Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
5-Year IF – 2.0, IF – 1.9, JCI (2024) – 0.43
Scopus CiteScore – 4.3
Q1 in SJR 2024, SJR score – 0.598, H-index: 49 (SJR)
IC – 171.00; MNiSW – 70 pts
Initial editorial assessment and first decision within 24 h

ISSN 1899–5276 (print), ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

Ahead of print

doi: 10.17219/acem/195189

Publication type: original article

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Cite as:


Mete G, Gökçe G, Aydın S, Öztürk HS. An experimental rat model of non-alcoholic fatty liver disease: Ameliorative effect of green coffee and prediction of disease activity [published online as ahead of print on April 16, 2025]. Adv Clin Exp Med. 2025. doi:10.17219/acem/195189

An experimental rat model of non-alcoholic fatty liver disease: Ameliorative effect of green coffee and prediction of disease activity

Gülşah Mete1,A,B,C,D,E,F, Gökçen Gökçe2,A,B,C,D,E,F, Sevim Aydın2,A,C,D,E,F, Hasan Serdar Öztürk1,A,C,D,E,F

1 Department of Medical Biochemistry, Faculty of Medicine, Ankara University, Turkey

2 Department of Histology and Embryology, Faculty of Medicine, Ankara University, Turkey

Graphical abstract


Graphical abstracts

Highlights


•    The effects of green coffee bean extract (GCBE) and chlorogenic acid (CA) on the non-alcoholic fatty liver disease (NAFLD) population and on healthy individuals are different.
•    GCBE and CA increase glyoxalase 1 (GLO1) in NAFLD.
•    Increased GLO1 in NAFLD may be a defense mechanism.
•    Both 20 mg/kg GCBE and 50 mg/kg CA can ameliorate NAFLD.
•    Serum malondialdehyde (MDA) and triglyceride levels are promising in NAFLD activity score (NAS) prediction.

Abstract

Background. Non-alcoholic fatty liver disease (NAFLD) is currently a public health problem that affects many people worldwide. New-generation dietary agents can contribute to disease control. Also, prediction of liver disease activity with serum markers is an important factor to reduce the need for liver biopsies.

Objectives. The aim of this study was to compare the effects of 20 mg/kg green coffee bean extract (GCBE, standardized to 10 mg/kg chlorogenic acid), 10 mg/kg chlorogenic acid (CA) and 50 mg/kg CA on NAFLD activity score (NAS). We also aimed to create a NAS prediction model as an alternative to liver biopsies.

Materials and methods. Male Wistar rats were fed either a high-fat high-cholesterol (HFHC) diet (NAFLD groups, n = 32) or a normal diet (control groups, n = 24). Green coffee bean extract (20 mg/kg) and CA (10 mg/kg and 50 mg/kg) were given by daily oral gavage. At the end of the study, blood samples and liver tissues were collected. Biochemical parameters, glyoxalase 1 (GLO1) and oxidative stress parameters were analyzed. An experienced histopathologist graded NAS.

Results. Green coffee bean extract and 50 mg/kg CA significantly reduced NAS (p < 0.01 and p < 0.001, respectively). HFHC-diet induced NAFLD was associated with higher serum GLO1 levels (p < 0.001). Serum malondialdehyde (MDA) levels were positively correlated with NAS while GLO1 was negatively correlated with NAS (p < 0.001, r = 0.698; p < 0.05, r = –0.367, respectively). Serum MDA and triglyceride were found to be statistically significant in predicting NAS (p < 0.001).

Conclusions. Our study suggests that GCBE and CA can both ameliorate the development of NAFLD. Also, low-dose GCBE and high-dose CA showed similar hepatoprotective effects. Increased GLO1 in NAFLD may be a defense mechanism which is enhanced by GCBE and CA. Moreover, serum MDA and triglyceride levels are promising in NAS prediction.

Key words: malondialdehyde, oxidative stress, non-alcoholic fatty liver disease, chlorogenic acid

Background

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease with a global prevalence of 25%.1 This high prevalence rate parallels the increased prevalence of obesity, type 2 diabetes and metabolic syndrome.2 Thus, current alarming state of NAFLD has raised the interest in hepatoprotective dietary agents for disease prevention.

