Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1 (5-Year IF – 2.0)
Journal Citation Indicator (JCI) (2023) – 0.4
Scopus CiteScore – 3.7 (CiteScore Tracker 3.8)
Index Copernicus  – 171.00; MNiSW – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2013, vol. 22, nr 5, September-October, p. 615–620

Publication type: original article

Language: English

Tannic Acid Influence on Lead and Cadmium Accumulation in the Hearts and Lungs of Rats

Wpływ kwasu taninowego na akumulację ołowiu i kadmu w sercach i płucach szczurów

Anna Winiarska-Mieczan1,A,B,C,D,E, Robert Krusiński2,B,E,F, Małgorzata Kwiecień2,B,E,F

1 Department of Bromatology and Food Physiology, University of Life Sciences in Lublin, Poland

2 Department of Animal Nutrition, University of Life Sciences in Lublin, Poland

Abstract

Background. The presence of heavy metals in food products has become a global problem. In order to reduce the absorption of heavy metals from food we should consider substances which bind these toxic metals and are generally available and easy to apply, such as tannins.
Objectives. The study aimed at verifying if oral administration of tannic acid could reduce the accumulation of lead and cadmium in the heart and lungs of rats subjected to a continuous exposure of toxic metals in low doses.
Material and Methods. Adolescent and adult male Wistar rats were given tannic acid (2% solution) or distilled water containing 0, 50, 100 mg Pb (as (CH3COO)2Pb)/L or 0, 7, 14 mg Cd (as CdCl2)/L, for 6 or 12 weeks.
Results. Administering a 2% solution of tannic acid alternately with Pb or Cd to the rats was the effective method of reducing lead and cadmium content in the rats’ heart and lungs.
Conclusion. The obtained results may be referred to people. It is necessary to conduct further research in order to confirm the hypothesis that tannic acid, present in numerous food products and primarily in drinks (wine, tea and coffee), used in the human diet, may reduce the accumulation of lead and cadmium in the tissues and thus weaken their toxicity, which is important regarding our common exposure to heavy metals found in food.

Streszczenie

Wprowadzenie.Obecność metali ciężkich w żywności jest problemem globalnym. Aby ograniczyć wchłanianie metali ciężkich z żywności, należy brać pod uwagę substancje wiążące te toksyczne metale, które przy okazji będą łatwe w użyciu i ogólnie dostępne, np. kwas taninowy.
Cel pracy. Sprawdzenie, czy doustne podawanie kwasu taninowego spowoduje zmniejszenie akumulacji kadmu i ołowiu w sercu oraz płucach szczurów wystawionych na stałą ekspozycję tych metali toksycznych w małych dawkach.
Materiał i metody. Rosnące i dorosłe samce szczurów Wistar otrzymywały 2% roztwór kwasu taninowego lub wodę destylowaną zawierającą 0, 50, 100 mg Pb (w postaci (CH3COO)2Pb)/L albo 0, 7, 14 mg Cd (CdCl2)/L przez 6 lub 12 tygodni.
Wyniki. Zastosowanie 2% roztworu kwasu taninowego naprzemiennie z Pb lub Cd okazało się skutecznym sposobem ograniczenia koncentracji tych metali w sercach i płucach szczurów.
Wnioski. Uzyskane wyniki można odnieść do ludzi. Należy prowadzić dalsze badania mające na celu potwierdzenie, czy stosowanie w diecie człowieka kwasu taninowego, występującego w wielu pokarmach, a przede wszystkim w napojach (wino, kawa, herbata), może ograniczyć kumulowanie ołowiu i kadmu w tkankach i tym samym osłabić ich toksyczne działanie. Jest to ważne z uwagi na powszechne narażenie ludzi na metale ciężkie, których podstawowym źródłem jest żywność.

Key words

lead, cadmium, tannic acid, accumulation, hearts, lungs, rats.

Słowa kluczowe

ołów, kadm, kwas taninowy, akumulacja, serca, płuca, szczury.

References (36)

