Advances in Clinical and Experimental Medicine
2007, vol. 16, nr 4, July-August, p. 549–559
Publication type: review article
Language: English
The Molecular Background of Autoimmune Endocrine Disorders
Molekularne podłoże chorób autoimmunologicznych układu dokrewnego
1 Department of Endocrinology, Metabolism, and Internal Diseases, Poznań University of Medical Sciences, Poland
2 Department of Molecular Pathology, Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
Abstract
Recent data concerning the molecular background of autoimmune endocrine disorders are presented. Apart from a few rare syndromes caused by single gene mutations, most endocrine autoimmune diseases are complex polygenic traits triggered by environmental factors. The search for the genetic component concentrates on polymorphisms in genes involved in immune tolerance and immune response. The DNA polymorphisms may result from single nucleotide substitutions (SNPs) or from a variable number of tandem repeats of a short sequence, as in the IDDM2 locus associated with type 1 diabetes. The HLA system, especially class II, was the first confirmed source of alleles conferring susceptibility to autoimmune disorders. Currently, major attention is turning to numerous SNPs which may influence the structure or function of proteins taking part in immune mechanisms. Polymorphisms in CTLA−4, PTPN22, PDCD1, FCRL3, and SUMO4 as well as those in genes associated with vitamin D action have been hitherto investigated. Some of these have shown significant association with type 1 diabetes, Graves’ disease, chronic thyroiditis, and/or autoimmune Addison’s disease. There are now many other gene polymorphisms under investigation in autoimmune endocrine disorders. The progressing exploration of this field will enable future practical use in forecasting the development of autoimmune disorders and possibly in preventing their onset.
Streszczenie
Artykuł w skrócie przedstawia aktualne dane dotyczące molekularnego podłoża autoimmunologicznych chorób układu dokrewnego. Poza kilkoma rzadkimi zespołami spowodowanymi mutacjami pojedynczego genu, większość autoimmunologicznych chorób endokrynnych jest mutacją wielu genów, ujawniającą się pod wpływem czynników środowiskowych. Poszukiwania składowej genetycznej koncentrują się na polimorfizmach genów zaangażowanych w procesy tolerancji immunologicznej i odpowiedź odpornościową. Polimorfizmy DNA mogą być skutkiem zmian jednonukleotydowych albo różnej liczby tandemowych powtórzeń krótkiej sekwencji, jak w przypadku locus IDDM2, sprzężonego z cukrzycą typu 1. Układ HLA, zwłaszcza klasy II, był pierwszym potwierdzonym źródłem allelów sprzyjających rozwojowi zaburzeń autoimmunizacyjnych. Obecnie uwagę skupiają liczne polimorfizmy jednonukleotydowe mogące wpływać na strukturę i funkcję białek biorących udział w mechanizmach immunologicznych. Dotychczas badano polimorfizmy genów CTLA−4, PTPN22, PDCD1, FCRL3, SUMO4, a także genów związanych z działaniem witaminy D w organizmie. Niektóre z nich wykazały znaczący związek z rozwojem cukrzycy typu 1, choroby Graves−Basedowa, przewlekłego zapalenia tarczycy i/lub choroby Addisona. Obecnie w autoimmunologicznych chorobach układu dokrewnego analizuje się różne polimorfizmy genetyczne. Ich coraz lepsza znajomość umożliwi w przyszłości zastosowanie praktyczne – przewidywanie ryzyka chorób autoimmunologicznych i, być może – zapobieganie ich rozwojowi.
Key words
autoimmunity, polymorphism, endocrinology
Słowa kluczowe
autoimmunizacja, polimorfizm, endokrynologia
References (40)
- Progress in Autoimmune Diseases Research. National Institutes of Health. The autoimmune diseases coordinating committee. Report to Congress. U.S. Department of Health and Human Services. March 2005.