In order to emphasize the importance of nutrition and metabolic risk factors in NAFLD, the terms “metabolic associated fatty liver disease” or “nutrition associated fatty liver disease” are also recommended instead of the term “non-alcoholic fatty liver disease”.3, 4 Nutrition modulates liver lipid metabolism through different epigenetic pathways. A high-fat diet is found to downregulate the expression of silent information regulator 2 homologue 1 protein (SIRT1).5 This downregulation increases the release of free fatty acids from mesenteric adipose tissue, which results in increased uptake of free fatty acids into the liver.5

Dicarbonyl stress is characterized by the excessive accumulation of reactive dicarbonyl metabolites.6, 7 These metabolites can easily interact with cellular proteins and DNA. Methylglyoxal is the most abundant dicarbonyl metabolite in humans.8 Glyoxalase 1 (GLO1) is the primary enzyme of the dicarbonyl stress pathway and plays an essential role in methylglyoxal detoxification.8 However, little is known about the role of GLO1 in NAFLD.

Screening patients with diabetes and metabolic syndrome who are at high risk of non-alcoholic steatohepatitis (NASH) is a key factor in NAFLD management. Predicting histological disease activity with serum parameters can decrease the number of liver biopsies. However, reliable serum markers are needed to detect early NASH.

Chlorogenic acid (CA) is the most abundant polyphenolic compound in green coffee beans.9 The roasting process, which is necessary to produce brown coffee beans, was found to reduce chlorogenic acid content of green coffee beans by up to 95%.9 Both chlorogenic acid and green coffee bean extract (GCBE) are well documented for their antidiabetic and hypolipidemic properties.10, 11

However, comparison of the effects of GCBE and CA on NAFLD is crucial to determine which one should be preferred primarily for disease prevention. Due to the lower cost and easier production methods of GCBE, the use of GCBE is more cost-effective than of CA.

Objectives

The aim of our study was to compare the effects of 20 mg/kg GCBE (standardized to 10 mg/kg chlorogenic acid) and 10 mg/kg CA on NAFLD activity score (NAS). In the literature, different doses of CA (ranging from 10 mg/kg to 50 mg/kg) are used in different rat models.12, 13 We also aimed to compare the effects of low-dose (10 mg/kg) and high-dose (50 mg/kg) CA on NAS in NAFLD. Additionally, we developed a regression model for the prediction of NAS with serum parameters to address the need for reliable serum markers to detect early NASH.

Materials and methods

Animals

All animal experiments were performed in accordance with the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines. Kobay Technology Co. Ltd. (Ankara, Turkey) provided 56 healthy male Wistar rats (13-week-old, 300–380 g).

Animal maintenance with 4 animals per cage was conducted in Experimental Animals Research Laboratory of Ankara University. Animals were maintained on a 12-h light–dark cycle at room temperature (22–24°C) with free access to food and water. No animals died during experimental protocols. At the end of the study, rats were anesthetized with ketamine (90 mg/kg) and xylazine (10 mg/kg). Intracardiac blood was collected under anesthesia prior to the removal of organs and tissues. Animals were sacrificed by cervical dislocation. Blood samples and liver tissues were collected after 12 h of fasting.

The study was approved by the Animal Ethics Committee of Ankara University to ensure ethical and humane treatment of the animals (ethical approval ID: 2019-19-77, issued on October 16, 2019).

Grouping and modeling

Animals were divided into 7 groups (n = 8). Sample size was decided according to previous studies.14 Simple randomization (table of random numbers) was used for group allocation. Groups 1, 2 and 3 were fed a normal diet for 10 weeks. Normal diet was composed of 64 g carbohydrates (70% of total calories), 4 g fat (10 % of total calories) and 23 g protein (20 % of total calories) per 100 g of diet (Table 1). Group 1 was given no dietary agent. Groups 2 and 3 were given 20 mg/kg GCBE and 10 mg/kg CA, respectively.

