Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
5-Year IF – 2.0, IF – 1.9, JCI (2024) – 0.43
Scopus CiteScore – 4.3
Q1 in SJR 2024, SJR score – 0.598, H-index: 49 (SJR)
ICV – 161.00; MNiSW – 70 pts
Initial editorial assessment and first decision within 24 h

ISSN 1899–5276 (print), ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2017, vol. 26, nr 6, September, p. 1021–1029

doi: 10.17219/acem/63030

Publication type: review

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Salivary lipids: A review

Jan Matczuk1,A,B,C,D, Małgorzata Żendzian-Piotrowska2,A,E,F, Mateusz Maciejczyk3,B,C,E, Krzysztof Kurek4,C,E

1 County Veterinary Inspection, Białystok, Poland

2 Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Poland

3 Department of Physiology, Medical University of Bialystok, Poland

4 Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, Poland

Abstract

Saliva is produced by both large and small salivary glands and may be considered one of the most important factors influencing the behavior of oral cavity homeostasis. Secretion of saliva plays an important role in numerous significant biological processes. Saliva facilitates chewing and bolus formation as well as performs protective functions and determines the buffering and antibacterial prosperities of the oral environment. Salivary lipids appear to be a very important component of saliva, as their qualitative and quantitative composition can be changed in various pathological states and human diseases. It has been shown that disturbances in salivary lipid homeostasis are involved in periodontal diseases as well as various systemic disorders (e.g. cystic fibrosis, diabetes and Sjögren’s syndrome). However, little is known about the role and composition of salivary lipids and their interaction with other important ingredients of human saliva, including proteins, glycoproteins and salivary mucins. The purpose of this review paper is to present the latest knowledge on salivary lipids in healthy conditions and in oral and systemic diseases.

Key words

lipids, saliva, salivary glands, salivary lipids

References (92)

