Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
5-Year IF – 2.0, IF – 1.9, JCI (2024) – 0.43
Scopus CiteScore – 4.3
Q1 in SJR 2024, SJR score – 0.598, H-index: 49 (SJR)
ICV – 161.00; MNiSW – 70 pts
Initial editorial assessment and first decision within 24 h

ISSN 1899–5276 (print), ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2010, vol. 19, nr 5, September-October, p. 585–591

Publication type: original article

Language: English

The Expression of Genes Encoding Antioxidant Enzymes in Lung Adenocarcinoma A549 Cells Exposed to Cisplatin Supplemented by Polyunsaturated Fatty Acids

Ekspresja genów kodujących enzymy antyoksydacyjne w suplementowanych wielonienasyconymi kwasami tłuszczowymi komórkach gruczolakoraka płuca A549 eksponowanych na cisplatynę

Alicja Zajdel1,, Adam Wilczok1,, Arkadiusz Gruchlik1,, Piotr Paduszyński1,, Zofia Dzierżewicz1,

1 Department of Biopharmacy, Medical University of Silesia, Katowice, Poland

Abstract

Background. The effectiveness of cisplatin (CPT) in the treatment of tumors is often limited by primary or acquired resitance. Supplementation with polyunsaturated fatty acids, in particular eicosapentaenoic acid (EPA, 20 : 5, n-3) and docosahexaenoic acid (DHA, 22 : 6, n-3), can enhance drug sensitivity of tumor cells to anticancer therapy or reverse cell resistance. Antioxidant enzymes, highly expressed in lung tumors, are among the determinant factors in the sensitivity of lung tumors to chemotherapy.
Objectives. Investigation of the effect of EPA and DHA at different concentrations on gene expression of selected enzymes controlling cell redox status, such as superoxide dismutase 1 (SOD1), superoxide dismutase 2 (SOD2), catalase (CAT), phospholipid hydroperoxide glutathione peroxidase (GPx-4), and glutathione S-transferase pi (GST-pi) in human lung adenocarcinoma cells (A549) exposed to CPT.
Material and Methods. Viability of A549 cells treated with CPT and EPA or DHA was measured using the XTT tetrazolium salt based assay. Expression of genes encoding the antioxidant enzymes was determined by quantitative reverse-transcription polymerase chain reaction (QRT-PCR) analysis after RNA isolation from A549 cells.
Results. EPA and DHA added to the culture medium, increased the antitumor activity of CPT in A549 cells in a concentration dependent manner. The SOD2 and GST-pi expression showed marked increase after CPT treatment, while supplementation with EPA and DHA down-regulated their expression in the CPT treated A549 cells. The observed changes in mRNA levels of CAT were not statistically significant.
Conclusion. The reduction of antioxidant potential in cancer cells may sensitize these cells to anticancer therapy. PUFAs supplementation during CPT-based anticancer therapy may enhance effectiveness of the treatment.

Streszczenie

Wprowadzenie. Pierwotna lub nabyta oporność często ogranicza zastosowanie cisplatyny (CPT) w leczeniu nowotworów. Suplementacja wielonienasyconymi kwasami tłuszczowymi (w.n.k.t.), w szczególności eikozapentaenowym (EPA, 20 : 5, n-3) i dokozaheksaenowym (DHA, 22 : 6, n-3), może zwiększać wrażliwość komórek nowotworowych na leki albo znosić ich oporność. Zwiększona ekspresja enzymów antyoksydacyjnych w nowotworach płuca jest czynnikiem determinującym ich wrażliwość na chemioterapię.
Cel pracy. Zbadanie wpływu EPA i DHA, w różnych stężeniach, na ekspresję genów kodujących wybrane enzymy kontrolujące potencjał redox: dysmutazę ponatlenkową 1 (SOD1), dysmutazę ponatlenkową 2 (SOD2), katalazę (CAT), peroksydazę glutationowa wodoronadtlenków fosfolipidów (GPx-4) i S-transferazę glutationową pi (GST-pi) w ludzkich komórkach gruczolakoraka płuca (A549) eksponowanych na CPT.
Materiał i metody. Przeżywalność komórek A549 eksponowanych na CPT i EPA lub DHA była mierzona za pomocą testu wykorzystującego sól tetrazoliową XTT. Ekspresja genów kodujących ww. enzymy antyoksydacyjne w ekstraktach RNA z komórek A549 została oznaczona metodą ilościowej reakcji łańcuchowej polimerazy poprzedzonej odwrotną transkrypcją (QRT-PCR).
Wyniki. EPA i DHA dodane do medium hodowlanego zwiększały, w sposób zależny od stężenia, przeciwnowotworową aktywność CPT. Suplementacja w.n.k.t. komórek A549 eksponowanych na CPT zmniejszała ekspresję SOD2 i GST-pi, która po ekspozycji tylko na CPT była znacznie podwyższona.
Wnioski. Ograniczenie potencjału antyoksydacyjnego w komórkach nowotworowych może zwiększać ich wrażliwość na terapię przeciwnowotworową. Suplementacja w.n.k.t. podczas terapii przeciwnowotworowej z udziałem CPT może poprawić skuteczność leczenia.

