Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
5-Year IF – 2.0, IF – 1.9, JCI (2024) – 0.43
Scopus CiteScore – 4.3
Q1 in SJR 2024, SJR score – 0.598, H-index: 49 (SJR)
ICV – 161.00; MNiSW – 70 pts
Initial editorial assessment and first decision within 24 h

ISSN 1899–5276 (print), ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2009, vol. 18, nr 1, January-February, p. 19–24

Publication type: original article

Language: English

Genotyping FOXA1 G559A Polymorphism in Breast Cancer Archival Samples Using the SNaPshot Technique

Genotypowanie polimorfizmu FOXA1 G559A w archiwalnych preparatach raka gruczołu piersiowego techniką SNaPshot

Małgorzata Jaremko1,2,, Anna Sadakierska−chudy1,, Tadeusz Dobosz1,

1 Department of Forensic Medicine, Molecular Techniques Unit, Wroclaw Medical University, Poland

2 Mount Sinai School of Medicine, Department of Genetic and Genomics Sciences, NY, USA

Abstract

Background. FOXA1, a forkhead family transcription factor, is expressed in breast cancer cells and plays an essential role in the regulation of approximately 50% of estrogen receptor alpha (ERα)−dependent genes. Recent studies of expression signatures of breast cancer types have indicated its potential use as a prognostic factor in luminal type A breast cancer (BC).
Objectives. To establish the frequencies of FOXA1 G559A polymorphisms in a Polish population of breast cancer patients diagnosed with early breast carcinoma and to test whether the SNaPshot methodology is useful for genotyping DNA extracted from formalin−fixed paraffin−embedded tissues (FFPETs).
Material and Methods. DNA was extracted from 70 FFPET blocks and FOXA1 G559A polymorphism was successfully genotyped in 51 DNA samples using SNaPshot technology (Applied Biosystems).
Results. It is shown that the SNapShot technology based on the single−base primer extension reaction is suitable for genotyping DNA recovered from archived breast cancer tissues. The rate of successful amplifications was 94.4%. No genotypes deviated from Hardy−Weinberg equilibrium. The observed distribution of the FOXA1 G559A genotypes for this cohort of BC patients was GG 84%, GA 14%, and AA 2%. Conclusion. SNaPshot is a credible method for the analysis of DNA extracted from FFPETs and it can be used in large−scale FOXA1 G559A analysis. Further study of this polymorphism and analysis of patients’ case histories may provide better insight into its utility as a putative marker of breast cancer prognosis.

Streszczenie

Wprowadzenie. FOXA1 to czynnik transkrypcyjny z rodziny Forkhead, ekspresjonowany w komórkach raka piersi, odgrywający kluczową rolę w regulacji około 50% genów zależnych od receptora estrogenowego alfa (ERα). Ostatnie badania niektórych typów raka gruczołu piersiowego wykazały, że FOXA1 może być potencjalnym czynnikiem prognostycznym w luminalnym raku typu A.
Cel pracy. Ustalenie częstości polimorfizmu FOXA1 G559A w populacji polskiej pacjentek ze zdiagnozowanym wczesnym rakiem piersi oraz określenie przydatności metody SNaPshot w genotypowaniu DNA pochodzącego z utrwalonego materiału, przechowywanego w postaci bloczków parafinowych.
Materiał i metody. DNA izolowano z 70 bloczków parafinowych, a genotypowanie udało się przeprowadzić z sukcesem tylko w 51 próbkach z użyciem metody SNaPshot (Applied Biosystems).
Wyniki. Wykazano, że technika SNaPshot oparta na reakcji wydłużania starterów o jedną parę zasad pozwala na genotypowanie DNA pochodzącego z archiwalnych tkanek raka piersi. Wskaźnik udanych amplifikacji wyniósł 94,4%. Stwierdzone genotypy były ilościowo zgodne z przewidywaniami wynikającymi z prawa Hardy’ego−Weinberga. Obserwowany rozkład genotypów w badanej grupie pacjentek wynosił: GG 84%, GA 14%, AA 2%.
Wnioski. Metoda SNaPshot okazała się niezawodną metodą analizy DNA z tkanek utrwalanych formaliną i przechowywanych w formie bloczków parafinowych i może być wykorzystana do analizy polimorfizmu FOXA1 G559Aw większej grupie pacjentów. Dalsze badania polimorfizmu, w połączeniu z analizą historii choroby, są konieczne do oceny jego przydatności jako markera prognostycznego w raku piersi.

Key words

FOXA1, luminal breast cancer, SNaPshot

Słowa kluczowe

FOXA1, luminalny rak piersi, SNaPshot

References (26)