Groups 4, 5, 6, and 7 were fed a high-fat high cholesterol (HFHC) diet (cat. No. D09052204; Research Diets, New Brunswick, USA) to induce NASH.12 The HFHC diet was composed of 19 g carbohydrates (15% of total calories), 39 g fat (65% of total calories), 27 g protein (20% of total calories), 2 g cholesterol, and 0.5 g cholic acid per 100 g of diet. Group 4 was given no dietary agent. Groups 5, 6 and 7 were given 20 mg/kg GCBE, 10 mg/kg CA and 50 mg/kg CA, respectively. All dietary agents were given by daily oral gavage.

Reagents

Green coffee bean extract was obtained from Sepe Natural Organic Products Co. Ltd (İzmir, Turkey). It was extracted from Coffea arabica L. beans. Ethanol and water were used as solvents in the extraction procedure. The GCBE in our study was standardized to 50% chlorogenic acid using high performance liquid chromatography method (a dose of 20 mg/kg GCBE contained 10 mg/kg CA). Chlorogenic acid (purity ≥97.5%) was obtained from Acros Organics (Geel, Belgium). Other chemicals were obtained from Sigma–Aldrich (St. Louis, USA).

Serum biochemistry

Serum glucose, alanine aminotransferase (ALT), aspartate aminotransferase (AST), amylase, lipase, total cholesterol, triglyceride, and high-density lipoprotein cholesterol (HDL-C) were analyzed with Beckman Coulter AU5800 autoanalyzer (Beckman Coulter, Inc., Hialeah, USA).

Serum superoxide dismutase (SOD) activity assay was based on the principle of inhibition of nitroblue tetrazolium reduction.15 Malondialdehyde (MDA) levels were analyzed via thiobarbituric acid reaction.16 The method developed by Aebi et al. was used for the measurement of catalase activity.17 Glutathione peroxidase (GSH-PX) activity was measured using the method of Paglia et al.18

Histopathological analysis

Liver tissue samples were fixed and embedded in paraffin blocks. Four-micrometer sections were prepared using a Leica RM 2125 RT microtome (Leica Biosystems, Richmond, USA). After deparaffinization, samples were assessed using both hematoxylin & eosin (H&E) and Masson trichrome staining. An experienced histopathologist graded the NAS using the scoring system designed and validated by Kleiner et al.19

For electron microscopic analysis, liver tissues of rats from each group were fixed in phosphate-buffered glutaraldehyde (4%) (pH 7.4) at 4°C for 24 h and post-fixed in phosphate-buffered osmium tetroxide (1%) for 4 h, dehydrated through an ethanol series, and embedded in araldite-epoxy resin. Ultrathin sections were cut using diamond knives and a Leica Reichert Ultracut S ultramicrotome (Leica Biosystems). An 800-nm semithin section was prepared through the liver and stained with toluidine blue dye. Then, 80-nm thin sections were obtained from a selected area of the tissue samples defined as the semithin section, and these sections were stained with uranyl acetate and lead citrate. The ultrastructure of the liver was examined under a Hitachi HT7800 transmission electron microscope (Hitachi Corp., Tokyo, Japan).

Statistical analyses

All experiments were performed in duplicate, and statistical analysis was performed using IBM SPSS v. 21.0 software (IBM Corp., Armonk, USA). Since n = 8 per group nonparametric tests were used. Mann–Whitney (M–W) U test was used to analyze NASH model characteristics (group 1 vs group 4). Kruskal–Wallis (K–W) test followed by Dunn’s multiple comparison test was used to compare animal characteristics, serum parameters and NAS within normal rat chow groups and within NAFLD groups. Spearman’s test was used for correlation analysis between serum parameters and NAS. Also, a linear regression analysis was performed for NAS prediction in NAFLD groups (n = 32). Statistical significance was assumed at p < 0.05.

Results

Animal characteristics and serum biochemistry

Initial and final body weights were similar in normal rat chow and NAFLD groups. Both terminal body weight and weight gain during the study were higher in group 4 compared to group 1 (Table 2; M–W U test; p = 0.038, U = 52; p = 0.050, U = 51, respectively). Group 4 had higher terminal liver weight than group 1 (Table 2; M–W U test; p < 0.001, U = 64). Also, both group 2 and group 4 had a higher final liver weight/final body weight ratio than group 1 (Table 2; K–W test followed by Dunn’s multiple comparison, H (2.00) = 8.07, p = 0.016; M–W U test; p < 0.001, U = 64, respectively).

