Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
5-Year IF – 2.0, IF – 1.9, JCI (2024) – 0.43
Scopus CiteScore – 4.3
Q1 in SJR 2024, SJR score – 0.598, H-index: 49 (SJR)
ICV – 161.00; MNiSW – 70 pts
Initial editorial assessment and first decision within 24 h

ISSN 1899–5276 (print), ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2017, vol. 26, nr 4, July, p. 717–722

doi: 10.17219/acem/62325

PubMed ID: 28691408

Publication type: review

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

The role of CD36 receptor in the pathogenesis of atherosclerosis

Barbara Choromańska1,D, Piotr Myśliwiec1,D, Katarzyna Choromańska2,D, Jacek Dadan1,E, Adrian Chabowski3,F

1 1st Department of General and Endocrine Surgery, Medical University of Bialystok, Poland

2 SKN Dental Biochemistry at the Department of Conservative Dentistry, Medical University of Bialystok, Poland

3 Department of Physiology, Medical University of Bialystok, Poland

Abstract

Atherosclerosis is a progressive, chronic inflammation in artery walls. Oxidized low density lipoproteins (ox-LDL) play an important role in atherosclerotic plaque formation. ox-LDL are taken up by macrophages mainly through scavenger receptors, among which CD36 is considered to be the most important. Animal studies have shown that crossing atherogenic mice with a strain lacking the expression of CD36 prevented the development of atherosclerosis despite a diet rich in saturated LCFA. In humans, autopsy studies performed in obese patients have demonstrated increased expression of CD36 receptor on macrophages, comprised within atherosclerotic plaques. Until recently it had been believed that CD36 is a major player in atherosclerosis progression in humans. However, recent studies challenge this conviction, showing increased incidence of coronary heart disease in the subgroup of patients with decreased expression of CD36. This article reviews the role of CD36 receptor in the development of atherosclerosis. The authors also discuss current possibilities to interfere with CD36, their potential benefits and hazards.

Key words

atherosclerosis, CD36 receptor, ox-LDL

References (55)

