Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
5-Year IF – 2.0, IF – 1.9, JCI (2024) – 0.43
Scopus CiteScore – 4.3
Q1 in SJR 2024, SJR score – 0.598, H-index: 49 (SJR)
ICV – 161.00; MNiSW – 70 pts
Initial editorial assessment and first decision within 24 h

ISSN 1899–5276 (print), ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2009, vol. 18, nr 1, January-February, p. 33–39

Publication type: original article

Language: English

Differential Expression of CD34, S100, and c−Kit in Interstitial Cells of Cajal in Infantile Hypertrophic Pyloric Stenosis – Immunochemical Study

Różnicowa ekspresja CD34, S100 i c−Kit w komórkach śródmiąższowych Cajala we wrodzonym przerostowym zwężeniu odźwiernika – badanie immunochemiczne

Hulya Ozturk1,, Hayrettin Ozturk2,, Fahri Yilmaz3,, Hanifi Okur4,, Selcukotc Selcukotcu5,, Ali Ihsan Dokucu6,

1 Duzce University, Medical School, Department of Pediatric Surgery, Duzce, Turkey

2 Abanty Izzet Baysal University, Medical School, Departments of Pediatric Surgery, Bolu, Turkey

3 Abanty Izzet Baysal University, Medical School, Departments of Pediatric Surgery, Pathology2, Bolu, Turkey

4 Dicle University, Medical School, Department of Pediatric Surgery, Diyarbakir, Turkey

6 Sisli Etfal Training and Research Hospital, Department of Pediatric Surgery3, Istanbul, Turkey

Abstract

Background. The pathogenesis of infantile hypertrophic pyloric stenosis (IHPS) is poorly understood although many hypotheses have been proposed.
Objectives. Assessment whether the differential expression of c−Kit, CD34, and S100 may be involved in the development of IHPS.
Material and Methods. Specimens from 14 infants with IHPS and seven control subjects were immunohistochemically stained for c−Kit, CD34, and S100. The numbers of CD34+, S100+, and c−Kit+ cells in five random fields per specimen were compared via light microscopy (×200).
Results. In normal pyloric tissue, specific and intense c−Kit immunoreactivity was observed in the muscle layers and moderate staining was observed around the myenteric plexus. In IHPS patients, c−Kit+ cells were either absent or markedly reduced around the myenteric plexus. In control and IHPS patients, CD34+ cells were not observed around the myenteric plexus. In the vascular endothelium, moderate CD34 staining was observed in specimens from control subjects, whereas intense staining was observed for IHPS patients. In normal pyloric tissue, moderate S100 immunoreactivity was observed in the muscle layers and intense staining was observed in the myenteric plexus. In IHPS patients, few S100+ cells were observed in the pyloric muscle layers and S100 immunoreactivity decreased markedly around the myenteric plexus.
Conclusion. These results suggest that the numbers of c−Kit+ and S100+ cells are markedly decreased in the pyloric muscle layers and around the myenteric plexus in IHPS patients. Thus a lack of c−Kit and S100, but not CD34, expression may be a critical factor in the pathogenesis of IHPS and may serve as a useful prognostic tool in the treatment of this disease.

Streszczenie

Wprowadzenie. Patogeneza wrodzonego przerostowego zwężenia odźwiernika (w.p.z.o.) nie została dostatecznie poznana, chociaż zaproponowano wiele hipotez.
Cel pracy. Ocena znaczenia ekspresji różnicowej c−Kit, CD34 i S100 w rozwoju w.p.z.o.
Materiał i metody. Przeprowadzono badania immunohistochemicznie ekspresji c−Kit, CD34 oraz S100 w wycinkach tkankowych pobranych od 14 niemowląt cierpiących na w.p.z.o. i od 7 osób z grupy kontrolnej. W obu grupach porównano liczbę komórek CD34+, S100+ i komórek c−Kit+ z 5 losowo wybranych obszarów z każdego wycinka za pomocą mikroskopu optycznego (×200).
Wyniki. W prawidłowej tkance odźwiernika stwierdzono swoistą i silną immunoreaktywność c−Kit w warstwach mięśniowych. Nie stwierdzono komórek CD34+ w okolicy splotów nerwowych błony mięśniowej, a w okolicy splotów nerwowych błony mięśniowej barwienie było umiarkowane. U pacjentów z w.p.z.o. komórki c−Kit+ były albo nieobecne, albo było ich znacząco mniej w okolicy splotów nerwowych błony mięśniowej zarówno w grupie kontrolnej, jak i u pacjentów z w.p.z.o. W śródbłonku naczyń krwionośnych zaobserwowano umiarkowane barwienie CD34 w wycinkach pochodzących z grupy kontrolnej, a w wycinkach pochodzących od pacjentów z w.p.z.o. barwienie było intensywne. W prawidłowej tkance odźwiernika obserwowano umiarkowaną immunoreaktywność S100 w warstwach mięśniowych oraz intensywne barwienie w okolicy splotów nerwowych błony mięśniowej. U pacjentów z w.p.z.o. wykryto niewiele komórek S100+ w warstwie mięśniowej odźwiernika oraz zmniejszoną reaktywność S100 w okolicy splotów nerwowych błony mięśniowej.
Wnioski. Przedstawione wyniki sugerują, że liczba komórek c−Kit+ i S100+ jest znacząco mniejsza w warstwach mięśniowych odźwiernika oraz w okolicy splotów nerwowych błony mięśniowej pacjentów z w.p.z.o. Dlatego brak ekspresji c−Kit i S100, ale nie CD34 może być uznany za ważny czynnik patogenetyczny w.p.z.o. i może być pożytecznym narzędziem diagnostycznym w leczeniu tej choroby.

