Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
5-Year IF – 2.0, IF – 1.9, JCI (2024) – 0.43
Scopus CiteScore – 4.3
Q1 in SJR 2024, SJR score – 0.598, H-index: 49 (SJR)
ICV – 161.00; MNiSW – 70 pts
Initial editorial assessment and first decision within 24 h

ISSN 1899–5276 (print), ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2007, vol. 16, nr 1, January-February, p. 21–27

Publication type: original article

Language: English

In Vitro Influence of Baicalin on the Erythrocyte Membrane in Patients with Mixed Hyperlipidemia

Wpływ bajkaliny in vitro na błonę erytrocytarną u pacjentów z mieszaną hiperlipidemią

Marlena Broncel1,, Piotr Duchnowicz2,, Maria Koter−Michalak2,, Eliza Lamer−Zarawska3,, Julita Chojnowska−Jezierska1,

1 Department of Internal Diseases with Clinical Pharmacology and Therapy Monitoring Unit, Medical University of Lodz, Poland

2 Department of Environmental Pollution Biophysics, University of Lodz, Poland

3 Department of Biology and Botany Silesian Piasts University of Medicine in Wrocław, Poland

Abstract

Background. Scutellaria baicalensis Georgi is a popular herb used in China and Japan. It is suspected that baicalin, a potent antioxidative and anti−inflammatory agent, may prevent or slow down the development of atherosclerosis.
Objectives. The aim of the study was to evaluate the in vitro effect of baicalin on lipid peroxidation (thiobarbituric acid reactive substances, TBARS), cholesterol content, and ATPase activity of erythrocytes from patients with untreated mixed hyperlipidemia.
Material and Methods. The study involved 48 patients with total cholesterol (TC) > 200 mg/dl, LDL cholesterol (LDL−C) > 160 mg/dl, and triglycerides (TG) > 150 mg/dl and 15 healthy persons as the control group. The TBARS concentrations were determined by the Stocks and Dormandy method. The cholesterol concentration was determined using Liberman−Burchard reagent. The activity of Na+K+−ATPase was measured by a modified method of Bartosz. The studied parameters were assessed after 24−hour incubation of either whole blood or 2% suspensions of erythrocytes from hyperlipidemia patients and healthy controls with or without a 10 μM baicalin solution.
Results. After incubation, the 2% suspensions of erythrocyte from patients with mixed hyperlipidemia with baicalin showed a significant decrease in TBARS (0.293 ± 0.071 vs. 0.202 ± 0.07 μmol/mg hemoglobin, p < 0.01), cholesterol content (4.19 ± 0.72 vs. 2.09 ± 0.61 mg cholesterol/packed cells, p < 0.01), and Na+K+−ATPase activity (121.94 ± 53.8 vs. 61.24 ± 32.8 nmol Pi/mg proteins x h, p < 0.01) compared with the values obtained after incubation without baicalin. Similar changes were noted after incubation of the whole blood of patients with baicalin. In the control group, incubation of both whole blood and the 2% erythrocyte suspensions with baicalin did not show any significant changes in these parameters.
Conclusion. Baicalin shows in vitro antioxidant activity, decreases the concentration of cholesterol, and inhibits the activity of Na+K+−ATPase in whole blood and 2% erythrocyte suspensions of patients with mixed hyperlipidemia.

