Advances in Clinical and Experimental Medicine
2012, vol. 21, nr 6, November-December, p. 727–733
Publication type: original article
Language: English
Estimating the Postmortem Interval by the Difference Between Oxidant/Antioxidant Parameters in Liver Tissue
Określanie czasu zgonu za pomocą różnicy między wskaźnikami oksydacyjnymi i antyoksydacyjnymi w tkance wątroby
1 Department of Forensic Medicine, Faculty of Medicine, Ataturk University, Erzurum, Turkey
2 Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
3 Department of Biochemistry, Faculty of Medicine, Ataturk University, Erzurum, Turkey
Abstract
Background. So far the authors could not find any published paper that shows the presence of a possibly significant relationship between oxidant/antioxidant parameters and time of death.
Objectives. This study sought to investigate whether the differences between the levels of endogenous parameters like superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GPx), glutathione S-transferases (GST), total glutathione (GSH), catalase (CAT) and nitric oxide (NO) have a relationship with the early postmortem interval (EPI).
Material and Methods. A total of 60 Albino Wistar male rats weighing between 220–230 grams were obtained. The rats were divided into six subgroups (n = 10), fed at room temperature (220C) and then decapitated. The livers of the dead rats were extracted at intervals of one hour and biochemical examinations were performed and biochemical results obtained from the animal groups had been evaluated.
Results. The authors performed linear regression analysis in order to search for factors predicting the time of death. The time of death was taken as a dependent variable with SOD, MDA, GPx, GST, GSH, CAT, and NO as independent variables. This model resulted with a high predictive value (adjusted R square = 94.0%). SOD, GST and NO were found to be significant factors independently affecting the prediction of the death time.
Conclusion. In conclusion, the results obtained from the experiment showed that the oxidant and antioxidant parameters are important for estimating the EPI.
Streszczenie
Wprowadzenie. Dotychczas nie ukazała się publikacja, która opisywałaby potencjalnie znaczący związek między wskaźnikami oksydacyjnymi i antyoksydacyjnymi a czasem zgonu.
Cel pracy. Zbadanie, czy różnice między stężeniem wskaźników endogennych, takich jak dysmutaza ponadtlenkowa (SOD), aldehyd malonowy (MDA), peroksydaza glutationowa (GPx), glutation S-transferazy (GST), całkowity glutation (tGSH), katalaza (CAT) i tlenek azotu (NO) mają związek z wczesnym czasem zgonu (EPI).
Materiał i metody. Do badań włączono 60 szczurów rasy Albino szczepu Wistar płci męskiej o masie ciała 220–230 g. Szczury podzielono na 6 podgrup (n = 10), karmiono w temperaturze pokojowej (22oC) i uśmiercono za pomocą dekapitacji. Wątroby martwych szczurów ekstrahowano w odstępach godzinnych, przeprowadzono badanie biochemiczne i oceniono wyniki uzyskane w poszczególnych grupach zwierząt.
Wyniki. Przeprowadzono analizę regresji liniowej w celu znalezienia czynników, które pozwoliłyby przewidzieć czas zgonu. Czas zgonu przyjęto jako zmienną zależną, a SOD, MDA, GPx, GST, GSH, CAT i NO jako zmienne niezależne. Taki model miał dużą wartość prognostyczną (skorygowane R2 = 94,0%). SOD, GST i NO były czynnikami niezależnymi pozwalającymi na przewidywanie czasu zgonu.
Wnioski. Wyniki uzyskane w doświadczeniu wykazały, że wskaźniki oksydacyjne i antyoksydacyjne są przydatne do oceny wczesnego czasu zgonu.
Key words
early postmortem interval, oxidants, antioxidants, liver, rats
Słowa kluczowe
wczesny czas zgonu, utleniacze, przeciwutleniacze, wątroba, szczury
References (29)
- Henssge C, Madea B: Estimation of the time since death in the early post-mortem period. Forensic Sci Int 2004, 144, 167–175.
- Knight B, Knight BFp, Saukko PJ: Knight’s forensic pathology. Arnold, London 2004, 3th ed., 76–97.
- Prieto-Castello MJ, Hernandez del Rincon JP, Perez-Sirvent C et al.: Application of biochemical and X-ray diffraction analyses to establish the postmortem interval. Forensic Sci Int 2007, 172, 112–118.
- Poloz YO, O’Day DH: Determining time of death: temperature-dependent postmortem changes in calcineurin A, MARCKS, CaMKII, and protein phosphatase 2A in mouse. Int J Legal Med 2009, 123, 305–314.