- Abbas AK, Lichtman AH: Basic Immunology. Functions and disorders of the immune system. Saunders, Philadelphia 2004, 2nd ed., 161–176.
- Vaidya B, Pearce S: The emerging role of the CTLA−4 gene in autoimmune endocrinopathies. Eur J Endocrinol 2004, 150, 619–626.
- Lan RY, Ansari AA, Lian ZX, Gershwin ME: Regulatory T cells: development, function and role in autoimmunity. Autoimmun Rev 2005, 4, 351–363.
- Piccirillo CA, Tritt M, Sgouroudis E, Albanese A, Pyzik M, Hay V: Control of Type 1 Autoimmune Diabetes by Naturally Occurring CD4+CD25+ Regulatory T Lymphocytes in Neonatal NOD Mice. Ann N Y Acad Sci 2005, 1051, 72–87.
- Kriegel MA, Lohmann T, Gabler C, Blank N, Kalden JR, Lorenz HM: Defective suppressor function of human CD4+CD25+ regulatory T cells in autoimmune polyglandular syndrome type II. J Exp Med 2004, 199, 1285–1291.
- Wolff AS, Erichsen MM, Meager A, Magitta NF, Myhre AG, Bollerslev J, Fougner KJ, Lima K, Knappskog PM, Husebye ES: Autoimmune polyendocrine syndrome type 1 in Norway: phenotypic variation, autoantibodies, and novel mutations in the autoimmune regulator gene. J Clin Endocrinol Metab 2007, 92, 595–603.
- Perheentupa J: Autoimmune Polyendocrinopathy−Candidiasis−Ectodermal Dystrophy. J Clin Endocrinol Metab 2006, 91, 2843–2850.
- Gambinieri E, Torgerson TR, Ochs HD: Immune dysregulation, polyendocrinopathy, and X−linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T−cell homeostasis. Curr Opin Rheumatol 2003, 15, 430–435.
- Fontenot JD, Gavin MA, Rudensky AY: Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immun 2004, 4, 330–336.
- Brix TH, Kyvik KO, Christensen K, Hegedus L: Evidence for a major role of heredity in Graves’ disease: a population−based study of two Danish twin cohorts. J Clin Endocrinol Metab 2001, 86, 930–934.
- IMGT/HLA Database (www.ebi.ac.uk/imgt/hla).
- Lambert AP, Gillespie KM, Thomson G, Cordell HJ, Todd JA, Gale EA, Bingley PJ: Absolute risk of childhood−onset type 1 diabetes defined by human leukocyte antigen class II genotype: a population−based study in the United Kingdom. J Clin Endocrinol Metab 2004, 89, 4037–4043.
- Barker JM, Ide A, Hostetler C, Yu L, Miao D, Fain PR, Eisenbarth GS, Gottlieb PA: Endocrine and Immunogenetic Testing in Individuals with Type 1 Diabetes and 21−Hydroxylase Autoantibodies: Addison’s Disease in a High Risk Population. J Clin Endocrinol Metab 2005, 90, 128–134.
- Bilbao JR, Martin−Pagola A, Perez De Nanclares G, Calvo B, Vitoria JC, Vazquez F, Castano L: HLA−DRB1 and MICA in autoimmunity: common associated alleles in autoimmune disorders. Ann N Y Acad Sci 2003, 1005, 314–318.
- Vafiadis P, Bennett ST, Todd JA, Nadeau J, Grabs R, Goodyer CG, Wickramasinghe S, Colle E, Polychronakos C: Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet 1997, 15, 289–292.
- Perez de Nanclares G, Bilbao JR, Castano L: No association of INS−VNTR genotype and IAA autoantibodies. Ann NY Acad Sci 2004, 1037,127–130.
- Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G, Rainbow DB, Hunter KM, Smith AN, Di Genova G, Herr MH, Dahlman I, Payne F, Smyth D, Lowe C, Twells RC, Howlett S, Healy B, Nutland S, Rance HE, Everett V, Smink LJ, Lam AC, Cordell HJ, Walker NM, Bordin C, Hulme J, Motzo C, Cucca F, Hess JF, Metzker ML, Rogers J, Gregory S, Allahabadia A, Nithiyananthan R, Tuomilehto−Wolf E, Tuomilehto J, Bingley P, Gillespie KM, Undlien DE, Ronningen KS, Guja C, Ionescu−Tirgoviste C, Savage DA, Maxwell AP, Carson DJ, Patterson CC, Franklyn JA, Clayton DG, Peterson LB, Wicker LS, Todd JA, Gough SC: Association of the T−cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature
- Blomhoff A, Lie BA, Myhre AG, Kemp H, Weetman AP, Akselsen HE, Huseby ES, Undlien DE: Polymorphisms in the Cytotoxic T Lymphocyte Antigen−4 gene region confer susceptibility to Addison’s disease. J Clin Endocrinol Metab 2004, 89, 3474–3476.
- Oaks MK, Hallett KM: Cutting edge: a soluble form of CTLA−4 in patients with autoimmune thyroid disease. J Immunol 2000, 164, 5015–5018.
- Mayans S, Lackovic K, Nyholm C, Lindgren P, Ruikka K, Eliasson M, Cilio CM, Holmberg D: CT60 genotype does not affect CTLA−4 isoform expression despite association to T1D and AITD in northern Sweden. BMC Med Genet 2007, 8, 3.
- Ruderman EM, Pope RM: The evolving clinical profile of abatacept (CTLA4−Ig): a novel co−stimulatory modulator for the treatment of rheumatoid arthritis. Arthritis Res Ther 2005, 7, 21–25.
- Begovich AB, Carlton VE, Honigberg LA, Schrodi SJ, Chokkalingam AP, Alexander HC, Ardlie KG, Huang Q, Smith AM, Spoerke JM, Conn MT, Chang M, Chang SY, Saiki RK, Catanese JJ, Leong DU, Garcia VE, McAllister LB, Jeffery DA, Lee AT, Batliwalla F, Remmers E, Criswell LA, Seldin MF, Kastner DL, Amos CI, Sninsky JJ, Gregersen PK: A missense single−nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 2004, 75, 330–337.
- Cloutier JF, Veillette A: Cooperative Inhibition of T−Cell Antigen Receptor Signaling by a Complex between a Kinase and a Phosphatase. J Exp Med 1999, 189, 111–121.
- Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M, MacMurray J, Meloni GF, Lucarelli P, Pellecchia M, Eisenbarth GS, Comings D, Mustelin T: A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 2004, 36, 337–338.
- Skórka A, Bednarczuk T, Bar−Andziak E, Nauman J, Ploski R: Lymphoid tyrosine phosphatase (PTPN22/LYP) variant and Graves’ disease in a Polish population: association and gene dose−dependent correlation with age of onset. Clin Endocrinol (Oxf) 2005, 62, 679–682.
- Kawasaki E, Awata T, Ikegami H, Kobayashi T, Maruyama T, Nakanishi K, Shimada A, Uga M, Kurihara S, Kawabata Y, Tanaka S, Kanazawa Y, Lee I, Eguchi K: Systematic search for single nucleotide polymorphisms in a lymphoid tyrosine phosphatase gene (PTPN22): Association between a promoter polymorphism and type 1 diabetes in Asian populations. Am J Med Genet 2006, 140 (6), 586–593.
- Johansson M, Arlestig L, Hallmans G, Rantapaa−Dahlqvist S: PTPN22 polymorphism and anti−cyclic citrullinated peptide antibodies in combination strongly predicts future onset of rheumatoid arthritis and has a specificity of 100% for the disease. Arth Res Ther 2005, 8, R19.