Key words

antioxidant enzymes, PUFAs, cisplatin, A549 cells

Słowa kluczowe

enzymy antyoksydacyjne, w.n.k.t., cisplatyna, komórki A549

References (29)

  1. Siddik ZH: Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 2003, 22, 7265–7279.
  2. Wang D, Lippard SJ: Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 2005, 4, 307–320.
  3. Ohmichi M, Hayakawa J, Tasaka K, Kurachi H, Murata Y: Mechanisms of platinum drug resistance. Trends Pharmacol Sci 2005, 26, 113–116.
  4. Berndtsson M, Hagg M, Panaretakis T, Havelka AM, Shoshan MC, Linder S: Acute apoptosis by cisplatin requires induction of reactive oxygen species but is not associated with damage to nuclear DNA. Int J Cancer 2007, 120, 175–180.
  5. Pelicano H, Carney D, Huang P: ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 2004, 7, 97–110.
  6. Cho JM, Manandhar S, Lee HR, Park HM, Kwak MK: Role of the Nrf2-antioxidant system in cytotoxicity mediated by anticancer cisplatin: implication to cancer cell resistance. Cancer Lett 2008, 260, 96–108.
  7. Kakolyris S, Giatromanolaki A, Koukourakis M, Powis G, Souglakos J, Sivridis E, Georgoulias V, Gatter KC, Harris AL: Thioredoxin expression is associated with lymph node status and prognosis in early operable non-small cell lung cancer. Clin Cancer Res 2001, 7, 3087–3091.
  8. Kinnula VL, Pääkkö P, Soini Y: Antioxidant enzymes and redox regulating thiol proteins in malignancies of human lung. FEBS Lett 2004, 569, 1–6.
  9. Berquin IM, Edwards IJ, Chen YQ: Multi-targeted therapy of cancer by omega-3 fatty acids. Cancer Lett 2008, 269, 363–377.
  10. Siddiqui RA, Harvey K, Stillwell W: Anticancer properties of oxidation products of docosahexaenoic acid. Chem Phys Lipids 2008, 153, 47–56.
  11. Pardini RS: Nutritional intervention with omega-3 fatty acids enhances tumor response to anti-neoplastic agents. Chem Biol Interact 2006, 162, 89–105.
  12. Ding WQ, Vaught JL, Yamauchi H, Lind SE: Differential sensitivity of cancer cells to docosahexaenoic acidinduced cytotoxicity: the potential importance of down-regulation of superoxide dismutase 1 expression. Mol Cancer Ther 2004, 3, 1109–1117.
  13. Ding WQ, Lind SE: Phospholipid hydroperoxide glutathione peroxidase plays a role in protecting cancer cells from docosahexaenoic acid-induced cytotoxicity. Mol Cancer Ther 2007, 6, 1467–1474.
  14. Vibet S, Goupille C, Bougnoux P, Steghens JP, Goré J, Mahéo K: Sensitization by docosahexaenoic acid (DHA) of breast cancer cells to anthracyclines through loss of glutathione peroxidase (GPx1) response. Free Radic Biol Med 2008, 44, 1483–1491.
  15. Singh A, Misra V, Thimmulappa RK, Lee H, Ames S, Hoque MO, Herman JG, Baylin SB, Sidransky D, Gabrielson E, Brock MV, Biswal S: Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med 2006, 3, e420.