- Aydn B, Colak B, Balc Y, Demirustu C: Consistency of postmortem interval estimations of physicians using only postmortem changes of putrefied dead bodies. Am J Forensic Med Pathol 2010, 31, 243–246.
- Lin X, Yin YS, Ji Q: Progress on DNA quantification in estimation of postmortem interval. Fa Yi Xue Za Zhi 2011, 27, 47–49.
- Zheng JL, Li XN, Zhang XD, Niu QS: DNA degradation in nucleolus of skeletal muscle, heart, liver, kidney and brain in mice after death. Fa Yi Xue Za Zhi 2010, 26, 161–164.
- Bauer M, Gramlich I, Polzin S, Patzelt D: Quantification of mRNA degradation as possible indicator of postmortem interval – a pilot study. Leg Med (Tokyo) 2003, 5, 220–227.
- Fang C, Wang SC, Sun LM, Zhang XT, Long WQ, Jing HL: Concentration changes of potassium and hypoxanthine in vitreous humor of swine and its application to postmortem interval estimation. Fa Yi Xue Za Zhi 2011, 27, 9–12.
- Tao T, Xu J, Luo TX, Liao ZG, Pan HF: Contents of vitreous humor of dead body with different postmortem intervals. Sichuan Da Xue Xue Bao Yi Xue Ban. 2006, 37, 898–900.
- Wehner F, Wehner HD, Schieffer MC, Subke J: Delimitation of the time of death by immunohistochemical detection of insulin in pancreatic beta-cells. Forensic Sci Int 1999, 105, 161–169.
- Wehner F, Wehner HD, Subke J: Delimitation of the time of death by immunohistochemical detection of calcitonin. Forensic Sci Int 2001, 122, 89–94.
- Clarkson PM, Thompson HS: Antioxidants: what role do they play in physical activity and health? Am J Clin Nutr 2000, 72, 637–646.
- Sun Y, Oberley LW, Li Y: A simple method for clinical assay of superoxide dismutase. Clin Chem 1988, 34, 497–500.
- Ohkawa H, Ohishi N, Yagi K: Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979, 95, 351–358.
- Lawrence RA, Sunde RA, Schwartz GL, Hoekstra WG: Glutathione peroxidase activity in rat lens and other tissues in relation to dietary selenium intake. Exp Eye Res 1974, 18, 563–569.
- Habig WH, Pabst MJ, Jakoby WB: Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 1974, 249, 7130–7139.
- Sedlak J, Lindsay RH: Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 1968, 25, 192–205.
- Aebi H: Catalase in vitro. Methods Enzymol 1984, 105, 121–126.
- Moshage H, Kok B, Huizenga JR, Jansen PL: Nitrite and nitrate determinations in plasma: a critical evaluation. Clin Chem 1995, 41, 892–896.
- Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72, 248–254.
- Iraz M, Ozerol E, Gulec M et al.: Protective effect of caffeic acid phenethyl ester (CAPE) administration on cisplatin-induced oxidative damage to liver in rat. Cell Biochem Funct 2006, 24, 357–361.
- Aguilar A, Alvarez-Vijande R, Capdevila S, Alcoberro J, Alcaraz A: Antioxidant patterns (superoxide dismutase, glutathione reductase, and glutathione peroxidase) in kidneys from non-heart-beating-donors: experimental study. Transplant Proc 2007, 39, 249–252.
- Cheeseman KH, Slater TF: An introduction to free radical biochemistry. Br Med Bull 1993, 49, 481–493.
- Fridovich I: Superoxide radical and superoxide dismutases. Annu Rev Biochem 1995, 64, 97–112.
- Scarpelli DG, Iannaccone PM: Cell death, autolysis and necrosis, In: Anderson’s pathology. Eds.: Kissane JM., Anderson WAD, MO: Mosbey, St. Louis, 1990, 9 th ed., 13.
- Melchiorri D, Sewerynek E, Reiter RJ, Ortiz GG, Poeggeler B, Nistico G: Suppressive effect of melatonin administration on ethanol-induced gastroduodenal injury in rats in vivo. Br J Pharmacol 1997, 121, 264–270.
- Liu RM, Gao L, Choi J, Forman HJ: Gamma-glutamylcysteine synthetase: mRNA stabilization and independent subunit transcription by 4-hydroxy-2-nonenal. Am J Physiol 1998, 275, 861–869.
- Reilly PM. Schiller HJ, Bulkley GB: Pharmacologic approach to issue injury mediated by free radicals and other reactive oxygen metabolites. Am J Surg 1991, 161, 488–503.


