Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
5-Year IF – 2.0, IF – 1.9, JCI (2024) – 0.43
Scopus CiteScore – 4.3
Q1 in SJR 2024, SJR score – 0.598, H-index: 49 (SJR)
ICV – 161.00; MNiSW – 70 pts
Initial editorial assessment and first decision within 24 h

ISSN 1899–5276 (print), ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2009, vol. 18, nr 4, July-August, p. 345–351

Publication type: original article

Language: English

Relationship Between Advanced Oxidation Protein Product Plasma Level and Cathepsin B Activity in Plasma and Polymorphonuclear Cells in Patients with Type 2 Diabetes Mellitus

Związek między stężeniem zaawansowanych produktów oksydacji białek w osoczu a aktywnością katepsyny B w osoczu i granulocytach obojętnochłonnych chorych na cukrzycę typu 2

Agnieszka Piwowar1,, Ewa Żurawska−Płaksej1,, Maria Knapik−Kordecka2,, Maria Warwas1,

1 Department of Pharmaceutical Biochemistry, Wroclaw Medical University, Poland

2 Department and Clinic of Angiology, Hypertension, and Diabetology, Wroclaw Medical University, Poland

Abstract

Background. Hyperglycemia accelerates glycation and oxidative stress (OS) in diabetic patients, resulting in increased levels of advanced glycation end products and advanced oxidation protein products (AOPPs). Changes in the activities of some leukocytic enzymes, for example cathepsin B (CB), derived from polymorphonuclear cells (PMNs) can be observed.
Objectives. The relationship between AOPP plasma level and cathepsin B activity in plasma and PMN extracts in patients with type 2 diabetes mellitus (T2DM) was investigated.
Material and Methods. Fifty−three patients with T2DM and 27 healthy subjects were examined. CB activity in plasma and PMN extracts was measured with a fluorescent substrate (CBZ−Arg−Arg−NMec) and plasma AOPP concentration using a spectrophotometric method with a potassium iodide solution in an acidic environment.
Results. AOPP concentration and CB activity were higher in the diabetic patients than in the control subjects, but significant (p < 0.001) differences between the groups were observed only for plasma AOPP concentration and CB activity in PMN extracts. There was also a medium (r = 0.41) but significant (p < 0.05) correlation between these parameters. In tertiles of AOPP, only plasma CB activities increased progressively, but there were no significant differences between these subgroups. In groups with normal and above−normal values of ESR, plasma AOPP concentration and CB activity in PMN extracts were significantly different (p = 0.0072 and p = 0.0394, respectively).
Conclusion. These results indicate that OS and inflammation affect CB activity, especially in PMN extracts. Identifying the contributions of individual PMN proteases in the context of existing OS is important in the search for biomarkers to monitor diabetic late complications and for therapeutic targets.

Streszczenie

Wprowadzenie. U chorych na cukrzycę hiperglikemia nasila procesy glikacji oraz stres oksydacyjny (OS), co powoduje wzrost stężenia zaawansowanych produktów glikacji białek i zaawansowanych produktów oksydacji białek (AOPP). Prowadzi również do zmian aktywności niektórych enzymów leukocytarnych, np. katepsyny B (CB) pochodzącej z granulocytów obojętnochłonnych (GO).
Cel pracy. Zbadanie, czy istnieje związek między stężeniem AOPP w osoczu a aktywnością CB w osoczu i w ekstraktach GO u chorych na cukrzycę typu 2 (T2DM).
Materiał i metody. Wosoczu i ekstraktach GO pochodzących od 53 pacjentów z T2DM i 27 osób zdrowych oznaczono aktywność CB z użyciem substratu fluorescencyjnego (CBZ−Arg−Arg−NMec). Stężenie AOPP w osoczu mierzono metodą spektrofotometryczną po reakcji z roztworem jodku potasu w środowisku kwaśnym.
Wyniki. Zarówno stężenie AOPP, jak i aktywność CB były wyższe u chorych na cukrzycę niż w grupie kontrolnej, ale różnice istotne statystycznie (p < 0.001) zaobserwowano tylko dla stężenia AOPP w osoczu i aktywności CB w ekstraktach GO. Stwierdzono również przeciętną (r = 0,41), ale istotną statystycznie (p < 0,05), korelację między tymi parametrami. W tertylach wzrastającego stężenia AOPP jedynie aktywność CB w osoczu wzrastała progresywnie, ale nie wykazano zmian o charakterze istotnym statystycznie między podgrupami. W grupach chorych z prawidłową oraz zwiększoną wartością OB stężenie AOPP w osoczu oraz aktywność CB w ekstraktach GO były istotnie różne (odpowiednio p = 0,0072 i p = 0,0394).
Wnioski. Wyniki badań własnych wskazują, że OS i stan zapalny mogą wpływać na aktywność CB, szczególnie w ekstraktach GO. Określenie udziału poszczególnych proteaz granulocytów obojętnochłonnych w kontekście OS jest istotne ze względu na poszukiwanie biomarkerów do monitorowania późnych powikłań cukrzycy i zastosowania odpowiedniej terapii.