  1. Amano O, Mizobe K, Bando Y, Sakiyama K. Anatomy and histology of rodent and human major salivary glands: An overview of the Japan Salivary Gland Society – sponsored workshop. Acta Histochem Cytochem. 2012;45:241–250.
  2. Kontis TC, Johns ME. Anatomy and physiology for the salivary glands. In: Bailey BJ. Head & neck surgery – otolaryngology. Philadelphia, PA; 2001.
  3. Sonesson M, Eliasson L, Matsson L. Minor salivary gland secretion in children and adults. Arch Oral Biol. 2003;48:535–539.
  4. Eliasson L, Carlén A. An update on minor salivary gland secretions. Eur J Oral Sci. 2010;118:435–442.
  5. Malamud D. Salivary diagnostics: The future is now. Am J Dent Assoc. 2006;137:284–286.
  6. Turner RJ, Sugiya H. Understanding salivary fluid and protein secretion. Oral Dis. 2002;8:3–11.
  7. Dawes C. Salivary flow patterns and the health of hard and soft oral tissues. J Am Dent Assoc. 2008;139:18S–24S.
  8. Zalewska A, Knaś M, Waszkiewicz N, et al. Salivary antioxidants in patients with systemic sclerosis. J Oral Pathol Med. 2014;43:61–68.
  9. Zalewska A, Knaś M, Żendzian-Piotrowska M, et al. Antioxidant profile of salivary glands in high fat diet-induced insulin resistance rats. Oral Dis. 2014;20:560–566.
  10. Nater UM, Rohleder N. Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: Current state of research. Psychoneuroendocinology. 2009;34:486–496.
  11. Zalewska A, Zwierz K, Żółkowski K, Gindzieński A. Structure and biosynthesis of human salivary mucins. Acta Biochim Polon. 2000;47:1067–1079.
  12. Sonesson M, Wickstrom C, Kinnby B, Ericson D, Matsson L. Mucins MUC5B and MUC7 in minor salivary gland secretion of children and adults. Arch Oral Biol. 2008;53:523–527.
  13. Streckfus CF. Advances in salivary diagnostics. Springer-Verlag Berlin Heidelberg; 2015.
  14. Sonesson M, Ericson D, Kinnby B, Wickström C. Glycoprotein 340 and sialic acid in minor-gland and whole saliva of children, adolescents, and adults. Eur J Oral Sci. 2011;119:435–440.
  15. Sonesson M, Hamberg K, Wallengren ML, Matsson L, Ericson D. Salivary IgA in minor-gland saliva of children, adolescents and young adults. Eur J Oral Sci. 2011;119:15–20.
  16. Dawes C, Pedersen AM, Villa A, et al. The functions of human saliva: A review sponsored by the World Workshop on Oral Medicine VI. Arch Oral Biol. 2015;60:863–874.
  17. Hopcraft MS, Tan C. Xerostomia: An update for clinicians. Aust Dent J. 2010;55:238–244.
  18. Jankowska A, Waszkiel D, Kobus A, Zwierz K. Ślina jako główny składnik ekosystemu jamy ustnej. Część II. Mechanizmy odpornościowe. Wiad Lek. 2007;60:253–257.
  19. Jankowska A, Waszkiel D, Kowalczyk A. Ślina jako główny składnik ekosystemu jamy ustnej. Część I. Mechanizm wydzielania i funkcje. Wiad Lek. 2007;60:148–154.
  20. Fabian TK, Fejérdy P, Csermely P. Salivary genomics, transcriptomics and proteomics: The emerging concept of the oral ecosystem and their use in the early diagnosis of cancer and other diseases. Curr Genomics. 2008;9:11–21.
  21. Fabian TK, Hermann P, Beck A, Fejérdy P, Fabian G. Salivary defense proteins: Their network and role in innate and acquired oral immunity. Int J Mol Sci. 2012;13:4295–4320.
  22. Fejerskov O, Kidd E. Wydzielanie i skład śliny. In: Próchnica zębów. Choroba próchnicowa i postępowanie kliniczne. Wrocław; 2006.
  23. Mattes RD. Oral detection of short-, medium-, and long-chain free fatty acids in humans. Chem Senses. 2009;34:145–150.
  24. Higashi T, Shibayama Y, Fuji M, Shimada K. Liquid chromatography-tandem mass spectrometric method for the determination of salivary 25-hydroxyvitamin D3 , a noninvasive tool for the assessment of vitamin D status. Anal Bioanal Chem. 2008;391:229–238.
  25. Izawa S, Saito K, Shirotsuki K, Sugaya N, Nomura S. Effects of prolonged stress on salivary cortisol and dehydroepiandrosterone: a study of two-week teaching practice. Psychoneuroendocrinology. 2012;37:852–858.
  26. Ridgway N, McLeod R. Biochemistry of lipids, lipoproteins and membranes. Amsterdam; 2016.
  27. Christie WW. Gas chromatography and lipids: A practical guide. Dundee: The Oily Press; 1989.
  28. Fahy E, Subramaniam S, Brown HA, et al. A comprehensive classification system for lipids. J Lipid Res. 2005;46:839–861.
  29. Fahy E, Subramaniam S, Murphy JRC, et al. Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res. 2009;50:S9–S14.
  30. Calder PC. Functional roles of fatty acids and their effects on human health. J Parenter Enteral Nutr. 2015;39:18S–32S.
  31. Bańkowski E. Biochemia: Podręcznik dla studentów uczelni medycznych. Wrocław; 2009.
  32. Żak I. Lipidy i pochodne. In: Chemia Medyczna. Katowice; 2001.
