Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
5-Year IF – 2.0, IF – 1.9, JCI (2024) – 0.43
Scopus CiteScore – 4.3
Q1 in SJR 2024, SJR score – 0.598, H-index: 49 (SJR)
ICV – 161.00; MNiSW – 70 pts
Initial editorial assessment and first decision within 24 h

ISSN 1899–5276 (print), ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2012, vol. 21, nr 4, July-August, p. 525–534

Publication type: review article

Language: English

Gene Therapy Prospects – Intranasal Delivery of Therapeutic Genes

Perspektywy terapii genowej – donosowe podawanie terapeutycznych genów

Karolina Podolska1,, Anna Stachurska1,2,, Karolina Hajdukiewicz1,2,, Maciej Małecki1,2,

1 Department of Cell Biology, Cancer Center, Warsaw, Poland

2 Department of Molecular Biology, Medical University of Warsaw, Poland

Abstract

Gene therapy is recognized to be a novel method for the treatment of various disorders. Gene therapy strategies involve gene manipulation on broad biological processes responsible for the spreading of diseases. Cancer, monogenic diseases, vascular and infectious diseases are the main targets of gene therapy. In order to obtain valuable experimental and clinical results, sufficient gene transfer methods are required. Therapeutic genes can be administered into target tissues via gene carriers commonly defined as vectors. The retroviral, adenoviral and adeno-associated virus based vectors are most frequently used in the clinic. So far, gene preparations may be administered directly into target organs or by intravenous, intramuscular, intratumor or intranasal injections. It is common knowledge that the number of gene therapy clinical trials has rapidly increased. However, some limitations such as transfection efficiency and stable and long-term gene expression are still not resolved. Consequently, great effort is focused on the evaluation of new strategies of gene delivery. There are many expectations associated with intranasal delivery of gene preparations for the treatment of diseases. Intranasal delivery of therapeutic genes is regarded as one of the most promising forms of pulmonary gene therapy research. Gene therapy based on inhalation of gene preparations offers an alternative way for the treatment of patients suffering from such lung diseases as cystic fibrosis, alpha-1-antitrypsin defect, or cancer. Experimental and first clinical trials based on plasmid vectors or recombinant viruses have revealed that gene preparations can effectively deliver therapeutic or marker genes to the cells of the respiratory tract. The noninvasive intranasal delivery of gene preparations or conventional drugs seems to be very encouraging, although basic scientific research still has to continue.

Streszczenie

Terapia genowa jest nową metodą leczenia chorób. Strategia terapii genowej opiera się na wykorzystaniu do celów terapeutycznych genów kodujących białka o kluczowym znaczeniu dla przebiegu procesów biologicznych warunkujących powstawanie i rozwój chorób. Obecnie próby kliniczne terapii genowej dotyczą głównie nowotworów, zaburzeń sercowo-naczyniowych i chorób zakaźnych. Skuteczność kliniczna terapii genowej wiąże się bezpośrednio z opracowywaniem metod wprowadzania genów do wybranych komórek, narządów. Terapeutyczne geny są dostarczane do tkanek za pomocą nośników – wektorów. Retrowirusy, adenowirusy i wirusy związane z adenowirusami są najczęściej stosowanymi wektorami terapii genowej w klinice. Dotychczas preparaty genowe mogą być podawane dożylnie, domięśniowo, dojamowo, doguzowo oraz donosowo. Skuteczność terapeutyczna genów, terapii genowej jest bezpośrednio związana z ekspresją transgenów w docelowych komórkach. Zarówno zakłady badań podstawowych, jak i kliniki nie dysponują jeszcze optymalnymi wektorami, metodami wprowadzania genów do chorych narządów. Wiele grup badawczych prowadzi badania poświęcone udoskonalaniu istniejących i poszukiwaniu nowych metod wprowadzania terapeutycznych genów do komórek. Pomysł wprowadzania terapeutycznych genów przez nos jest bardzo interesujący głównie z uwagi na olbrzymią aplikacyjność kliniczną. Donosowe dostarczanie terapeutycznych genów jest uważane za jedną z najbardziej obiecujących – bezpiecznych i skutecznych metod w terapii genowej chorób płuc. Terapia genowa wykorzystująca preparaty genowe wprowadzane przez nos pozwala podejmować próby leczenia pacjentów cierpiących np. na mukowiscydozę, defekt alfa-1-antytrypsyny lub nowotwory. Badania eksperymentalne i pierwsze próby kliniczne przeprowadzone z wektorami plazmidowymi lub rekombinowanymi wirusami wykazały, że stosowane wektory mogą wydajnie dostarczać terapeutyczne geny do komórek układu oddechowego. Wykorzystanie donosowej, nieinwazyjnej drogi podawania preparatów genowych lub konwencjonalnych leków budzi entuzjazm wśród naukowców i pacjentów. Dalsze badania określą bezpośrednią użyteczność i dostępność donosowych preparatów genowych w klinice.

