, Sacks DB. IQGAP1 in microbial pathogenesis: Targeting the actin cytoskeleton. FEBS Lett. 2011;585:723–729.
  22. Peralta-Ramírez J, Hernandez JM, Manning-Cela R, et al. EspF interacts with nucelation-promoting factors to recruit junctional proteins into pedestals for pedestal maturation and disruption of paracellular permeability. Infect Immun. 2008;76:3854–3868.
  23. Guttman JA, Kazemi P, Lin AE, Vogl AW, Finlay BB. Desmosomes are unaltered during infections by attaching and effacing pathogens. Anat Rec (Hoboken). 2007;290:199–205.
  24. Muza-Moons MM, Schneeberger EE, Hecht GA. Enteropathogenic Escherichia coli infection leads to appearance of aberrant tight junctions strands in the lateral membrane of intestinal epithelial cells. Cell Microbiol. 2004;6:783–793.
  25. Alto NM, Weflen AW, Rardin MJ, et al. The type III effector EspF coordinates membrane trafficking by the spatiotemporal activation of two eukaryotic signaling pathways. J Cell Biol. 2007;178:1265–1278.
  26. Malladi V, Shankar B, Williams PH, Balakrishnan A. Enteropathogenic Escherichia coli outer membrane proteins induce changes in cadherin junctions of Caco-2 cells through activation of PKC alpha. Microbes Infect. 2004;6:38–50.
  27. Croxen MA, Finlay BB. Molecular mechanism of Escherichia coli pathogenicity. Nat Rev Microbiol. 2010;8:26–38.
  28. Strauman MC, Harper JM, Harrington SM, Boll EJ, Nataro JP. Enteroaggregative Escherichia coli disrupts epithelial tight junctions. Infect Immun. 2010;78:4958–4964.
  29. Navarro-García F, Sears C, Eslava C, Cravioto A, Nataro JP. Cytoskeletal effects induced by pet, the serine protease enterotoxin of enteroaggregative Escherichia coli. Infect Immun. 1999;67:2184–2192.
  30. Guignot J, Chaplais C, Coconnier-Polter MH, Servin AL. The secreted autotransporter toxin, Sat, functions as a virulence factor in Afa/Dr diffusely adhering Escherichia coli by promoting lesions in tight junction of polarized epithelial cells. Cell Microbiol. 2007;9:204–221.
  31. Peiffer I, Blanc-Potard AB, Bernet-Camard MF, Guignot J, Barbat A, Servin AL. Afa/Dr diffusely adhering Escherichia coli C1845 infection promotes selective injuries in the junctional domain of polarized human intestinal Caco-2/TC7 cells. Infect Immun. 2000;68:3431–3442.
  32. Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol. 2004;2:123–140.
  33. Nassour H, Dubreuil JD. Escherichia coli STb enterotoxin dislodges claudin–1 from epithelial tight junctions. Plos One. 2014;9(11):e113273. doi: 10.1371/journal.pone.0113273
  34. Mukiza CN, Dubreuil JD. Escherichia coli heat stable toxin b impairs intestinal epithelial barrier function by altering tight junction proteins. Infect Immun. 2013;81:2819–2827.
  35. Martinez-Medina M, Garcia-Gil LJ. Escherichia coli in chronic inflammatory bowel disease: An update on adherent invasive Escherichia coli pathogenicity. World J Gastroinest Pathophysiol. 2014;15:213–227.
  36. Denizot J, Sivignon A, Barreau F, et al. Adherent-invasive Escherichia coli induce claudin-2 expression and barrier defect in CEABAC10 mice and Crohn’s disease patients. Inflamm Bowel Dis. 2012;18:294–304.
  37. Sasaki M, Sitaraman SV, Babbin BA, et al. Invasive Escherichia coli are a feature of Crohn’s disease. Lab Invest. 2007;87:1042–1054.
  38. Wine E, Ossa JC, Gray-Owen SD, Sherman PM. Adherent-invasive Escherichia coli, strain LF82 disrupts apical junctional complexes in polarized epithelia. BMC Microbiol. 2009;9:180–191.
  39. Agus A, Massier S, Darfeuille-Michaud A, Billard E, Barnich N. Understanding host adherent-invasive Escherichia coli interaction in Crohn’s disease: Opening up new therapeutic strategies. Biomed Research Int. 2014;2014:567929. doi: 10.1155/2014/567929
  40. Liévin-Le Moal V, Servin AL. Pathogenesis of human enterovirulent bacteria: Lessons from cultured, fully differentiated human colon cancer cell lines. Microbiol Mol Biol Rev. 2013;77:380–439.