  33. Påhlasson P, Spitalnik SE, Spitalnik PF, et al. Characterization of galactosyl glycerolipids in the HT29 human colon carcinoma cell line. Arch Biochem Biophys. 1998;396:187–198.
  34. Di Paola M, Cocco T, Lorusso M. Ceramide interaction with the respiratory chain of heart mitochondria. Biochemistry. 2000;39:6660–6668.
  35. Symons JD, Abel ED. Lipotoxicity contributes to endothelial dysfunction: A focus on the contribution from ceramide. Rev Endocr Metab Disord. 2013;14:59–68.
  36. Van Brocklyn JR, Williams JB. The control of the balance between ceramide and sphingosine-1-phosphate by sphingosine kinase: Oxidative stress and the seesaw of cell survival and death. Comp Biochem Physiol. 2012;163:26–36.
  37. Karjalainen S, Sewón E, Soderling E, et al. Salivary cholesterol of healthy adults in relation to serum cholesterol concentration and oral health. J Dent Res. 1997;76:1637–1643.
  38. Kanazawa A. Sterols in marine invertebrates. Fish Sci. 2001;67:997–1007.
  39. Mandel ID. The functions of saliva. J Dent Res. 1987;66(Spec. Is.):623–627.
  40. Doubleday AW. Plodding toward diagnosis by salivary analysis. Dent Cosmos. 1909;51:412–421.
  41. Dirksen TR. Lipid constituents of whole and parotid saliva. J Dent Res. 1963;42:920–924.
  42. Krasnow F. Cholesterol and lecithin in teeth and saliva. J Dent Res. 1934;14:226–227.
  43. Krasnow F. Physiological significance of phospholipid in human saliva. J Dent Res. 1945;24:319–326.
  44. Mandel ID, Einstein A. Lipids in human salivary secretions and salivary calculus. Arch Oral Biol. 1969;14:231–233.
  45. Rabinowitz JL, Shannon IL. Lipid changes in human male parotid saliva by stimulation. Arch Oral Biol. 1975;20:403–406.
  46. Larsson B, Olivecrona G, Ericson T. Lipids in human saliva. Arch Oral Biol. 1996;41:105–110.
  47. Slomiany BL, Murty VL, Slomiany A. Salivary lipids in health and disease. Prog Lipid Res. 1985;24:311–324.
  48. Tomita Y, Miyake N, Yamanaka S. Lipids in human parotid saliva with regard to caries experience. J Oleo Sci. 2008;57:115–121.
  49. Brasser AJ, Barwacz CA, Dawson DV, Brogden KA, Drake DR, Wertz PW. Presence of wax esters and squalene in human saliva. Arch Oral Biol. 2011;56:588–591.
  50. Slomiany BL, Slomiany A, Mandel ID. Lipid composition of human submandibular gland secretion from light and heavy calculus formers. Arch Oral Biol. 1980;25:749–751.
  51. Slomiany BL, Murty VL, Mandel ID, Zalesna G, Slomiany A. Physico-chemical characteristics of mucus glycoproteins and lipids of the human oral mucosal mucus coat in relation to caries susceptibility. Arch Oral Biol. 1989;34:229–237.
  52. Kulkarni BV, Wood KV, Mattes RD. Quantitative and qualitative analyses of human salivary NEFA with gas-chromatography and mass spectrometry. Front Physiol. 2012;3:1–6.
  53. Slomiany BL, Slomiany A, Glass GB. Glyceroglucolipids of the Human Saliva. Eur J Biochem. 1978;84:53–59.
  54. Slomiany BL, Zdebska E, Murty VL, Slomiany A, Petropoulou K, Mandel ID. Lipid composition of human labial salivary gland secretions. Arch Oral Biol. 1983;28:711–714.
  55. Tandler B, Poulsen JH. Fusion of the envelope of mucous droplets with the luminal plasma membrane in acinar cells of the cat submandibular gland. J Cell Biol. 1976;68:775–781.
  56. Slomiany BL, Witas H, Murty VL, Slomiany A, Mandel ID. Association of lipids with proteins and glycoproteins in human saliva. J Dent Res. 1983;62:24–27.
  57. Slomiany BL, Murty VL, Slomiany A, Zielenski J, Mandel ID. Mucus glycoprotein of human saliva: Differences in the associated and covalently bound lipids with caries. Biochim Biophys Acta. 1986;882:18–28.
  58. Slomiany BL, Murty VL, Takagi A, Tsukada H, Kosmala M, Slomiany A. Fatty acid acylation of salivary mucin in rat submandibular glands. Arch Biochem Biophys. 1985;242:402–410.
  59. Witas H, Slomiany BL, Zdebska E, Kojima K, Liau YH, Slomiany A. Lipids associated with dog gastric mucus glycoprotein. J App Biochem. 1983;5:16–24.
  60. Witas H, Sarosiek J, Aono M, Murty VL, Slomiany A, Slomiany BL. Lipids associated with rat small-intestinal mucus glycoprotein. Carbohydr Res. 1983;120:67–76.
  61. Defagó MD, Garcés NR. New contribution about lipid carriers in human saliva. Biocell. 2008;32:105.
  62. Liau YH, Murty VL, Gwozdzinski K, Slomiany A, Slomiany BL. In vitro fatty acid acylation of mucus glycoprotein from sublingual salivary glands. Biochim Biophys Acta. 1986;880:108–116.
  63. Slomiany BL, Liau YH, Carter SR, Zielenski J, Slomiany A. Enzymic acylation of mucus glycoprotein with palmitic acid in rat submandibular salivary gland. Arch Oral Biol. 1986;31:463–468.