- Hermann R, Lipponen K, Kiviniemi M, Kakko T, Veijola R, Simell O, Knip M, Ilonen J: Lymphoid tyrosine phosphatase (LYP/PTPN22) Arg620Trp variant regulates insulin autoimmunity and progression to type 1 diabetes. Diabetologia 2006, 49, 1198–1208.
- Ansari MJ, Salama AD, Chitnis T, Smith RN, Yagita H, Akiba H, Yamazaki T, Azuma M, Iwai H, Khoury SJ, Auchincloss H Jr, Sayegh MH: The programmed death−1 (PD−1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J Exp Med 2003, 198, 63–69.
- Prokunina L, Castillejo−López C, Öberg F, Gunnarsson I, Berg L, Magnusson V, Brookes AJ, Tentler D, Kristjansdottir H, Grondal G, Bolstad AI, Svenungsson E, Lundberg I, Sturfelt G, Jonssen A, Truedsson L, Lima G, Alcocer−Varela J, Jonsson R, Gyllensten UB, Harley JB, Alarcon−Segovia D, Steinsson K, Alarcon−Riquelme ME: A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 2002, 32, 666–669.
- Nielsen C, Hansen D, Husby S, Jacobsen BB, Lillevang ST: Association of a putative regulatory polymorphism in the PD−1 gene with susceptibility to type 1 diabetes. Tissue Antigens 2003, 62, 492–497.
- Kochi Y, Yamada R, Suzuki A, Harley JB, Shirasawa S, Sawada T, Bae SC, Tokuhiro S, Chang X, Sekine A, Takahashi A, Tsunoda T, Ohnishi Y, Kaufman KM, Kang CP, Kang C, Otsubo S, Yumura W, Mimori A, KoikeT, Nakamura Y, Sasazuki T, Yamamoto K: A functional variant in FcRH3, encoding Fc Receptor Homolog 3, is associated with rheumatoid arthritis and several autoimmunities. Nat Genet 2005, 37, 478–485.
- Owen CJ, Kelly H, Eden JA, Merriman ME, Pearce SH, Merriman TR: Analysis of the FC−Receptor Like−3 (FCRL3) locus in Caucasians with autoimmune disorders suggests a complex pattern of disease association. J Clin Endocrin Metab 2007, 92, 1106–1111.
- Cantorna MT, Mahone BD: Mounting evidence for vitamin D as an environmental factor affecting autoimmune disease prevalence. Exp Biol Med 2004, 229, 1136–1142.
- Hypponen E, Laara E, Reunanen A, Jarvelin MR, Virtanen SM: Intake of vitamin D and risk of type 1 diabetes: a birth−cohort study. Lancet 2001, 358 (9292), 1500–1503.
- Guo SW, Magnuson VL, Schiller JJ: Meta−analysis of vitamin D receptor polymorphisms and type 1 diabetes: a HuGE review of genetic association studies. Am J Epidemiol 2006, 164, 711–724.
- Ramos−Lopez E, Zwermann O, Segni M, Meyer G, Reincke M, Seissler J, Herwig J, Usadel K, Badenhoop K: Apromoter polymorphism of the CYP27B1 gene is associated with Addison’s disease, Hashimoto’s thyroiditis, Graves’ disease and type 1 diabetes mellitus in Germans. Eur J Endocrinol 2004, 151, 193–197.
- Guo D, Li M, Zhang Y, Yang P, Eckenrode S, Hopkins D, Zheng W, Purohit S, Podolsky RH, Muir A, Wang J, Dong Z, Brusko T, Atkinson M, Pozzilli P, Zeidler A, Raffel LJ, Jacob CO, Park Y, Serrano−Rios M, Larrad MT, Zhang Z, Garchon HJ, Bach JF, Rotter JI, She JX, Wang CY: A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nat Genet 2004, 36, 837–841.
- Jennings CE, Owen CJ, Wilson V, Pearce SH: No association of the codon 55 methionine to valine polymorphism in the SUMO4 gene with Graves’ disease. Clin Endocrinol 2005, 62, 362–365.