  1. Chia KS: Gene−environment interactions in breast cancer. Novartis Found Symp 2008, 293, 143–150.
  2. Adjuvant therapy for breast cancer. NIH Consensus Statement. 2000, 17, 1–35.
  3. Kaklamani VG, Gradishar WJ: Gene expression in breast cancer. Curr Treat Options Oncol 2006, 7, 123–128.
  4. Nakshatri H, Badve S: FOXA1 as a therapeutic target for breast cancer. Expert Opin Ther Targets 2007, 11, 507–514.
  5. Badve S, Turbin D, Thorat MA, Morimiya A, Nielsen TO, Perou CM, Dunn S, Huntsman DG, Nakshatri H: FOXA1 expression in breast cancer – correlation with luminal subtype A and survival. Clin Cancer Res 2007, 13, 4415–4421.
  6. Carroll JS, Liu XS, Brodsky AS, Li W, Meyer CA, Szary AJ, Eeckhoute J, Shao W, Hestermann EV, Geistlinger TR, Fox EA, Silver PA, Brown M: Chromosome−wide mapping of estrogen receptor binding reveals long−range regulation requiring the forkhead protein FoxA1. Cell 2005, 122, 33–43.
  7. Laganičre J, Deblois G, Lefebvre C, Bataille AR, Robert F, Gigučre V: From the Cover: Location analysis of estrogen receptor alpha target promoters reveals that FOXA1 defines a domain of the estrogen response. Proc Natl Acad Sci USA 2005, 102, 11651–11656.
  8. Kouros−Mehr H, Slorach EM, Sternlicht MD, Werb Z: GATA−3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 2006, 127, 1041–1055.
  9. Williamson EA, Wolf I, O’Kelly J, Bose S, Tanosaki S, Koeffler HP: BRCA1 and FOXA1 proteins coregulate the expression of the cell cycle−dependent kinase inhibitor p27 (Kip1). Oncogene 2006, 25, 1391–1399.
  10. Collins FS, Brooks LD, Chakravarti A: ADNApolymorphism discovery resource for research on human genetic variation. Genome Res 1998, 8, 1229–1231.
  11. Waever TA: High−throughput SNP discovery and typing for genome−wide genetic analysis. New Technologies of Life Sciences: A Trends Guide 2000, 36–42.
  12. Taylor JG, Choi EH, Foster CB, Chanock SJ: Using genetic variation to study human disease. Trends Mol Med 2001, 7, 507–512.
  13. Ben−Ezra J, Johnson DA, Rossi J, Cook N, Wu A: Effect of fixation on the amplification of nucleic acids from paraffin−embedded material by the polymerase chain reaction. J Histochem Cytochem 1991, 39, 351–354.
  14. Srinivasan M, Sedmak D, Jewell S: Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol 2002, 161, 1961–1971.
  15. Cawkwell L, Quirke P: Direct multiplex amplification of DNA from a formalin fixed, paraffin wax embedded tissue section. Mol Pathol 2000, 53, 51–52.
  16. Gilbert MT, Sanchez JJ, Haselkorn T, Jewell LD, Lucas SB, Van Marck E, Børsting C, Morling N, Worobey M: Multiplex PCR with minisequencing as an effective high−throughput SNP typing method for formalin−fixed tissue. Electrophoresis 2007, 28, 2361–2367.
  17. Jaremko M, Justenhoven C, Abraham BK, Schroth W, Fritz P, Brod S, Vollmert C, Illig T, Brauch H: MALDI−TOF MS and TaqMan assisted SNP genotyping of DNA isolated from formalin−fixed and paraffinembedded tissues (FFPET). Hum Mut 2005, 25, 232–238.
  18. Pati N, Schowinsky V, Kokanovic O, Magnuson V, Ghosh S: A comparison between SNaPshot, pyrosequencing, and biplex invader SNP genotyping methods: accuracy, cost, and throughput. J Biochem Biophys Methods 2004, 60, 1–12.
  19. Babol−Pokora K, Berent J: SNP−minisequencing as an excellent tool for analysing degraded DNA recovered from archival tissues. Acta Biochim Pol 2008, 55, 1–5.
  20. Inoue T, Nabeshima K, Kataoka H, Koono M: Feasibility of archival non−buffered formalin−fixed and paraffinembedded tissues for PCR amplification: an analysis of resected gastric carcinoma. Pathol Int 1996, 46, 997–1004.
  21. Farrand K, Jovanovic L, Delahunt B, McIver B, Hay ID, Eberhardt NL, Grebe SK: Loss of heterozygosity studies revisited: prior quantification of the amplifiable DNA content of archival samples improves efficiency and reliability. J Mol Diagn 2002, 4, 150–158.
  22. Jacobs S, Thompson ER, Nannya Y, Yamamoto G, Pillai R, Ogawa S, Bailey DK, Campbell IG: Genomewide, high−resolution detection of copy number, loss of heterozygosity, and genotypes from formalin−fixed, paraffin−embedded tumor tissue using microarrays. Cancer Res 2007, 67, 2544–2551.
  23. Miething F, Hering S, Hanschke B, Dressler J: Effect of fixation to the degradation of nuclear and mitochondrial DNA in different tissues. J Histochem Cytochem 2006, 39, 351–354.
  24. Thorat MA, Marchio C, Morimiya A, Savage K, Nakshatri H, Reis−Filho JS, Badve S: Forkhead box A1 expression in breast cancer is associated with luminal subtype and good prognosis. J Clin Pathol 2008, 61, 327–332.
  25. Yamaguchi N, Ito E, Azuma S, Honma R, Yanagisawa Y, Nishikawa A, Kawamura M, Imai J, Tatsuta K, Inoue J, Semba K, Watanabe S: FoxA1 as a lineage−specific oncogene in luminal type breast cancer. Biochem Biophys Res Commun 2008, 365, 711–717.
  26. Wolf I, Bose S, Williamson EA, Miller CW, Karlan BY, Koeffler HP: FOXA1: Growth inhibitor and a favorable prognostic factor in human breast cancer. Int J Cancer 2007, 120, 1013–1022.