  1. Febbraio M, Hajjar DP, Silverstein RL. CD36: A class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest. 2001;108:785–791.
  2. Kuliczkowska-Płaksej J, Bednarek-Tupikowska G, Płaksej R, Filus A. Receptor CD36-występowanie, regulacja ekspresji oraz rola w patogenezie miażdżycy. Część I. Postepy Hig Med Dosw. 2006;60:142–151.
  3. Ohgami N, Nagai R, Ikemoto M, Arai H, Kuniyasu A, Horiuchi S, Nakayama H. CD36, a member of the class B scavenger receptor family. As a receptor for advanced glycation end products. J Biol Chem. 2001;276(5):3195–3202.
  4. Silverstein RL, Febbraio M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis and behavior. Sci Signal. 2009;2(72):re3.
  5. Greenwalt DE, Lipsky RH, Ockenhouse CF, Ikeda H, Tandon NN, Jamieson GA. Membrane glycoprotein CD36: A review of its roles in adherence, signal transduction, and transfusion medicine. Blood. 1992;80:1105–1115.
  6. Nicholson AC. Exspression of CD36 inmacrophages and atherosclerosis. The role of lipid regulation of PPARγ signaling. Trends Cardiovasc Med. 2004;14:8–12.
  7. Li W, Febbraio M, Reddy SP, Yu DY, Yamamoto M, Silverstein RL. CD36 participates in a signaling pathway that regulates ROS formation in Marine VSMCs. J Clin Invest. 2010;120(11):3996–4006.
  8. Harasim E, Kalinowska A, Stępek T, Chabowski A. Udział białek transportujących (FAT/CD36, FABPpm, FATP) w metabolizmie lipidów w mięśniach szkieletowych. Postepy Hig Med Dosw. 2008;62:433–441.
  9. Kalinowska A, Harasim E, Łukaszuk B, Chabowski A. Białka transportujące kwasy tłuszczowe a metabolizm lipidów w mięśniu sercowym. Czynniki Ryzyka. 2009;4:43–49.
  10. Febbraio M, Guy E, Silverstein RL. Stem cell transplantation reveals that absence of macrophage CD36 is protective against atherosclerosis. Arterioscler Thromb Vasc Biol. 2004;24:2333–2338.
  11. Silverstein RL, Li W, Park YM, Rahaman SO. Mechanism of cell signaling by the scavenger receptor CD36: implications in atherosclerosis and thrombosis. Trans Am Clin Climatol Assoc. 2010;121:206-220.
  12. Febbraio M, Podrez EA, Smith JD, et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest. 2000;105:1049–1056.
  13. Kennedy DJ, Kuchibhotla S, Westfall KM, Silverstein RL, Morton RE, Febbraio M. A CD36-dependent pathway enhances macrophage and adipose tissue inflammation and impairs insulin signalling. Cardiovasc Res. 2011;89:485–486.
  14. Kuda O, Jenkins CM, Skinner JR, Moon SH, Su X, Gross RW, Abumrad NA. CD36 protein is involved in store-operated calcium flux, phospholipase A2 activation, and production of prostaglandin E2. J Biol Chem. 2011;286(20):17785–17795.
  15. Nakata A, Nakagawa Y, Nishida M, et al. CD36, a novel receptor for oxidized lowdensity lipoproteins, is highly expressed on lipid-laden macrophages in human atherosclerotic aorta. Thromb Vasc Biol. 1999;19:1333–1339.
  16. Rios FJ, Ferracini M, Pecenin M, Koga MM, Wang Y, Ketelhuth DF, Jancar S. Uptake of oxLDL and IL-10 production by macrophages requires PAFR and CD36 recruitment into the same lipid rafts. PLoS One. 2013ł8(10):e76893. doi: 10.1371.
  17. Han S, Sidell N. Peroxisome-proliferator-activated-receptor gamma (PPARgamma) independent induction of CD36 in THP-1 monocytes by retinoic acid. Immunology. 2002;106:53–59.
  18. Moore KJ, Kunjathoor VV, Koehn SL, et al. Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice. J Clin Invest. 2005;115(8):2192–2201.
  19. Yuasa-Kawase M, Masuda D, Yamashita T, et al. Patients with CD36 deficiency are associated with enhanced atherosclerotic cardiovascular diseases. J Atheroscler Thromb. 2012;19(3):263–275.
  20. Xie S, Lee YF, Kim E, et al. TR4 nuclear receptor functions as afatty acid sensor to modulate CD36 expression and foam cell formation. Proc Natl Nacad Sci USA. 2009;106(32):13353–13358.
  21. Han J, Hajjar DP, Tauras JM, Nicholson AC. Cellular cholesterol regulates expression of the macrophage type B scavenger receptor, CD36. J Lipid Res. 1999;40:830–838.
  22. Zhao SP, Yang J, Li J, Dong SZ, Wu ZH. Effect of niacin on LXRalpha and PPARgamma expression and HDL-induced cholesterol efflux in adipocytes of hypercholesterolemic rabbits. Int J Cardiol. 2008;124:172–178.
  23. Zhong Q, Zhao S, Yu B, et al. High-density lipoprotein increases the uptake of oxidized low density lipoprotein via PPARγ/CD36 pathway in inflammatory adipocytes. Int J Biol Sci. 2015;11(3):256–265.
  24. Han J, Hajjar DP, Zhou X, Gotto AMJr, Nicholson AC. Regulation of peroxisome proliferator-activated receptor-gamma-mediated gene expression. A new mechanism of action for high density lipoprotein. J Biol Chem. 2002;277:23582–23586.
  25. Chabowski A, Coort SL, Calles-Escandon J, et al. Insulin stimulates fatty acid transport by regulating expression of FAT/CD36 but not FABPpm. Am J Physiol Endocrinol Metab. 2004;287(4):E781-E789.
  26. Kuliczkowska-Płaksej J, Bednarek-Tupikowska G, Płaksej R, Filus A. Wpływ cukrzycy i insulinooporności na ekspresję receptora CD36. Część II. Udział receptora CD36 w patomechanizmie powikłań cukrzycy. Postepy Hig Med Dosw. 2006;60:152–162.
  27. Yanai H, Chiba H, Morimoto M, Jamieson GA, Matsuno K. Type I CD36 deficiency in humans is not associated with insulin resistance syndrome. Thromb Haemost. 2000;83(5):786.