Key words

gene preparations, gene therapy, inhalation, cystic fibrosis, alpha-1-antitrypsin deficiency, lung cancer

Słowa kluczowe

preparaty genowe, terapia genowa, wdychanie, mukowiscydoza, defekt alfa-1-antytrypsyny, rak płuc

References (50)

  1. Koshkina NV, Agoulnik IY, Melton SL, Densmore CL, Knight V: Biodistribution and pharmacokinetics of aerosol and intravenously administered DNA-polyethyleneimine complexes: optimization of pulmonary delivery and retention. Mol Ther 2003, 8, 249–254.
  2. Sakagami M: In vivo, in vitro and ex vivo models to assess pulmonary absorption and disposition of inhaled therapeutics for systemic delivery. Adv Drug Deliv Rev 2006, 58, 1030–1060.
  3. Davies LA, McLachlan G, Sumner-Jones SG, Ferguson D, Baker A, Tennant P, Gordon C, Vrettou C, Baker E, Zhu J, Alton EW, Collie DD, Porteous DJ, Hyde SC, Gill DR: Enhanced lung gene expression after aerosol delivery of concentrated pDNA/PEI complexes. Mol Ther 2008, 16, 1283–1290.
  4. Jin H, Xu CX, Kim HW, Chung YS, Shin JY, Chang SH, Park SJ, Lee ES, Hwang SK, Kwon JT, Minai-Tehrani A, Woo M, Noh MS, Youn HJ, Kim DY, Yoon BI, Lee KH, Kim TH, Cho CS, Cho MH: Urocanic acid-modified chitosan-mediated PTEN delivery via aerosol suppressed lung tumorigenesis in K-ras(LA1) mice. Cancer Gene Ther 2008, 15, 275–283.
  5. Sinn PL, Burnight ER, Hickey MA, Blissard GW, McCray Jr PB: Persistent gene expression in mouse nasal epithelia following feline immunodeficiency virus-based vector gene transfer. J Virol 2005, 79, 12818–12827.
  6. Limberis MP, Wilson JM: Adeno-associated virus serotype 9 vectors transduce murine alveolar and nasal epithelia and can be readministered. Proc Natl Acad Sci USA 2006, 103, 12993–12998.
  7. Brown BD, Sitia G, Annoni A, Hauben E, Sergi LS, Zingale A, Roncarolo MG, Guidotti LG, Naldini L: In vivo administration of lentiviral vectors triggers a type I interferon response that restricts hepatocyte gene transfer and promotes vector clearance. Blood 2007, 109, 2797–2805.
  8. Kobinger GP, Limberis MP, Somanathan S, Schumer G, Bell P, Wilson JM: Human immunodeficiency viral vector pseudotyped with the spike envelope of severe acute respiratory syndrome coronavirus transduces human airway epithelial cells and dendritic cells. Hum Gene Ther 2007, 18, 413–422.
  9. Xenariou S, Griesenbach U, Liang HD, Zhu J, Farley R, Somerton L, Singh C, Jeffery PK, Ferrari S, Scheule RK, Cheng SH, Geddes DM, Blomley M, Alton EW: Use of ultrasound to enhance nonviral lung gene transfer in vivo. Gene Ther 2007, 14, 768–774.
  10. Damjanovic D, Zhang X, Mu J, Medina MF, Xing Z: Organ distribution of transgene expression following intranasal mucosal delivery of recombinant replication-defective adenovirus gene transfer vector. Gen Vaccines Ther 2008, 6, 5.
  11. Sinn PL, Arias AC, Brogden KA, McCray Jr PB: Lentivirus vector can be readministered to nasal epithelia without blocking immune responses. J Virol 2008, 82, 10684–10692.
  12. Limberis MP, Vandenberghe LH, Zhang L, Pickles RJ, Wilson JM: Transduction efficiencies of novel AAV vectors in mouse airway epithelium in vivo and human ciliated airway epithelium in vitro. Mol Ther 2009, 17, 294–301.
  13. Liu F, Shollenberger LM, Conwell CC, Yuan X, Huang L: Mechanism of naked DNA clearance after intravenous injection, J Gene Med 2007, 9, 613–619.
  14. Hwang SK, Jin H, Kwon JT, Chang SH, Kim TH, Cho CS, Lee KH, Young MR, Colburn NH, Beck Jr GR, Yang HS, Cho MH: Aerosol-delivered programmed cell death 4 enhanced apoptosis, controlled cell cycle and suppressed AP-1 activity in the lungs of AP-1 luciferase reporter mice. Gene Ther 2007, 14, 1353–1361.
  15. Hess DR: The mask for noninvasive ventilation: principles of design and effects on aerosol delivery. J Aerosol Med 2007, 20, S98–99.