Key words

infantile hypertrophic pyloric stenosis (IHPS), CD34, S100, c−Kit, immunohistochemistry

Słowa kluczowe

wrodzone przerostowe zwężenie odźwiernika, CD34, S100, c−Kit, immunohistochemia

References (40)

  1. Ohishiro K, Puri P: Pathogenesis of infantile hypertrophic pyloric stenosis: recent progress. Pediatr Surg Int 1998, 13, 243–252.
  2. Applegate MS, Druschel CM: The epidemiology of infantile hypertrophic pyloric stenosis in New York State, 1983 to 1990. Arch Pediatr Adolesc Med 1995, 149, 1123–1129.
  3. Okazaki T, Atsuyuki Y, Fijiwara T, Nishiye H, Fujimoto T, Miyano T: Abnormal distribution of nerve terminals in infantile hypertrophic pyloric stenosis. J Ped Surg 1994, 29, 655–658.
  4. Kobayashi H, O’Briain D, Puri P: Selective reduction in intramuscular nerve supporting cells in infantile hypertrophic pyloric stenosis. J Ped Surg 1994, 29, 651–654.
  5. Malmfors G, Sundler F: Peptidergic innervation in infantile hypertrophic pyloric stenosis. J Pediatr Surg 1986, 21, 303–306.
  6. Vanderwinden J, Mailleux P, Shiffmann S, Vanderhaeghen J, DeLaet M: Nitric oxide synthase activity in infantile hypertrophic pyloric stenosis. N Engl J Med 1992, 327, 511–515.
  7. Langer JC, Berezin I, Daniel EE: Hypertrophic pyloric stenosis: ultrastructural abnormalities of enteric nerves and the interstitial cells of Cajal. J Pediatr Surg 1995, 30, 1535–1543.
  8. Ohshiro K, Puri P: Increased insulin−like growth factor and platelet−derived growth factor system in the pyloric muscle in infantile hypertrophic pyloric stenosis. J Pediatr Surg 1998, 33, 378–381.
  9. Ward SM, Morris G, Reese L, Wang XY, Sanders KM: Interstitial cells of Cajal mediate enteric inhibitory neurotransmission in the lower esophageal and pyloric sphincters. Gastroenterology 1998, 115, 314–329.
  10. Vanderwinden JM: Role of interstitial cells of Cajal and their relationship with the enteric nervous system. Eur J Morphol 1999, 37, 250–256.
  11. Huizinga JD: Physiology and pathophysiology of the interstitial cell of Cajal: from bench to bedside, II: gastric motility: lessons from mutant mice on slow waves and innervation. Am J Physiol Gastrointest Liver Physiol 2001, 281, G1129–G1134.
  12. Huizinga JD: Neural injury, repair and adaptation in the GI tract, IV: pathophysiology of GI motility related to interstitial cells of Cajal. Am J Physiol 1998, 275, G381–G386.
  13. Wu JJ, Rothman TP, Gershon MD: Development of the interstitial cells of Cajal: origin, Kit dependence and neuronal and nonneuronal sources of Kit ligand. J Neurosci Res 2000, 59, 384–401.
  14. Vanderwinden JM, Rumessen JJ, De Laet MH, Vanderhaeghen JJ, Schiffmann SN: CD34+ cells in human intestine are fibroblasts adjacent to, but distinct from, interstitial cells of Cajal. Lab Invest 1999, 79, 59–65.
  15. Faussone−Pellegrini MS, Thuneberg L: Guide to the identification of interstitial cells of Cajal. Microsc Res Tech Nov 1999, 47, 248−266.
  16. Heizmann C.W: (Ed.), Novel Calcium−Binding Proteins, Springer−Verlag, Berlin, Heidelberg 1991, 65–99.
  17. Garbuglia M, Verzini M, Dimlich RV, Jamieson GA Jr, Donato R: Characterization of type III intermediate filament regulatory protein target epitopes: S−100 (beta and/or alpha) binds the N−terminal head domain; annexin II2−p11(2) binds the rod domain. Biochim Biophys Acta 1996 1313, 268−276.
  18. Wu T, Angus CW, Yao XL, Logun C, Shelhamer JH: P11, a unique member of the S100 family of calciumbinding proteins, interacts with and inhibits the activity of the 85−kDa cytosolic phospholipase A2. J Biol Chem 1997, 272, 17145−17153.
  19. Treves S, Scutari E, Robert M, Groh S, Ottolia M, Prestipino G, Ronjat M, Zorzato F: Interaction of S100A1 with the Ca2+ release channel (ryanodine receptor) of skeletal muscle. Biochemistry 1997, 36, 11496−11503.