Key words

advanced oxidation protein products, cathepsin B, type 2 diabetes mellitus

Słowa kluczowe

zaawansowane produkty oksydacji białek, katepsyna B, cukrzyca typu 2

References (34)

  1. Kalousova M, Fialova L, Škrha J, Zima T, Soukupová J, Malbohan IM, Stípek S: Oxidative stress, inflammation and autoimmune reaction in type 1 and type 2 diabetes mellitus. Prague Med Rep 2004, 105, 21–28.
  2. Wright E, Scism−Bacon JL, Glass LC: Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia. Int J Clin Pract 2006, 60, 308–314.
  3. Alba−Loureiro TC, Munhoz CD, Martins JO, Cerchiaro GA, Scavone C, Curi R, Sannomiya P: Neutrophil function and metabolism in individuals with diabetes mellitus. Braz J Med Biol Res. 2007, 40, 1037–1044.
  4. Hand WL, Hand DL, Vasquez Y: Increased polymorphonuclear leukocyte respiratory burst function in type 2 diabetes. Diabetes Res Clin Pract 2007, 76, 44–50.
  5. Den Tandt WR, Scharpe S: Cathepsin B in human leukocytes. Clin Chem Lab Med 1998, 36, 703–707.
  6. Berdowska I: Cysteine proteases as disease markers. Clin Chim Acta 2004, 342, 41–69.
  7. Lutgens SP, Cleutjens KB, Daemen MJ, Heeneman S: Cathepsin cysteine proteases in cardiovascular disease. FASEB J 2007, 21, 3029–3041.
  8. Morgan PE, Dean RT, Davies MJ: Inactivation of cellular enzymes by carbonyls and protein−bound glycation/glycoxidation products. Arch Biochem Biophys 2002, 403, 259–269.
  9. Lee DC, Mason CW, Goodman CB, Holder MS, Kirksey OW, Womble TA, Severs WB, Palm DE: Hydrogen peroxide induces lysosomal protease alterations in PC12 cells. Neurochem Res 2007, 32, 1499–1510.
  10. Kalousová M, Zima T, Tesar V, Dusilová−Sulková S, Skrha J: Advanced glycoxidation end products in chronic diseases−clinical chemistry and genetic background. Mutat Res 2005, 579, 37–46.
  11. Nass N, Bartling G, Navarette Santos A, Scheubel RJ, Börgermann J, Silber RE, Simm A: Advanced glycation end products, diabetes and ageing. Z Geriontol Geriat 2007, 40, 349–356.
  12. Capeillčre−Blandin C, Gausson V, Descamps−Latscha B, Witko−Sarsat V: Biochemical and spectrophotometric significance of advanced oxidized protein products. Biochim Biophys Acta 2004, 1689, 91–102.
  13. Warwas M, Piwowar A, Knapik−Kordecka M: Plasma cathepsin B activity and other proteases and glucosidases in patients with non−insulin diabetes mellitus. Diagn Lab 1999, 35, 413–419 (in Polish).
  14. Piwowar A, Knapik−Kordecka M, Warwas M: Level of cathepsin B in polymorphonuclear neutrophils in diabetes mellitus type 2. Diagn Lab 2001, 37, 303–310 (in Polish).
  15. Witko−Sarsat V, Gausson V, Nguyen AT, Touam M, Drüeke T, Santangelo F, Descamps−Latscha B: AOPPinduced activation of human neutrophil and monocyte oxidative metabolism: a potential target for N−acetylcysteine treatment in dialysis patients. Kidney Int 2003, 64, 82–91.
  16. Zeman K, Tchórzewski H, Majewska E, Pokoca L, Pińkowski R: A simple and rapid method for simultaneous purification of peripheral blood lymphocytes and granulocytes. Immunol Pol 1998, 13, 217–224 (in Polish).
  17. Barret AJ: Fluorimetric assays of cathepsin B and cathepsin H with methylocumarylamide substrates. Biochem J 1980, 187, 909–912.
  18. Lowry OH, Rosenbrought NJ, Farr AL, Rondall RJ: Protein measurements with the Folin−phenol reagent. J Biol Chem 1951, 193, 265–275.
