Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
5-Year IF – 2.0, IF – 1.9, JCI (2024) – 0.43
Scopus CiteScore – 4.3
Q1 in SJR 2024, SJR score – 0.598, H-index: 49 (SJR)
ICV – 161.00; MNiSW – 70 pts
Initial editorial assessment and first decision within 24 h

ISSN 1899–5276 (print), ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2007, vol. 16, nr 1, January-February, p. 35–42

Publication type: original article

Language: English

Trimethoprim Resistance in Escherichia coli Strains Isolated from Patients with Urinary Tract Infection in 1989–1994

Oporność na trimetoprim wśród szczepów Escherichia coli izolowanych od pacjentów z zakażeniem układu moczowego w latach 1989–1994

Ewa Dworniczek1,, Ewa Mróz1,, Jacek Skała2,, Anna Przondo−Mordarska1,, Agnieszka Goj2,, Małgorzata Bortniczuk2,

1 Department of Microbiology, Silesian Piasts University of Medicine in Wrocław, Poland

2 Department of Genetics, Institute of Genetics and Microbiology, University of Wrocław, Poland

Abstract

Introduction. Trimethoprim (Tmp), alone or in combination with sulfamethoxazole (co−trimoxazole), is commonly used for the treatment of urinary tract infections (UTI). In Poland, Tmp has been used in monotherapy since the late nineties.
Objectives. In this study the level of resistance to Tmp and the prevalence of dfr genes among E. coli strains isolated from urine in the period of 1989–1994 was investigated.
Material and Methods. Five hundred fifty−seven E. coli strains isolated from patients with significant bacteriuria were studied. E. coli C600K12 and E. coli J53K12 were used for the conjugational transfer of the resistance determinant of Tmp−resistant E. coli (donor strains) and recipients. The disc−diffusion method was performed to detect antibiotic resistance. The MICs of the antibiotics were determined by an agar dilution method. PCR was used to determine dfr genes encoding for dihydrofolate reductases.
Results. Of the 557 E. coli isolates, 15% were resistant to trimethoprim (MIC ≥ 4 mg/l). Of this group, 72% of the strains exhibited high−level resistance to Tmp (MIC > 1024 mg/l). Most of them were additionally resistant to three or more other antibiotics and resistance to doxycycline was dominant. Tmp resistance was transferred on conjugative plasmids from 55% of the donor strains to recipient E. coli. Co−transfer of various other resistance determinants with Tmp resistance was observed, streptomycin resistance being the most common. A gene determining Tmp resistance, dfrA1, was the most prevalent in the E. coli isolates (91%). The remaining E. coli strains (9%) possessed the dfrB2 gene.
Conclusion. Most E. coli strains were highly resistant to Tmp (MIC > 1024 mg/l). Tmp resistance was mediated by conjugative plasmids containing dfr genes. Type I dihydrofolate reductase (DHFR I) was the main enzyme responsible for high−level resistance to Tmp in the studied E. coli strains. Despite the late introduction of Tmp (a single agent) into therapy, the ubiquitous use of co−trimoxazole has caused the development of resistance to Tmp among E. coli.

Streszczenie

Wprowadzenie. Trimetoprim (Tmp), pojedynczo lub w połączeniu z sulfametoksazolem (kotrimoksazol), jest powszechnie stosowany w leczeniu zakażeń dróg moczowych (z.u.m.). W Polsce trimetoprim wprowadzono do monoterapii pod koniec lat 90.
Cel pracy. Oznaczenie poziomu oporności na Tmp oraz występowania genów dfr wśród szczepów E. coli izolowanych z moczu w latach 1989–1994. Materiały i metody. Zbadano 557 szczepów E. coli pochodzących od pacjentów ze znamienną bakteriurią. W badaniach nad koniugacyjnym przekazywaniem znaczników oporności wykorzystano oporne na Tmp, szczepy E. coli (dawcy) oraz wrażliwe na Tmp E. coli K12C600 i E. coli J53K12 (biorcy plazmidów). Oporność na antybiotyki oznaczono metodą dyfuzyjno−krążkową, a wartości MIC metodą seryjnych rozcieńczeń w podłożu stałym. Technikę PCR zastosowano do określenia typu genów dfr kodujących reduktazy dihydrofolianu.
Wyniki. Spośród 557 badanych szczepów E. coli 15% było opornych na Tmp (MIC 4 mg/L). W grupie tej 72% szczepów wykazywało wysoki poziom oporności (MIC > 1024 mg/L). Większość z nich była dodatkowo oporna na 3 lub więcej antybiotyków z wyraźną przewagą oporności na doksycyklinę. U 55% szczepów oporność na Tmp była przekazywana na plazmidach w procesie koniugacji do komórek biorcy. Wraz z opornością na Tmp przekazywane były markery oporności na inne leki, głównie streptomycynę. Gen dfrA1 warunkujący oporność na Tmp stwierdzono u większości badanych szczepów E. coli (91%). Pozostałe szczepy E. coli (9%) zawierały gen dfrB2.
Wnioski. Większość badanych szczepów E. coli wykazywała wysoki poziom oporności na Tmp (MIC > 1024 mg/L). Za oporność odpowiadały koniugacyjne plazmidy z genami dfr. Reduktaza dihydrofolianu typu I (DHFR I) była głównym enzymem odpowiedzialnym za wysoką oporność na Tmp u badanych szczepów. Mimo późnego wprowadzenia Tmp (pojedynczego leku) do terapii, powszechne stosowanie w lecznictwie kotrimoksazolu spowodowało wyraźny rozwój oporności na Tmp u pałeczek E. coli.