  20. Burgess WH, Watterson DM, Van Eldik LJ: Identification of calmodulin−binding proteins in chicken embryo fibroblasts. J Cell Biol 1984, 99, 550−557.
  21. Torihashi S, Horisawa M, Watanabe Y: c−Kit immunoreactive interstitial cells in the human gastrointestinal tract. J Auton Nerv Syst 1999, 75, 38–50.
  22. Piotrowska AP, Solari V, Puri P: Distribution of heme oxygenase−2 in nerves and interstitial cells of Cajal in the normal pylorus and in infantile hypertrophic pyloric stenosis. Arch Pathol Lab Med 2003, 127, 1182−1186.
  23. Vanderwinden JM, Liu H, De Laet MH, Vanderhaeghen JJ: Study of the interstitial cells of Cajal in infantile hypertrophic pyloric stenosis. Gastroenterology 1996, 111, 279−288.
  24. Yamataka A, Ohshiro K, Kobayashi H, Fujiwara T, Sunagawa M, Miyano T: Intestinal pacemaker C−Kit+ cells and synapses in allied Hirschsprung’s disorders. J Pediatr Surg 1997, 32, 1069–1074.
  25. Isozaki K, Hirota S, Miyagawa J, Taniguchi M, Shinomura Y, Matsuzawa Y: Deficiency of c−Kit+ cells in patients with a myopathic form of chronic idiopathic intestinal pseudo−obstruction. Am J Gastroenterol 1997, 92, 332–334.
  26. Lyford GL, He CL, Soffer E, Hull TL, Strong SA, Senagore AJ, Burgart LJ, Young−Fadok T, Szurszewski JH, Farrugia G: Pan−colonic decrease in interstitial cells of Cajal in patients with slow transit constipation. Gut 2002, 51, 496–501.
  27. He CL, Soffer EE, Ferris CD, Walsh RM, Szurszewski JH, Farrugia G: Loss of interstitial cells of Cajal and inhibitory innervation in insulin−dependent diabetes. Gastroenterology 2001, 121, 427–434.
  28. Maeda H, Yamagata A, Nishikawa S, Yoshinaga K, Kobayashi S, Nishi K, Nishikawa S: Requirement of c−Kit for development of intestinal pacemaker system. Development 1992, 116, 369–375.
  29. Torihashi S, Ward SM, Sanders KM: Development of c−Kit positive cells and the onset of electrical rhythmicity in murine small intestine. Gastroenterology 1997, 112, 144–155.
  30. Yamataka A, Fujiwara T, Kato Y, Okazaki T, Sunagawa M, Miyano T: Lack of intestinal pacemaker (C−Kitpositive) cells in infantile hypertrophic pyloric stenosis. J Pediatr Surg 1996, 31, 96−8; Discussion 98−9.
  31. Young PE, Baumhueter S, Lasky LA: The sialomucin CD34 is expressed on hematopoietic cells and blood vessels during murine development. Blood 1995, 85, 96–105.
  32. Nickoloff BJ: The human progenitor cell antigen (CD34) is localized on endothelial cells, dermal dendritic cells, and perifollicular cells in formalin−fixed normal skin, and on proliferating endothelial cells and stromal spindleshaped cells in Kaposi’s sarcoma. Arch Dermatol 1991, 127, 523–529.
  33. Von de Rijn M, Rouse RV: CD34. A review. Appl Immunohistochem 1994, 2, 71–80.
  34. Yamazaki K, Eyden BP: Ultrastructural and immunohistochemical studies of intralobular fibroblasts in human thyroid gland: recognition of a CD34−positive stromal cell network communicated by gap junctions and terminated by autonomic nerve endings. J Submicrosc Cytol Pathol 1997, 29, 461–476.
  35. Kindblom LG, Remotti HE, Aldenborg F, Meis−Kindblom JM: Gastrointestinal stromal tumor (GIPACT). Gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. Am J Pathol 1998, 152, 1259–1269.
  36. Daub B, Schroeter M, Pfitzer G, Ganitkevich V: Expression of members of the S100 Ca2+−binding protein family in guinea pig smooth muscle. Cell Calcium 2003, 33, 1−10.
  37. Niki I, Yokokura H, Sudo T, Kato M, Hiroyoshi H: Ca2+ signalling and intracellular Ca2+ binding proteins. J Biochem 1996, 120, 685–698.
  38. Parekh AB, Penner R: Store depletion and calcium influx. Physiol Rev 1997, 77, 901−930.
  39. Berridge MJ: Elementary and global aspects of calcium signalling. J Exp Biol 1997, 200, 315−319.
  40. Sy ED, Shan YS, Lin CH, Lin PW: Immature intrinsic nerve innervations of pyloric muscle in idiopathic hypertrophic pyloric stenosis. J Formos Med Assoc 2004, 103, 558−561.