  19. Liu SX, Hou FF, Gou ZJ, Nagai R, Zhang WR, Liu ZQ, Zhou ZM, Zhou M, Xie D, Wang GB, Zhang X: Advanced oxidation protein products accelerate atherosclerosis through promoting oxidative stress and inflammation. Arterioscler Thromb Vasc Biol 2006, 26, 1156–1162.
  20. Piwowar A, Knapik−Kordecka M, Warwas M: AOPP and its relations with selected markers of oxidative/antioxidative system in type 2 diabetes mellitus. Diabetes Res Clin Pract 2007, 77, 188–192.
  21. Ascenzi P, Salvati L, Bolognesi M, Colasanti M, Polticelli F, Venturini G: Inhibition of cysteine protease activity by NO−donors. Curr Protein Pept Sci 2001, 2, 137–153.
  22. Lockwood TD: Cys−His proteases are among the wired proteins of the cell. Arch Biochem Biophys 2004, 432, 12–24.
  23. Piwowar A, Knapik−Kordecka M, Warwas M: Concentration of leukocyte elastase−α1−proteinase inhibitor complexes in plasma and cathepsin B as well as N−acetyl−—glucosaminidase activities in polymorphonuclear neutrophil extracts in type 2 diabetes. Adv Clin Exp Med 2003, 12, 315–320.
  24. Zhao M, Antunes F, Eaton JW, Brunk UT: Lysosomal enzymes promote mitochondrial oxidant production, cytochrome c release and apoptosis. Eur J Biochem 2003, 270, 3778–3786.
  25. Kurz T, Terman A, Gustafsson B, Brunk UT: Lysosomes and oxidative stress in aging and apoptosis. Biochim Biophys Acta 2008, 1780, 1291–1303.
  26. Knapik−Kordecka M, Piwowar A, Warwas M: Cystatin C concentration antipapain and antitrypsin activity in plasma of patients with diabetes mellitus type 2. Wiad Lek 2000. 53, 11–12 (in Polish).
  27. Kolorenko TA: Cystatins: biological role and changes in pathology. Vest Ross Akad Med Nauk 2008, 4, 43–47.
  28. Choudhary N, Ahlawat RS: Interleukin−6 and C−reactive protein in pathogenesis of diabetic nephropathy: new evidence linking inflammation, glycemic control, and microalbuminuria. Iran J Kidney Dis 2008, 2, 72–79.
  29. Hatanaka E, Monteagudo PT, Marrocos MS, Campa A: Neutrophils and monocytes as potentially important sources of proinflammatory cytokines in diabetes. Clin Exp Immunol 2006, 146, 443–447.
  30. Headlam HA, Gracanin M, Rodgers KJ, Davies MJ: Inhibition of cathepsins and related proteases by amino acid, peptide, and protein hydroperoxides. Free Radic Biol Med 2006, 40, 1539–1548.
  31. Hervé−Grépinet V, Veillard F, Godat E, Heuzé−Vourc’h N, Lecaille F, Lalmanach G: Extracellular catalase activity protects cysteine cathepsins from inactivation by hydrogen peroxide. FEBS Lett 2008, 582, 1307–1312.
  32. Guo ZJ, Niu HX, Hou FF, Zhang L, Fu N, Nagai R, Lu X, Chen BH, Shan YX, Tian JW, Nagaraj RH, Xie D, Zhang X: Advanced oxidation protein products activate vascular endothelial cells via a RAGE−mediated signaling pathway. Antioxid Redox Signal 2008, 10, 1699–1712.
  33. Bangalore N, Travis J: Comparison of properties of membrane bound versus soluble forms of human leukocytic elastase and cathepsin G. Biol Chem Hoppe Seyler 1994, 375, 659–666.
  34. Korkmaz B, Poutrain P, Hazouard E, de Monte M, Attucci S, Gauthier FL: Competition between elastase and related proteases from human neutrophil for binding to alpha1−protease inhibitor. Am J Respir Cell Mol Biol 2005, 32, 553–559.