As seen in Table 3, a comparison between group 1 and group 4 showed that HFHC diet-induced NASH caused an increase in serum glucose, ALT, AST, amylase, lipase, triglyceride, total cholesterol, and HDL-C (M–W U test; p = 0.002, U = 60 for triglyceride and p < 0.001, U = 64 for others). In the NAFLD groups, GCBE was linked to a substantial decrease in serum glucose, triglyceride and amylase levels (Table 3; K–W test followed by Dunn’s multiple comparison, H (3.00) = 14.76, p = 0.003, H (3.00) = 16.87, p = 0.001, H (3.00) = 18.30, p < 0.001, respectively). Furthermore, the administration of 10 mg/kg of CA reduced serum glucose, triglyceride and amylase levels (Table 3; K–W test followed by Dunn’s multiple comparison, H (3.00) = 14.76, p = 0.009, H (3.00) = 16.87, p = 0.009, H (3.00) = 18.30, p < 0.001, respectively). Also, 50 mg/kg chlorogenic acid reduced serum triglyceride levels in NAFLD (Table 3; K–W test followed by Dunn’s multiple comparison, H (3.00) = 16.87, p = 0.037).

Due to more advanced cirrhosis, group 4 had lower ALT levels compared to groups 6 and 7 (Table 3; K–W test followed by Dunn’s multiple comparison, H (3.00) = 13.17, p = 0.007, p = 0.016, respectively) and lower AST levels compared to groups 6 and 7 (Table 3; K–W test followed by Dunn’s multiple comparison, H (3.00) = 11.57, p = 0.010, p = 0.043, respectively).

In contrast to NAFLD groups, GCBE and CA administrations resulted in significantly higher serum glucose in normal diet-fed groups (Table 3; K–W test followed by Dunn’s multiple comparison, H (2.00) = 13.69, p = 0.002, p = 0.009, respectively). Chlorogenic acid also caused higher serum total cholesterol levels (Table 3; K–W test followed by Dunn’s multiple comparison, H (2.00) = 9.48, p = 0.012).

Furthermore, GCBE administration increased ALT and amylase levels in normal rat chow groups (Table 3; K–W test followed by Dunn’s multiple comparison, H (2.00) = 8.14, p = 0.013, H (2.00) = 12.06, p = 0.002, respectively).

Glyoxalase 1 and oxidative stress

As shown in Table 4; NAFLD was associated with higher serum GLO1 levels (group 4 vs group 1, M–W U test; p < 0.001, U = 64). In normal rat chow groups, GCBE administration reduced GLO1 levels (Table 4; K–W test followed by Dunn’s multiple comparison, H (2.00) = 6.48, p = 0.036). In NAFLD groups, 10 mg/kg CA increased GLO1 levels (Table 4; K–W test followed by Dunn’s multiple comparison, H (3.00) = 8.30, p = 0.036).

Serum catalase activity was suppressed in group 4 compared to group 1 (Table 4; M–W U test; p = 0.022, U = 11) Also, NAFLD was associated with a reduction in serum MDA levels (group 4 vs group 1, M–W U test; p < 0.001, U = 64).

Administrations of both GCBE and 50 mg/kg CA caused a reduction in MDA levels in NAFLD groups (Table 4; K–W test followed by Dunn’s multiple comparison, H (3.00) = 19.58, p = 0.017, p < 0.001, respectively). In addition, GCBE administration significantly reduced MDA level in normal rat chow groups (Table 4; K–W test followed by Dunn’s multiple comparison, H (2.00) = 20.48, p < 0.001).

Non-alcoholic fatty liver disease resulted in a significant decrease in serum superoxide SOD levels, as demonstrated in Table 4 (group 4 vs group 1). In NAFLD groups 10 mg/kg CA significantly increased SOD (Table 4; K–W test followed by Dunn’s multiple comparison, H (3.00) = 17.57, p = 0.004). In normal rat chow groups, both GCBE and CA decreased SOD (Table 4; K–W test followed by Dunn’s multiple comparison, H (2.00) = 9.35, p = 0.007).