Key words

E. coli, trimethoprim, resistance, dfr, DHFR

Słowa kluczowe

E. coli, trimetoprim, oporność, dfr, DHFR

References (36)

  1. Yu HS, Lee JC, Kang HY, Ro DW, Chung JY, Jeong YS, Tae SH, Choi CH, Lee EY, Seol SY, Lee YC, Cho DT: Changes in gene cassettes of class 1 integrons among Escherichia coli isolates from urine specimens collected in Korea during the last two decades. J Clin Microbiol 2003, 4, 5429–5433.
  2. Amyes SGB, Doherty CJ, Wonnacott S: Trimethoprim and co−trimoxazole: a comparison of their use in respiratory tract infections. Scan J Dis 1986, 18, 561–566.
  3. Lacey RW: Do sulphonamide−trimethoprim combinations select less resistance to trimethoprim than the use of trimethoprim alone? J Med Microbiol 1982, 15, 403–427.
  4. Lacey RW, Lord VL, Gunasekera KW, Leiberman PJ, Luxton DEA: Comparison of trimethoprim alone with trimethoprim−sulphamethoxazole in the treatment of respiratory and urinary tract infections with particular reference to selection of trimethoprim resistance. Lancet 1980, i, 1270–1273.
  5. Coque TM, Singh KV, Weinstock GM, Murray BE: Characterization of dihydrofolate reductase genes from trimethoprim−susceptible and trimethoprim−resistant strains of Enterococcus faecalis. Antimicrob Agents Chemother 1999, 43,141–147.
  6. Steen R, Sköld O: Plasmid−borne or chromosomally mediated resistance by Tn7 is the most common response to ubiquitous use of trimethoprim. Antimicrob Agents Chemother 1985, 27, 933–937.
  7. Huovinen P: Increases in rates of resistance to trimethoprim. Clin Infect Dis 1997, 24, S63–66.
  8. Lee JC, Oh JY, Cho JW, Park JC, Kim JM, Seol SY, Cho DT: The prevalence of trimethoprim−resistance−conferring dihydrofolate reductase genes in urinary isolates of Escherichia coli in Korea. J Antimicrob Chemother 2001, 47, 599–604.
  9. Huovinen P, Sundström L, Swedberg G, Sköld O: Trimethoprim and sulphonamide resistance. Antimicrob Agents Chemother 1995, 39, 279–289.
  10. White PA, Rawlinson WD: Current status of the aaaA and dfr gene cassette families. J Antimicrob Chemother 2001, 47, 495–502.
  11. Yu HS, Lee JCH, Kang HY et al.: Prevalence of dfr genes associated with integrons and dissemination of dfr A17 among urinary isolates of Escherichia coli in Korea. J Antimicrob Chemother 2004, 53, 445–450.
  12. Towner KJ: Classification of transferable plasmids conferring resistance to trimethoprim isolated in Great Britain. FEMS Microbiol Lett 1979, 5, 319–321.
  13. Fling ME, Richards C: The nucleotide sequence of the trimethoprim−resistance dihydrofolate reductase gene harboured by Tn7. Nucleic Acids Res 1983, 11, 5147–5158.
  14. Zolg JW, Hanggi UJ, Zachau HG: Isolation of a small DNA fragment carrying the gene for a dihydrofolate reductase from a trimethoprim resistance factor. Mol Gen Genet 1978, 164, 15–29.
  15. National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disc susceptibility tests. Approved Standard, NCCLS document, M2−A6, NCCLS Villanowa, PA, 1997, 6th edn.
  16. Kurowska E, Cebrat S, Lachowicz TM: Transformation of Escherichia coli by R404 factor DNA and properties of the transformants. Acta Microbiol Polon 1976, 26, 3.
  17. Navia MM, Ruiz J, Sanchez−Cespedes J, Vila J: Detection of dihydrofolate reductase genes by PCR and RFLP. Diagn Microbiol Infect Dis 2003, 46, 295–298.
  18. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, 1989, 2nd edn., 9.34–9.51.
  19. Donnan PT, Wei L, Steinke DT, Phillips G, Clarke R, Noone A, Sullivan FM, MacDonald TM, Davey PG: Presence of bacteriuria caused by trimethoprim resistant bacteria in patients prescribed antibiotics: multilevel model with practice and individual patient data. BMJ 2004, 324, 1297.
