Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
5-Year IF – 2.0, IF – 1.9, JCI (2024) – 0.43
Scopus CiteScore – 4.3
Q1 in SJR 2024, SJR score – 0.598, H-index: 49 (SJR)
ICV – 161.00; MNiSW – 70 pts
Initial editorial assessment and first decision within 24 h

ISSN 1899–5276 (print), ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2011, vol. 20, nr 2, March-April, p. 217–220

Publication type: review article

Language: English

Aquaporin-1 – New Perspectives in Peritoneal Dialysis

Akwaporyna 1 – nowe perspektywy w dializie otrzewnowej

Edyta Gołembiewska1,, Joanna Kabat-Koperska1,, Kazimierz Ciechanowski1,

1 Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, Szczecin, Poland

Abstract

Peritoneal dialysis is an important method of renal replacement therapy for patients with end-stage renal disease. The rate of fluid removal from the patient, i.e. ultrafiltration, depends on the concentration of the osmotic agent (most often glucose) in the dialysate. According to the „three-pore model” of peritoneal transport, ultrasmall pores (aquaporins) are water-specific, and during a hypertonic dwell they can contribute up to 50% of the total ultrafiltration. Experimental studies on animal models have demonstrated the role of aquaporin-1 in water transport and its regulation by hyperosmolality, and have proved the influence of corticosteroid administration on aquaporin1 function. Experimental studies have also demonstrated other aquaporin-1 properties, such as its role in cell migration, wound healing and tumor growth, and suggested that aquaporin-1 may play a role in leukocyte recruitment during peritonitis. Future studies in peritoneal dialysis patients should assess the influence of aquaporin1 gene polymorphism on the variability of free water transport and the course of peritonitis.

Streszczenie

Dializa otrzewnowa jest ważną metodą leczenia nerkozastępczego u pacjentów ze schyłkową niewydolnością nerek. Usuwanie nadmiaru płynu z organizmu, tj. ultrafiltracja, zależy od stężenia związku osmotycznie czynnego w dializacie (najczęściej glukozy). Zgodnie z „trójporowym modelem” błony otrzewnowej pory ultramałe (akwaporyny) transportują tylko wodę, a podczas wymiany z płynem hipertonicznym transportowana przez nie woda może stanowić nawet 50% całkowitej ultrafiltracji. Badania doświadczalne na modelach zwierzęcych wykazały rolę akwaporyny 1 w transporcie wody i jego regulację w hiperosmolalnym środowisku. Potwierdziły również wpływ podaży glikokortykosteroidów na funkcję kanałów akwaporynowych. Badania doświadczalne wykazały również inne właściwości akwaporyny 1, takie jak rola w migracji komórek, gojeniu ran i wzroście guzów nowotworowych. Sugerują one również, że akwaporyna 1 może odgrywać rolę w regulacji napływu leukocytów podczas zapalenia otrzewnej. Przyszłe badania u pacjentów dializowanych otrzewnowo powinny ocenić wpływ polimorfizmu genowego akwaporyny 1 na zmienność wielkości transportu wolnej wody i przebieg dializacyjnego zapalenia otrzewnej.

Key words

aquaporin-1, free water transport, ultrafiltration, peritonitis

Słowa kluczowe

akwaporyna 1, transport wolnej wody, ultrafiltracja, zapalenie otrzewnej

References (23)