Liver histopathology

The NAFLD activity score groups histological features into 5 categories: steatosis, fibrosis, inflammation, hepatocellular injury, and other findings (Mallory’s hyaline and glycogenated nuclei). The NAFLD activity score was 0 for all normal rat chow-fed groups and NAFLD was excluded for all. However, all animals fed the HFHC diet were diagnosed with NAFLD (total NAS ranged from 9 to 22; Table 5). Both GCBE and 50 mg/kg CA significantly reduced total NAS (Table 5; K–W test followed by Dunn’s multiple comparison, H (3.00) = 20.49, p = 0.002, p < 0.001, respectively). We observed a significant reduction in inflammation score with 10 mg/kg CA and 50 mg/kg CA (Table 5; K–W test followed by Dunn’s multiple comparison, H (3.00) = 9.65, p = 0.005, p = 0.038, respectively). The administration of GCBE, 10 mg/kg CA, and 50 mg/kg CA resulted in a decrease in liver cell injury scores (Table 5; K–W test followed by Dunn’s multiple comparison, H (3.00) = 19.84, p = 0.001, p = 0.004, p = 0.001, respectively). It was determined that GCBE, 10 mg/kg CA and 50 mg/kg CA all led to a decrease in other findings scores (Table 5; K–W test followed by Dunn’s multiple comparison, H (3.00) = 31.00, p < 0.001 for all).

As shown in Figure 1, light microscopic analysis showed that GCBE and 50 mg/kg CA both reduced hepatocyte ballooning. Additionally, 50 mg/kg CA reduced steatosis and inflammation. The presence of structurally normal hepatocytes was also noteworthy in both groups.

As shown in Figure 2, ultrastructural micrographs of liver tissue belonging to the control group demonstrated normal hepatic cells. Sections of NASH groups showed macrovesicular and microvesicular lipid droplets, electron-dense bodies and irregular cell morphology, indicating the disruption of the cellular structure. In addition, inflammatory cells, particularly polymorphonuclear granulocytes and erythrocytes, were present around large oil droplets. It was observed that hepatocyte degeneration was similar in GCBE and 10 mg/kg CA groups, but the diameters of lipid droplets were smaller in both groups than in the NASH group.

Administration of 50 mg/kg CA was associated with NASH amelioration in terms of cell morphology and cytoplasmic structure in electron microscopic examination. Moreover, the number of lipid droplets decreased in this group compared to group 4 (Figure 2). Additionally, the cell morphology and mitochondrial cristae inner contours were more regular.

Predicting NAS

As shown in Table 6, glucose, triglyceride, amylase, and MDA were positively correlated while ALT, AST and GLO1 were negatively correlated with NAS. According to linear regression analysis, serum MDA and serum triglyceride were found to be statistically significant in predicting NAS (R2: 0.758, p < 0.001) (linear regression curves are shown in Figure 3, Figure 4)

Discussion

In our study, the administration of GCBE and CA was associated with reductions in serum glucose, triglyceride and amylase levels in the NAFLD groups. The hypoglycemic and lipid-lowering effects of GCBE and CA have been shown in several studies.10, 11 However, the decrease in amylase levels is surprising because little is known about the protective effect of these dietary agents on the pancreas.

In the normal rat chow groups administrations of GCBE and CA (10 mg/kg) increased serum glucose levels compared to the control. Furthermore, GCBE administration increased ALT and amylase levels. These observations raise intriguing questions about the risks associated with the administration of GCBE and CA by healthy individuals without NAFLD.

In HFHC diet-fed groups, intestinal absorption of polyphenols is expected to be more than in normal diet-fed groups, as the absorption of polyphenols increases in the lipid medium of the intestine.20 Also, polyphenols can bind metal ions, which causes a risk of micromineral deficiency.21 Micromineral deficiency was found to be related to a decrease in antioxidant enzyme activity.22 The increased amount of unabsorbed intestinal polyphenols and increased oxidative stress can help understand the adverse effects of GCBE and CA in the normal diet-fed groups.

In our study, HFHC diet induced NASH was associated with higher serum GLO1 levels. In NAFLD groups, the administration of both GCBE and CA increased GLO1 but it was statistically significant only in 10 mg/kg chlorogenic acid administration. Earlier observations suggest that increased GLO1 in obese individuals may be a defense mechanism against increased dicarbonyl stress.7 Therefore, GLO1 may be one of the possible mechanisms by which GCBE and CA can ameliorate NAFLD.