  16. Padmanabhan B, Tong KI, Ohta T, Nakamura Y, Scharlock M, Ohtsuji M, Kang MI, Kobayashi A, Yokoyama S, Yamamoto M: Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol Cell 2006, 21, 689–700.
  17. Ohta T, Iijima K, Miyamoto M, Nakahara I, Tanaka H, Ohtsuji M, Suzuki T, Kobayashi A, Yokota J, Sakiyama T, Shibata T, Yamamoto M, Hirohashi S: Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res 2008, 68, 1303–1309.
  18. Wang XJ, Sun Z, Villeneuve NF, Zhang S, Zhao F, Li Y, Chen W, Yi X, Zheng W, Wondrak GT, Wong PK, Zhang DD: Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 2008, 29, 1235–1243.
  19. Kinnula VL, Crapo JD: Superoxide dismutases in malignant cells and human tumors. Free Radic Biol Med 2004, 36, 718–744.
  20. Järvinen K, Pietarinen-Runtti P, Linnainmaa K, Raivio KO, Krejsa CM, Kavanagh T, Kinnula VL: Antioxidant defense mechanisms of human mesothelioma and lung adenocarcinoma cells. Am J Physiol Lung Cell Mol Physiol 2000, 278, L696–702.
  21. Goto S, Kamada K, Soh Y, Ihara Y, Kondo T: Significance of nuclear glutathione S-transferase pi in resistance to anti-cancer drugs. Jpn J Cancer Res 2002, 93, 1047–1056.
  22. Kriska T, Korytowski W, Girotti AW: Hyperresistance to photosensitized lipid peroxidation and apoptotic killing in 5-aminolevulinate-treated tumor cells overexpressing mitochondrial GPX4. Free Radic Biol Med 2002, 33, 1389–1402.
  23. Miyamoto Y, Koh YH, Park YS, Fujiwara N, Sakiyama H, Misonou Y, Ookawara T, Suzuki K, Honke K, Taniguchi N: Oxidative stress caused by inactivation of glutathione peroxidase and adaptive responses. Biol Chem 2003, 384, 567–574.
  24. Mahéo K, Vibet S, Steghens JP, Dartigeas C, Lehman M, Bougnoux P, Goré J: Differential sensitization of cancer cells to doxorubicin by DHA: a role for lipoperoxidation. Free Radic Biol Med 2005, 39, 742–751.
  25. Timmer-Bosscha H, Hospers GA, Meijer C, Mulder NH, Muskiet FA, Martini IA, Uges DR, de Vries EG: Influence of docosahexaenoic acid on cisplatin resistance in a human small cell lung carcinoma cell line. J Natl Cancer Inst 1989, 81, 1069–1075.
  26. Plumb JA, Luo W, Kerr DJ: Effect of polyunsaturated fatty acids on the drug sensitivity of human tumor cell lines resistant to either cisplatin or doxorubicin. Br J Cancer 1993, 67, 728–733.
  27. El-Mesery M, Al-Gayyar M, Salem H, Darweish M, El-Mowafy A: Chemopreventive and renal protective effects for docosahexaenoic acid (DHA): implications of CRP and lipid peroxides. Cell Div 2009, 4, 6.
  28. De Lima TM, Amarante-Mendes GP, Curi R: Docosahexaenoic acid enhances the toxic effect of imatinib on BcrAbl expressing HL-60 cells. Toxicol In Vitro 2007, 21, 1678–1685.
  29. Chen Y, Jungsuwadee P, Vore M, Butterfield A, Clair DKST: Collateral damage in cancer chemotherapy: oxidative stress in nontargeted tissues. Mol Interven 2007, 7, 147–156.