Streszczenie

Wprowadzenie. Scutellaria baicalensis Georgi jest popularnym ziołem stosowanym w Chinach i Japonii. Przypuszcza się, iż przez działanie antyoksydacyjne, przeciwzapalne, tarczyca bajkalska może być w przyszłości stosowana jako lek zapobiegający lub zwalniający rozwój zmian miażdżycowych.
Cel pracy. Ocena wpływu bajkaliny w warunkach in vitro na peroksydację lipidów (TBARS – poziom substancji reagujących z kwasem tiobarbiturowym), zawartość cholesterolu oraz aktywność ATP−azy w erytrocytach pacjentów z mieszaną hiperlipidemią.
Materiał i metody. Badaniem objęto 48 pacjentów z wyjściowym stężeniem cholesterolu całkowitego (TC) > 200mg/dl, cholesterolu LDL (LDL−C) > 160 mg/dl, triglicerydów TG >150 m/dl oraz 15 osób zdrowych stanowiących grupę kontrolną. Stężenie TBARS oznaczono metodą według Stocksa i Dormandy’ego [9]. Stężenie cholesterolu z zastosowaniem odczynnika Libermana−Burcharda [11], aktywność ATPazy Na+K+ według zmodyfikowanej metody Bartosza [13]. Badane wskaźniki oceniano po 24 h inkubacji (pełnej krwi oraz 2% zawiesiny erytrocytów pobieranych od pacjentów z hiperlipidemią i od osób zdrowych) z 10 μM roztworem bajkaliny i bez bajkaliny.
Wyniki. Po inkubacji z bajkaliną 2% zawiesiny erytrocytów pobieranych od pacjentów z mieszaną hiperlipidemią obserwowano istotne zmniejszenie stężenia TBARS (0.293 ± 0.071 vs. 0.202 ± 0.07 μmol/mg hemoglobiny, p < 0.01), cholesterolu (4.19 ± 0.72 vs. 2.09 ± 0.61 mg cholesterol/liczbę upakowanych komórek, p < 0.01) oraz aktywności ATPazy Na+K+ (121.94 ± 53.8 vs. 61.24 ± 32.8 nmol fosfolipidów/mg białka x h, p < 0.01) w porównaniu do wartości uzyskanych po inkubacji zawiesiny bez bajkaliny. Podobne zmiany obserwowano po inkubacji z bajkaliną pełnej krwi pacjentów z hiperlipidemią. W grupie kontrolnej nie stwierdzono istotnych zmian badanych wskaźników zarówno po inkubacji pełnej krwi, jak i 2% zawiesiny erytrocytów z bajkaliną.
Wnioski. W warunkach in vitro bajkalina wykazuje działanie antyoksydacyjne, zmniejsza stężenie cholesterolu i hamuje aktywność ATPazy Na+K+ w pełnej krwi i 2% zawiesinie erytrocytów pobieranych od pacjentów z mieszaną hiperlipidemią.

Key words

baicalin, ATPase activity, cholesterol, peroxidation, hyperlipidaemia

Słowa kluczowe

bajkalina, aktywność ATPazy, cholesterol, peroksydacja, hiperlipidemia

References (25)