  1. Castelli M, Rossi B, Corsetti F, Mantovani A, Spera G, Lubrano C, Silvestroni L, Patriarca M, Chiodo F, Menditto A: Levels of cadmium and lead in blood: an application of validated methods in a group of patients with endocrine/metabolic disorders from the Rome area. Microchem J 2005, 79, 349–355.
  2. Bradstreet J, Geier DA, Kartzinel JJ, Adams JB, Geier MR: A case-control study of mercury burden in children with autistic spectrum disorders. J Am Phys Surg 2003, 3, 76–79.
  3. Hegazy A, Hashem M, El Shafei A, Shaker N, Hady MA: Development of anti-microbial jute fabrics via in situ formation of cellulose-tannic acid-metal ion complex. Carb Polym 2010, 79, 890–897.
  4. Tong SE, von Schirnding YE, Prapamontol T: Environmental lead exposure a public health problem of global dimensions. Bull World Health Organ 2010, 78, 1068–1077.
  5. EFSA Panel on Contaminants in the Food Chain (CONTAM); Scientific Opinion on Lead in Food. EFTA J 2010, 8, 1423–1570.
  6. Shiraishi N, Rehm S, Waalkes MP: Effect of chlorpromazine pretreatment on cadmium toxicity in the male Wistar (WF/NCr) rat. Toxicol Environ Health 1994, 42, 193–208.
  7. Jedlińska-Krakowska M: Influence of cadmium, lead and vitamin E and C on the levels of selected oxidative and biochemical indices in rat males. Bromat Chem Toksykol 2010, 4, 551–557 [in Polish, English abstract].
  8. Kojima S, Sugimura Y, Ono H, Shimada H, Funakoshi T: N-benzyl-D-glucamine dithiocarbamate and N-p-isopropylbenzyl-D-glucamine dithiocarbamate improve the protective effect of diethyldithiocarbamate against cadmium-induced testicular toxicity in rats. Biol Pharm Bull 1993, 16, 244–247.
  9. Kowalczyk E, Jankowski A, Niedworok J, Śmigielski J, Tyslerowicz P: Effect of long-term cadmium intoxication on selected biochemical parameters in experimental animals. Pol J Environ Stud 2002, 5, 599–601.
  10. Chubatsu LS, Gennari M, Meneghini R: glutathione is the antioxidant responsible for resistance to oxidative stress in V79 Chinese hamster fibroblasts rendered resistant to cadmium. Chem Biol Interact 1992, 82, 99–100.
  11. Shimada H, Funakoshi T, Waalkes MP: Acute, nontoxic cadmium exposure inhibits pancreatic protease activities in the mouse. Toxicol Sci 2000, 53, 474–480.
  12. Iscan M, Coban T, Iscan ML: Combinated effect of cadmium and nickel on rat hepatic monooxygenases: possible stimulation of certain cytochrome P-450 isozymes. Toxicol Lett 1992, 62, 191–199.
  13. Bialonska D, Zakrzewska M, Rawicka-Kapusta K, Konior M: The long-term effect of cadmium exposure trough food on the postnatal development of the bank vole. Filia Biol 2001, 50, 203–209.
  14. Giridhar J, Rathinavelu A, Isom GE: Interaction of cadmium with atrial natriuretic peptide receptors: implications for toxicity. Toxicol 1992, 75, 133–143.
  15. Hayashi T, Sudo J: Interrelations of cadmium contents and histopathological changes in kidneys following single intravenous injection of cadmium-saturated metallothionein II in rats. J Toxicol Sci 1994, 19, 45–53.
  16. Leonzo G, Fossi MC, Lari L, Focardi S: Influence of cadmium on polychlorobiphenyl uptake, MFO activity, and serum lipid levels in Japanese quail. Arch Environ Contain Toxicol 1992, 22, 238–241.
  17. Pekdemir T, Tokunaga S, Ishigami Y, Kyung-Jin H: Removal of cadmium or lead from polluted water by biological amphiphiles. J Surf Deterg 2000, 3, 43–46.
  18. Kim PG, Ahn RM, Hwang SH: The effects of tannic acid to the cadmium on mouse. J Fd Hyg Safety 1998, 13, 87–93.
  19. Savolainen H: Tannin content of tea and coffee. J Appl Toxicol 1992, 12, 191–192.
  20. Tyczkowska K: Determination of tannic acid content in sorghum seeds. Biul Inf Przem Pasz 1997, 4, 40–45 [in Polish].
  21. Al-Oud SS: Heavy metal contents in tea and herb leaves. Pak J Biol Sci 2003, 6, 208–212.
  22. Nwokocha CR, Ufearo CS, Owu DU, Idemudo NC, Ojukwu LC: In vivo distribution of lead in male and female rats after intraperitoneal and oral administration. Toxicol Ind Health 2011, 27, doi: 10.1177/0748233711407955.
  23. Brzóska MM, Moniuszko-Jakoniuk J, Jurczuk M, Gałażyn-Sidorczuk M, Rogalska J: Effect of short-term ethanol administration on cadmium retention and bioelement. metabolism in rats continuously exposed to cadmium. Alcohol Alcoholism 2000, 35, 439–445.
  24. Jomova K, Valko M: Advances in metal-induced oxidative stress and human disease. Toxicol 2011, 283, 65–87.
  25. Ravi K, Paliwal VK, Nath R: Induction of Cd-metallothionein in cadmium exposed monkeys under different nutritional stresses. Toxicol Lett 1984, 22, 21–26.
  26. Revis NW, Osborne TR: Dietary protein effects on cadmium and metallothionein accumulation in the liver and kidney of rats. Environ Health Perspect 1984, 54, 83–91.
  27. West J: Respiratory physiology – the essentials. Williams & Wilkins, Baltimore, 2008, 8th ed.
  28. Neil E: Principles of vascular control. Postgrad Med J 1974, 50, 557–559.
  29. Satarug S, Baker JE, Reilly PE, Moore MR, Williams DJ: Changes in zinc and copper homeostasis in human livers and kidneys associated with exposure to environmental cadmium. Hum Exp Toxicol 2001, 20, 205–213.
  30. Eklund G, Grawé KP, Oskarsson A: Bioavailability of cadmium from infant diets in newborn rats. Arch Toxicol 2001, 75, 522–530.
  31. Horiguchi H, Oguma E, Sasaki S, Miyamoto K, Ikeda Y, Mahida M, Kayama F: Comprehensive study of the effects of age, iron deficiency, diabetes mellitus, and cadmium burden on dietary cadmium absorption in cadmium-exposed female Japanese farmers. Toxicol Appl Pharmacol 2004, 196, 114–123.
  32. Gundacker C, Pietschnig B, Wittmann KJ, Lischka A, Salzer H, Hohenauer L, Schuster E: Lead and mercury in breast milk. Pediatrics 2002, 5, 873–878.
  33. Rosenthal P: Assessing liver function and hyperbilirubinemia in the newborn. Clin Chem 1997, 43, 228–234.
  34. Sastre JB, Aparicio AR, Cotallo GD, Colomer BF, Hernández MC: Urinary tract infection in the newborn: clinical and radio imaging studies. Pediatr Nephrol 2007, 22, 1735–1741.
  35. Rotenberg JS, Newmark J: Nerve agent attacks on children: diagnosis and management. Pediatrics 2003, 112, 648–658.
  36. Milsap R, Jusko W: Pharmacokinetics in the infant. Environ Health Perspect 1994, 102, 107–110.