  28. Bekkering S, Quintin J, Joosten LA, van der Meer JW, Netea MG, Riksen NP. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler Thromb Vasc Biol. 2014;34(8);1731–1738.
  29. Sui Y, Park SH, Helsley RN, et al. Bisphenol A increases atherosclerosis in pregnane X receptor-humanized ApoE deficient mice. J Am Heart Assoc. 2014;3(2):e000492. doi: 10.1161/JAHA.113.000492.
  30. Huang JT, Welch JS, Ricote M, et al. Interleukin-4-dependent production of PPAR-g ligands in macrophages by 12/15-lipoxygenase. Nature. 1999;400:378–382.
  31. Han J, Hajjar DP, Tauras JM, Feng J, Gotto AM, Nicholson AC. Transforming growth factor-beta 1 (TGF-beta 1) and TGF-beta 2 decrease expression of CD36, the type B scavenger, through mitogen-activated protein kinase phosphorylation of peroxisome proliferator-activated receptor-gamma. J Biol Chem. 2000;275:1241–1246.
  32. Nakagawa T, Nozaki S, Nishida M, et al. Oxidized LDL increases and interferongamma decreases expression of CD36 in human monocyte-derived macrophages. Arterioscler Thromb Vasc Biol. 1998;18:1350–1357.
  33. Chu EM, Tai DC, Beer JL, Hill JS. Macrophage heterogeneity and cholesterol homeostasis: Classically-activated macrophages are associated with reduced cholesterol accumulation following treatment with oxidized LDL. Biochim Biophys Acta. 2012;1831(2):378–386.
  34. Zernecke A, Bot I, Djalali-Talab Y, et al. Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis. Circ Res. 2008;102:209–217.
  35. Baetta R, Corsini A. Role of polymorphonuclear neutrophils in atherosclerosis: current state and future perspectives. Atherosclerosis. 2010;210(1):1–13.
  36. Quinn KL, Henriques M, Tabuchi A, et al. Human neutrophil peptides mediate endothelial-monocyte interaction, foam cell formation, and platelet activation. Arterioscler Thromb Vasc Biol. 2011;31(9):2070–2079.
  37. Sui Y, Xu J, Rios-Pilier J, Zhou C. Deficiency of PXR decreases atherosclerosis in apoE-deficient mice. J Lipid Res. 2011;52(9):1652–1659.
  38. Rios FJ, Ferracini M, Pecenin M, et al. Uptake of oxLDL and IL-10 production by macrophages requires PAFR and CD36 recruitment into the same lipid rafts. PLoS One. 2013;8(10):e76893. doi: 10.1371.
  39. Méndez-Barbero N, Esteban V, Villahoz S, et al. A major role for RCAN1 in atherosclerosis progression. EMBO Mol Med. 2013;5(12):1901–1917.
  40. Lindgren A, Levin M, Rodrigo Blomqvist S, et al. Adiponectin receptor 2 deficiency results in reduced atherosclerosis in the brachiocephalic artery in apolipoprotein e deficient mice. PLoS One. 2013;8(11):e80330. doi: 10.1371.
  41. Xia F, Li R, Wang C, et al. IRGM1 regulates oxidized LDL uptake by macrophage via actin-dependent receptor internalization during atherosclerosis. Sci Rep. 2013;3:1867. doi: 10.1038.
  42. Han J, Zhou X, Yokoyama T, Hajjar DP, Gotto AM, Nicholson AC. Pitavastation downregulates expression of the macrophage type B scavenger receptor, CD36. Circulation. 2004;17:790–796.
  43. Piechota M, Banaszewska A, Dudziak J, Slomczynski M, Plewa R. Highly upregulated expression of CD36 and MSR1 in circulating monocytes of patients with acute coronary syndromes. Protein J. 2012;31(6):511–518.
  44. Fukuda K, Matsumura T, Senokuchi T, et al. Statins meditate anti-atherosclerotic action in smooth muscle cells by peroxisome proliferator-activated receptor-γ activation. Biochem Biophys Res Commun. 2015;457(1):23–30.
  45. Tontonoz P, Nagy L, Alvares JG, Thomazy VA, Evans RM. PPARγpromotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell. 1998;93:241–252.
  46. Lehman JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem. 1995;270(22):12953-12956.
  47. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated recptor-γ is a negative regulator of macrophage activation. Nature. 1998;391:79-82.
  48. Komatsu A, Node K. Effects of PPARgamma agonist on dyslipidemia and atherosclerosis. Nihon Rnsho. 2010;68(2):294–298.
  49. Chinetti G, Lestavel S, Bocher V, et al. PPAR-α and PPAR-γ activators induce cholesterol removal from human macrophage foam cell through stimulation ABCA1 pathway. Nat Med. 2001, 7(1):53–58.
  50. Xin Wang, Jianming Wei, Lijian Pan, Yijun Shi, Haihong Lin, Hui G. The role of CD36 in the effect of arginine in atherosclerotic rats. Med Sci Monit. 2015;21:1494–1499.
  51. Nozaki S, Kashiwagi H, Yamashita S, et al. Reduced uptake of oxidized low density lipoproteins i monocyte – derived macrophages from CD36 – deficient subjects. J Clin Invest. 1995;96:1859–1865.
  52. Magwenzi S, Woodward C, Wraith KS, et al. Oxidized LDL activates blood platelets through CD36/NOX2-mediated inhibition of the cGMP/protein kinase G signaling cascade. Blood. 2015;125(17):2693–2703.
  53. Areschoug T, Gordon S. Scavenger receptors: role in innate immunity and microbial pathogenesis. Cel Microbiol. 2009;11(8):1160–1169.
  54. Dawson DW, Pearce SFA, Zhong R, Silverstein RL, Bouck NP. CD36 mediates the inhibitory effects of thromobospondin-1 on endothelial cells. J Cell Biol. 1997;138:707–717.
  55. Wu J, He Z, Gao X, et al. Oxidized high-density lipoprotein impairs endothelial progenitor cells’ function by activation of CD36-MAPK-TSP-1 pathways. Antioxid Redox Signal. 2015;22(4):308–324.