  20. Heikkilä E, Renkonen O−V, Sunila R, Uurasmaa P, Huovinen P: The emergence and mechanism of trimethoprim resistance in Escherichia coli isolated from outpatients in Finland. J Antimicrob Chemother 1990, 25, 275–283.
  21. Grape M, Farra A, Kronvall G, Sundström L: Integrons and gene cassettes in clinical isolates of co−trimoxazole−resistant Gram−negative bacteria. Clin Microbiol Infect 2005, 11, 185–192.
  22. Tsakris A, Johnson AP, Legakis NJ, Tzouvelekis LS: Prevalence of the type I and type II DHFR genes in trimethoprim−resistant urinary isolates of Escherichia coli from Greece. J Antimicrob Chemother 1993, 32, 665–671.
  23. Haider K, Chatkaemorakot A, Kay BA, Talukder KA, Taylor DN, Echeverii AP, Sack DA: Trimethoprim resistance gene in Shigella dysenteriae 1 isolates obtained from widely scattered locations of Asia. Epidemiol Infect 1990, 104, 219–228.
  24. Adrian PV, Thomson CJ, Klugman KP, Amyes SGB: Prevalence and genetic locations of non−transferable trimethoprim resistant dihydrofolate reductase genes in South African commensal faecal isolates. Epidemiol Infect 1995, 115, 255–267.
  25. Huang DB, Jiang ZD, Ericsson CD, Adachi J, Dupont HL: Emergence of trimethoprim−resistant Escherichia coli in healthy persons in the absence of prophylactic or therapeutic antibiotics during travel to Guadalajara, Mexico. Scan J Infect Dis 2001, 33, 812–814.
  26. Young H−K, Jesudson MV, Koshi G, Amyes SGB: Trimethoprim resistance amongst urinary pathogens in South India. J Antimicrob Chemother 1986, 17, 615–621.
  27. Urbina R, Prado V, Canelo E: Trimethoprim resistance in enterobacteria isolated in Chile. J Antimicrob Chemother 1989, 23, 143–149.
  28. Chang LL, Chang SF, Chow TY, Wu WJ, Chang JC: The distribution of the DHFR genes in trimethoprimresistant urinary tract isolates from Taiwan. Epidemiol Infect 1992, 109, 453–462.
  29. Brumfitt W, Hamilton−Miller JMT, Wool A: Evidence flora slowing in trimethoprim resistance during 1981 – a comparison with earlier years. J Antimicrob Chemother 1983, 11, 503–509.
  30. Tsakris A, Johnson AP, George RC, Mehtar S, Vatopoulos AC: Distribution and transferability of plasmids encoding trimehoprim resistance in urinary pathogens from Greece. J Med Microbiol 1991, 34, 153–157.
  31. Mayer KH, Fling ME, Hopkins JD, O’Brien TF: Trimethoprim resistance in multiple genera of Enterobacteriaceae at U.S. Hospital: spread of the type II dihydrofolate reductase gene by a single plasmid. J Infect Dis 1985, 151, 783–789.
  32. Steinke DT, Seaton RA, Philips G, MacDonald TM, Davey PG: Prior trimethoprim use and trimethoprim−resistant urinary tract infection: a nested case−control study with multivariate analysis for other risk factors. J Antimicrob Chemother 2001, 47, 781–787.
  33. Amyes SGB: The success of plasmid encoded resistance genes in clinical bacteria: an examination of plasmidmediated ampicillin and trimethoprim resistance genes and their resistance mechanisms. J Med Microbiol 1989, 28, 73–83.
  34. Murray BE, Alvorado T, Kim K−H: Increasing resistance to trimethoprim−sulphamethoxazole among isolates of Escherichia coli in developing countries. J Infect Dis 1985, 152, 1107–1113.
  35. Steen R, Sköld O: Plasmid−borne or chromosomally mediated resistance by Tn7 is the most common response to ubiquitous use of trimethoprim. Antimicrob Agents Chemother 1985, 27, 933–937.
  36. Heikkilä E, Siitonen A, Jahkola M, Fling M, Sundström L, Huovinen P: Increase of trimethoprim resistance among Shigella species, 1975–1988: analysis of resistance mechanisms. J Infect Dis 1990, 161, 1242–1248.