  1. Grassmann A, Gioberge S, Moeller S, Brown G: ESRD patients in 2004: Global overview of patient numbers, treatment modalities and associated trends. Nephrol Dial Transplant 2005, 20, 2587–2593.
  2. Rippe B, Stelin G, Haraldsson B: Computer simulations of peritoneal fluid transport in CAPD. Kidney Int 1991, 40, 315–325.
  3. Rippe B, Venturoli D, Simonsen O, de Arteaga J: Fluid and electrolyte transport across the peritoneal membrane during CAPD according to the three-pore model. Perit Dial Int 2004, 24, 10–27.
  4. Blake PG: The remarkable interface between aquaporins and peritoneal dialysis. Perit Dial Int 2010, 30 (2), 131–132.
  5. Preston GM, Agre P: Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci 1991, 88, 11110–11114.
  6. Krane CM, Goldstein DL: Comparative functional analysis of aquaporins/glyceroporins in mammals and anurans. Mamm Genome 2007, 18, 452–462.
  7. Nielsen S, Smith BL, Christensen EI, Agre P: Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci 1993, 90, 7275–7279.
  8. Mobasheri A, Marples D: Expression of the AQP-1 water channel in normal human tissues: a semiquantitative study using tissue microarray technology. Am J Physiol Cell Physiol 2004, 286, 529–537.
  9. Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujioyoshi Y: Structural determinants of water permeation through aquaporin-1. Nature 2000, 407, 599–605.
  10. Nishino T, Devuyst O: Clinical application of aquaporin research: aquaporin-1 in the peritoneal membrane. Eur J Physiol 2008, 456, 721–727.
  11. Yong-Lim K: Update on mechanisms of ulgtrafiltration failure. Perit Dial Int 2009, 29 (S2), 123–127.
  12. Devuyst O, Yool AJ: Aquaporin-1: new developments and perspectives for peritoneal dialysis. Perit Dial Int 2010, 30 (2), 135–141.
  13. Yang B, Folkesson HG, Yang J, Matthay MA, Ma T, Verkman AS: Reduced osmotic water permeability of the peritoneal barrier in aquaporin-1 knockout mice. Am J Physiol 1999, 276, C76–81.
  14. Ni J, Verbavatz JM, Rippe A, Boisde I, Moulin P, Rippe B, Varkman AS, Devuyst O: Aquaporin-1 plays an essential role in water permeability and ultrafiltration during peritoneal dialysis. Kidney Int 2006, 69, 1518–1525.
  15. Ota T, Kuwahara M, Shuling F, Terada Y, Akiba T, Sasaki S, Marumo F: Expression of aquaporin-1 in the peritoneal tissues: localization and regulation by hyperosmolality. Perit Dial Int 2002, 22, 307–315.
  16. Stoenoiu MS, Ni J, Verkaeren C, Debaix H, Jonas JC, Lameire N, Varbavatz JM, Devuyst O: Corticosteroids induce expression of aquaporin-1 and increase transcellular water transport in rat peritoneum. J Am Soc Nephrol 2003, 14, 555–565.
  17. Coester AM, Smit W, Struijk DG, Krediet RT: Peritoneal function in clinical practice: the importance of followup and its measurement in patients. Recommendations for patients information and measurement of peritoneal function. Nephrol Dial Transplant Plus 2009, 2, 104–110.
  18. Saadoun S, Papadopoulos MC, Hara-Chikuma M, Verkman AS: Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 2005, 434, 786–792.
  19. Belge H, Devuyst O: Aquaporin-1 – a water channel on the move. Nephrol Dial Transplant 2006, 21, 2069– 2071.
  20. Nishino T, van Loo G, Moulin P, Beyaert R, Verkman AS, Devuyst O: Aquaporin-1 modulates vascular proliferation and inflammatory response during acute infection. J Am Soc Nephrol 2007, 18, 112A.
  21. La Milia V, di Filippo S, Crepaldi M, del Vecchio L, dell’Oro C, Andrulli S, Locatelli F: Mini-peritoneal equilibration test: A simple and fast method to assess free water and small solute transport across the peritoneal membrane. Kidney Int 2005, 68, 840–846.
  22. Waniewski J, Debowska M, Lindholm B: Ultrafiltration and absorption in evaluating aquaporin function from peritoneal transport of sodium. Perit Dial Int 2007, 27, 687–690.
  23. Stachowska-Pietka J, Waniewski J, Vonesh E, Lindholm B: Changes in free water fraction and aquaporin function with dwell time during continuous ambulatory peritoneal dialysis. Artif Organs 2010, 34 (12), 1138–1143.