  64. Slomiany A, Jozwiak Z, Takagi A, Slomiany BL. The role of covalently bound fatty acids in the degradation of human gastric mucus glycoprotein. Arch Biochem Biophys. 1984;229:560–567.
  65. Slomiany A, Witas H, Aono M, Slomiany BL. Covalently linked fatty acids in gastric mucus glycoprotein of cystic fibrosis patients. J Biol Chem. 1983;258:8535–8538.
  66. Defagó MD, Valentich MA, Actis AB. Lipid characterization of human saliva. J Calif Dent Assoc. 2011;39:874–880.
  67. Kensche A, Reich M, Kümmerer K, Hanning M, Hanning C. Lipids in preventive dentistry. Clin Oral Investiq. 2013;17:669–685.
  68. Cullis PR, Hope MJ. Physical properties and functional roles of lipids in membranes. In: Vance DE, Vance JE, eds. Biochemistry of lipids and membranes; 1985.
  69. Galanti N, Baserga R. Glycolipid synthesis in the early prereplicative phase of isoproterenol-stimulated salivary glands of mice. J Biol Chem. 1971;246:6814–6821.
  70. Pritchard ET. Sulpholipid formation in rat submandibular gland. Biochem J. 1977;166:41–144.
  71. Carnoy C, Ramphal R, Scharfman A, et al. Altered carbohydrate composition of salivary mucins from patients with cystic fibrosis and the adhesion of Pseudomonas aeruginosa. Am J Respir Cell Mol Biol. 1993;3:323–340.
  72. Livnat G, Bentur L, Kuzmisnsky E, Nagler RM. Salivary profile and oxidative stress in children and adolescents with cystic fibrosis. J Oral Pathol Med. 2010;39:16–21.
  73. Nie S, Benito-Peńa E, Zhang H, Wu Y, Walt DR. Multiplexed salivary protein profiling for patients with respiratory diseases using fiber-optic bundles and fluorescent antibody-based microarrays. Anal Chem. 2013;85:9272–9280.
  74. Shori DK, Genter T, Hansen J, et al. Altered sialyl- and fucosyl-linkage on mucins in cystic fibrosis patients promotes formation of the sialyl-Lewis X determinant on salivary MUC-5B and MUC-7. Pflugers Arch. 2001;443:S55–61.
  75. Slomiany BL, Jozwiak Z, Slomiany A, Takagi A, Mandel ID. Occurrence of fatty acids covalently bound to protein in human submandibular saliva IRCS. Med Sci. 1983;11:765.
  76. Davis PB, di Sant’Agnese PA. A review. Cystic fibrosis at Forty – Quo Vadis? Pediatr Res. 1980;83–87.
  77. Morris PA, Prout RES, Proctor GB, Garrett JR, Anderson LC. Lipid analysis of the major salivary glands in streptozotocin-diabetic rats and the effects of insulin treatment. Arch Oral Biol. 1992;37:489–494.
  78. Anderson LC, Garrett JR. Lipid accumulation in the major salivary glands of streptozotocin-diabetic rats. Arch Oral Biol. 1986;31:469–475.
  79. Mahay S, Adeghate E, Lindley MZ, Rolph CE, Singh J. Streptozotocin-induced type 1 diabetes mellitus alters the morphology, secretory function and acyl lipid content in the isolated rat parotid salivary gland. Moll Cell Biochem. 2004;261:175–181.
  80. Sprecher H. Biochemistry of essential fatty acids. Prog Lipid Res. 1981;20:13–22.
  81. Christon R, Fernandez Y, Cambon-Gros C, et al. The effect of dietary essential fatty acid deficiency on the composition and properties of the liver microsomal membrane of rats. J Nutr. 1988;118:1311–1318.
  82. Bierć J, Borzym K, Waszkiel D, Daniszewska I, Zalewska A. Patogeneza zespołu Sjögrena. Wiad Lek. 2014;65:519–526.
  83. Carr AJ, Ng WF, Figueiredo F, Macleod RI, Greenwood M, Staines K. Sjögren’s syndrome - An update for dental practitioners. Br Dent J. 2012;213:353–357.
  84. Nikolov NP, Illei GG. Pathogenesis of Sjögren’s syndrome. Curr Opin Rheumatol. 2009;21:465–470.
  85. Delaleu N, Jonsson R, Koller MM. Sjögren’s syndrome. Eur J Oral Sci. 2005;113:101–113.
  86. Enger TB, Palm Ø, Garen T, Sandvik L, Jensen JL. Oral distress in primary Sjögren’s syndrome: Implications for health-related quality of life. Eur J Oral Sci. 2011;119:474–480.
  87. Fox RI. Sjögren's syndrome. Lancet. 2005;366:321–331.
  88. Fox RI. The salivary gland epithelial cell in Sjögren’s syndrome: What are the steps involved in wounding or killing their secretory function? J Rheumatol. 2012;39:1117–1119.
  89. Slomiany BL, Kosmala M, Nadziejko C, et al. Lipid composition and viscosity of parotid saliva in Sjögren syndrome in man. Arch Oral Biol. 1986;31:699–702.
  90. Tishler M, Yaron I, Raz A, Meyer FA, Yaron M. Salivary eicosanoid concentration in patients with Sjögren’s syndrome. Ann Rheum Dis. 1996;55:202–204.
  91. Slomiany BL, Murty VL, Aono M, Slomiany A, Mandel ID. Lipid composition of human parotid and submandibular saliva from caries-resistant and caries-susceptible adults. Arch Oral Biol. 1982;27:803–808.
  92. Murty VL, Slomiany BL, Laszewicz W, Slomiany A, Petropoulou K, Mandel ID. Lipids of developing dental plaque in caries-resistant and caries-susceptible adult people. Arch Oral Biol. 1985;30:171–175.