  1. Shao ZH, Vanden Hoek TL, Quin Y, Becker LB, Schumacker PT, Li CQ: Baicalein attenuates oxidant stress in cardiomyocytes. Am J Physiol Heart Circ Physiol 2002, 282, H999–H1006.
  2. Shi H, Zhao B, Xin W: Scavenging effects of baicalin on free radicals and its protection on erythrocyte membrane from free radical injury. Biochem Mol Biol Int 1995, 35, 981–994.
  3. Shieh DE, Liu LT, Lin CC: Antioxidant and free radical scavenging effects of baicalein, baicalin and wogonin. Anticancer Res 2000, 20, 2861–2865.
  4. Kimura Y, Matsushita N, Yokoi−Hayashi K, Okuda H: Effects of baicalein isolated from Scutellaria baicalensis radix on adhesion molecule expression induced by thrombin and thrombin receptor agonist peptide in cultured human umbilical vein endothelial cells. Planta Med 2001, 67, 331–334.
  5. Shimizu I: Sho−saiko−to: Japanese herbal medicine for protection against hepatic fibrosis and carcinoma. J Gastroenterol Hepatol 2000, suppl 15, D84–D90.
  6. Geerts A, Rogiers V: Sho−saiko−to: The right blend of traditional oriental medicine and liver cell biology. Hepatology 1999, 29, 282–284.
  7. Koter M, Franiak I, Strycharska K, Broncel M, Chojnowska−Jezierska J: Damage to the structure of erythrocyte plasma membranes in patients with type−2 hypercholesterolemia. Int J Biochem Cell Biol 2004, 36, 205–215.
  8. Martinez M, Vaya A, Gil L, Marti R, Dalmau J, Aznar J: The cholesterol/phospholipid ratio of the erythrocyte membrane in children with familial hypercholesterolemia. Its relationship with plasma lipids and red blood cell aggregability. Clin Hemorheol Microcirc 1998, 18, 259–263.
  9. Stocks J, Dormandy TL: The autoxidation of human red cell lipids induced by hydrogen peroxide. Br J Haematol 1971, 20, 95–111.
  10. Rodriguez−Vico F, Martinez−Cayuela M, Zafra MF, Garcia−Peregrin E, Ramirez H: A procedure for the simultaneous determination of lipid and protein in biomembranes and other biological samples. Lipids 1991, 26, 2677–2680.
  11. Klyszejko−Stefanowicz L: Cytobiochemia. Wydawnictwo Naukowe PWN 1995.
  12. Drabkin DL: The crystallographic and optical properties of the haemoglobin of man in comparison with dose of other species. J Biol Chem 1946, 12, 703–723.
  13. Bartosz G, Bartosz M, Sokal A, Gębicki JM: Stimulation of erythrocyte membrane Mg+2ATPase activity by dinitrophenol and other membrane−disturbing agents. Biochem Mol Biol Int 1994, 34, 521–529.
  14. Van Veldhoven PP, Mannaeters GP: Inorganic and organic phosphate measurements in the nanomolar range. Anal Biochem 1987, 161, 45–48.
  15. Lowry OH, Rosebrough A, Ferr L, Randall RJ: Protein measurement with Folin Phenol reagent. J Biol Chem 1951, 193, 265–277.
  16. Motulsky H: Intuitive biostatistics. Oxford University Press 1995, Oxford.
  17. Soobrattee MA, Neergheen VS, Luximon−Ramma A, Aruoma OI, Bahorun T: Phenolics as potential antioxidant therapeutic agents: Mechanism and action. Mutation Res 2005, 579, 200–213.
  18. Saija A, Scales M, Lanza M, Marzullo D, Bonina F, Castelli F: Flavonoids as antioxidant agents: importance of their interactions with biomembranes. Free Radic Biol Med 1995, 19, 481–486.
  19. Kimura Y, Okuda H, Taira Z, Shoji M, Takemoto T, Arichi S: Studies on Scutellariae radix. IX New component inhibiting lipid peroxidation in rat liver. Planta Med 1984, 50, 290–295.
  20. Gao D, Sakurai K, Chen J, Ogsio T: Protection by baicalein against ascorbic acidinduced lipid peroxidation of rat liver microsomes. Research Commun Mol Pathol Pharmacol 1995, 90, 103–114.
  21. Bochorakova H, Paulova H, Slanina J, Musil P, Taborska E: Main flavonoids in the root of Scutellaria baicalensis cultivated in Europe and their comparative antiradical properties. Phytother. Res 2003, 17, 640–644.
  22. Lu G, Ouyang S, Pei Z: Changes of erythrocyte membrane ATPase activities and plasma lipids in patients with coronary heart disease. Human Yi Ke Da Xue Xue Bao 1999, 24, 68–70.
  23. Lijnen, P, Petrov V: Cholesterol modulation of transmembrane cation transport systems in human erythrocytes. Biochem Mol Med 1995, 56, 52–62.
  24. Makarov VL, Kuznetsov SR: Increased Na+K+−pump activity in erythrocytes of rabbits fed cholesterol. Int J Exp Pathol 1995, 76, 93–96.
  25. Yaegle P: Cholesterol modulation of (Na+K+)ATPase ATP hydrolyzing activity in human erythrocyte. Biochem Biophys Acta 1983, 727, 39–44.