  16. Leung K, Louca E, Munson K, Dutzar B, Anklesaria P, Coates AL: Calculating expected lung deposition of aerosolized administration of AAV vector in human clinical studies. J Gene Med 2007, 9, 10–21.
  17. Lynch J, Behan N, Birkinshaw C: Factors controlling particle size during nebulization of DNA-polycation complexes. J Aerosol Med 2007, 20, 257–268.
  18. Carpenter M, Epperly MW, Agarwal A, Nie S, Hricisak L, Niu Y, Greenberger JS: Inhalation delivery of manganese superoxide dismutase-plasmid/liposomes protects the murine lung from irradiation damage. Gene Ther 2005, 12, 685–693.
  19. Lentz YK, Anchordoquy TY, Lengsfeld CS: Rationale for the selection of an aerosol delivery system for gene delivery. J Aerosol Med 2006, 19, 372–384.
  20. Griesenbach U, Alton EW: Gene transfer to the lung: lessons learned from more than 2 decades of CF gene therapy. Adv Drug Deliv Rev 2009, 61, 128–139.
  21. Zou Y, Tornos C, Qiu X, Lia M, Perez-Soler R: p53 aerosol formulation with low toxicity and high efficiency for early lung cancer treatment. Clin Cancer Res 2007, 13, 4900–4908.
  22. Liqun Wang R, McLaughlin RT, Cossette T, Tang Q, Foust K, Campbell-Thompson M, Martino A, Cruz P, Loiler S, Mueller C, Flotte TR: Recombinant AAV serotype and capsid mutant comparison for pulmonary gene transfer of alpha-1-antitrypsin using invasive and noninvasive delivery. Mol Ther 2009, 17, 81–77.
  23. Harvey BG, Hackett NR, Ely S, Crystal RG: Host responses and persistence of vector genome following intrabrachial administration of an E1(–)E3(–) adenovirus gene transfer vector to normal individuals. Mol Ther 2001, 3, 206–215.
  24. Liu X, Luo M, Guo C, Yan Z, Wang Y, Engelhardt JF: Comparative biology of rAAV transduction in ferret, pig and human airway epithelia. Gene Ther 2007, 14, 1543–1548.
  25. Schambach A, Baum C: Clinical application of lentiviral vectors – concepts and practice. Curr Gene Ther 2008, 8, 474–482.
  26. Sinn PL, Shah AJ, Donovan MD, McCray Jr PB: Viscoelastic gel formulations enhance airway epithelial gene transfer with viral vectors. Am J Respir Cell Mol Biol 2005, 32, 404–410.
  27. Hwang SK , Kwon JT, Park SJ, Chang SH, Lee ES, Chung YS, Beck Jr GR, Lee KH, Piao L, Park J, Cho MH: Lentivirus-mediated carboxyl-terminal modulator protein gene transfection via aerosol in lungs of K-ras null mice. Gene Ther 2007, 14, 1721–1730.
  28. Bhattarai SR, Kim SY, Jang KY, Yi HK, Lee YH, Bhattarai N, Nam SY, Lee DY, Kim HY, Hwang PH: Amphiphilic triblock copolymer poly(p-dioxanone-co-L-lactide)-block-poly(ethylene glycol), enhancement of gene expression and inhibition of lung metastasis by aerosol delivery. Gene Ther 2007, 14, 476–483.
  29. Freimuth P, Philipson L, Carson SD: The coxsackievirus and adenovirus receptor, Curr Top Microbiol Immunol 2008, 323, 67–87.
  30. Huang X, Yang Y: Innate immune recognition of viruses and viral vectors. Hum Gene Ther 2009, 20, 293–301.
  31. Price AR, Limberis MP, Wilson JM, Diamond SL: Pulmonary delivery of adenovirus vector formulated with dexamethasone-spermine facilitates homologous vector re-administration. Gene Ther 2007, 14, 1594–1604.
  32. Lee D, Zhang W, Shirley SA, Kong X, Hellermann GR, Lockey RF, Mohapatra SS: Thiolated chitosan/DNA nanocomplexes exhibit enhanced and sustained gene delivery. Pharm Res 2007, 24, 157–167.
  33. Gill DR, Pringle IA, Hyde SC: Progress and prospects: the design and production of plasmid vectors. Gene Ther 2009, 16, 165–171.
  34. Hyde SC, Pringle IA, Abdullah S, Lawton AE, Davies LA, Varathalingam A, Nunez-Alonso G, Green AM, Bazzani RP, Summer-Jones SG, Chan M, Li H, Yew NS, Cheng SH, Boyd AC, Davies JC, Griesenbach U, Porteous DJ, Sheppard DN, Munkonge FM, Alton EW, Gill DR: CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression. Nat Biotechnol 2008, 26, 549–551.
  35. Dames P, Laner A, Maucksch C, Aneja MK, Rudolph C: Targeting of the glucocorticoid hormone receptor with plasmid DNA comprising glucocorticoid response elements improves nonviral gene transfer efficiency in the lungs of mice. J Gene Med 2007, 9, 820–829.
  36. Zabner J, Couture LA, Gregory RJ, Graham SM, Smith AE, Welsh MJ: Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell 1993, 75, 207–216.
  37. Copreni E, Penzo M, Carrabino S, Conese M: Lentivirus-mediated gene transfer to the respiratory epithelium: a promising approach to gene therapy of cystic fibrosis. Gene Ther 2004, 11, S67–75.
  38. Ban H, Inoue M, Griesenbach U, Munkonge F, Chan M, Iida A, Alton EW, Hasegawa M: Expression and maturation of Sendai virus vector-derived CFTR protein: functional and biochemical evidence using a GFP-CFTR fusion protein. Gene Ther 2007, 14, 1688–1694.
  39. Wang SY, Yang M, Xu XP, Qiu GF, Ma J, Wang SJ, Huang XX, Xu HX: Intranasal delivery of T-bet modulates the profile of helper T cell immune responses in experimental asthma. J Invest Allergol Clin Immunol 2008, 18, 357–365.
  40. Duan X, Jia SF, Koshkina N, Kleinerman ES: Intranasal interleukin-12 gene therapy enhanced the activity of ifosfamide against osteosarcoma lung metastases. Cancer 2006, 106, 1382–1388.
  41. Xu CX, Jere D, Jin H, Chang SH, Chung YS, Shin JY, Kim JE, Park SJ, Lee YH, Chae CH, Lee KH, Beck Jr GR, Cho CS, Cho MH: Poly(ester amine)-mediated, aerosol-delivered Akt1 small interfering RNA suppresses lung tumorigenesis. Am J Respir Crit Care Med 2008, 178, 60–73.
  42. Hwang SK, Lim HT, Minai-Tehrani A, Lee ES, Park J, Park SB, Beck Jr GR, Cho MH: Repeated aerosol delivery of carboxyl-terminal modulator protein suppresses tumor in the lungs of K-rasLA1 mice. Am J Respir Crit Care Med 2009, 179, 1131–1140.
  43. Ferrari S, Griesenbach U, Iida A, Farley R, Wright AM, Zhu J, Munkonge FM, Smith SN, You J, Ban H, Inoue M, Chan M, Singh C, Verdon B, Argent BE, Wainwright B, Jeffery PK, Geddes DM, Porteous DJ, Hyde SC, Gray MA, Hasegawa M, Alton EW: Sendai virus-mediated CFTR gene transfer to the airway epithelium. Gene Ther 2007, 14, 1371–1379.
  44. Brigham KL, Lane KB, Meyrick B, Stecenko AA, Strack S, Cannon DR, Caudill M, Canonico AE: Transfection of nasal mucosa with a normal alpha1-antitrypsin gene in alpha1-antitrypsin-deficient subjects: comparison with protein therapy. Hum Gene Ther 2000, 11, 1023–1032.
  45. Cruz PE, Mueller C, Cossette TL, Golant A, Tang Q, Beattie SG, Brantly M, Campbell-Thomson M, Blomenkamp KS, Teckman JH, Flotte TR: In vivo post-transcriptional gene silencing of alpha-1 antitrypsin by adeno-associated virus vectors expressing siRNA. Lab Invest 2007, 87, 893–902.
  46. Metz R, DiCola M, Kurihara T, Bailey A, Frank B, Roecklein B, Blaese M: Mode of action of RNA/DNA oligonucleotides: progress in the development of gene repair as a therapy for alpha(1)-antitrypsin deficiency. Chest 2002, 121, 91S–97S.
  47. Howard KA, Rahbek UL, Liu X,. Damgaard CK, Glud SZ, Andersen MQ, Hovgaard M.B, Schmitz A, Nyengaard J.R, Besenbacher F, Kjems J: RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system: Mol Ther 2006, 14, 476–484.
  48. Durcan N, Murphy C, Cryan SA: Inhalable siRNA: potential as a therapeutic agent in the lungs. Mol Pharm 2008, 5, 559–566.
  49. Fukazawa T, Maeda Y, Durbin ML, Nakai T, Matsuoka J, Tanaka H, Naomoto Y, Tanaka N: Pulmonary adenocarcinomatargeted gene therapy by a cancerand tissue-specific promoter system. Mol Cancer Ther 2007, 6, 244–252.
  50. Cai KH, Tse LY, Leung C, Tam PK, Xu R, Sham MH: Suppression of lung tumor growth and metastasis in mice by adeno-associated virus-mediated expression of vasostatin. Clin Cancer Res 2008, 14, 939–949.