The present study demonstrated a decrease in serum catalase and SOD activities as a consequence of NAFLD. Our finding aligns with the study by Swiderska et al.,23 who found that serum catalase activity was statistically lower in the NAFLD group compared to the control. In our study administration of 10 mg/kg CA in the NAFLD groups led to increased serum SOD levels. In a study by Wang et al., CA was found to increase plasma SOD activity in rats, too.24

It has been established that there is a correlation between NAFLD and a decrease in serum MDA levels. Anti-MDA antibodies in the serum of advanced NAFLD patients were reported in earlier studies.25 In our study, lower serum MDA levels in NAFLD groups may be caused by anti-MDA antibodies, which can bind to serum MDA and interfere with our MDA measurement. The administrations of both GCBE and CA decreased serum MDA in NAFLD groups. The suppression of serum MDA with CA and GCBE can refer to a peroxidation inhibitory effect of these dietary agents.

In our study, GCBE and 2 different doses of chlorogenic acid all reduced NAS. However, only GCBE and 50 mg/kg CA administrations caused a significant reduction. Hence, the hepatoprotective effect of 20 mg/kg GCBE containing 50% chlorogenic acid was more significant than 10 mg/kg purified chlorogenic acid. Green coffee also contains different polyphenols such as feruloylquinic acids, dicaffeoylquinic acids and cinnamoylquinic acids.9 These different polyphenols may play a role in making GCBE more effective than pure chlorogenic acid.

Additionally, serum MDA and triglyceride were found to be statistically significant for NAS prediction. In an earlier study it was shown that the majority of fatty acids used for triacylglycerol synthesis in the liver of NAFLD patients originated from the blood circulation.26 Hence, serum dyslipidemia markers are promising in NAS prediction.

Limitations

Our study had some limitations. Several differences between humans and animals, in terms of physiology, anatomy and metabolism, make it difficult to apply data derived from animal studies to human conditions. However, the findings of our study provide important insight into human studies. Another limitation is that, as a result of our study design, we were only able to evaluate the disease-preventive effects of CA and GCBE. Additional studies investigating the therapeutic effect can also contribute to our knowledge.

Conclusions

The effects of GCBE and CA on the NAFLD population and on healthy individuals are different; especially their effect on healthy individuals is not clearly understood, necessitating further studies. Green coffee bean extract and CA can reduce amylase levels in NAFLD. This finding may indicate their ameliorative effect on pancreatic damage in NAFLD. Green coffee bean extract and CA increase GLO1 in NAFLD. Increased GLO1 may be one of the possible mechanisms to explain their hepatoprotective effect. Both 20 mg/kg GCBE and 50 mg/kg CA can be used in the prevention of NAFLD. Since they have similar hepatoprotective effects, GCBE can be preferred primarily as a more cost-effective dietary agent. Serum MDA and triglyceride are promising in NAS prediction. The use of dyslipidemia markers can reduce the need for liver biopsies.

Supplementary data

The supplementary materials are available at https://doi.org/10.5281/zenodo.13954275. The package includes the following files:

Supplementary Table 1. Dunn’s test results for Table 2.

Supplementary Table 2. Dunn’s test results for Table 3.

Supplementary Table 3. Dunn’s test results for Table 4.

Supplementary Table 4. Dunn’s test results for Table 5.

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Consent for publication

Not applicable.

Use of AI and AI-assisted technologies

Not applicable.

Tables


Table 1. Typical sources of nutrients in rodent purified control diet

Nutrients

Typical sources

Protein (23 g per 100 g diet; 20% of total calories)

casein

Fat (4 g per 100 g diet; 10% of total calories)

soybean oil, cocoa butter

Carbohydrate (64 g per 100 g diet; 70% of total calories)

corn starch, maltodextrin, sucrose

Fiber (6 g per 100 g diet)

cellulose

Micronutrients (3 g per 100 g diet)

vitamin and mineral premixes

Table 2. Animal characteristics

Weight

Statistics

Normal rat chow groups (n = 24)

K–W test

NAFLD groups (n = 32)

K–W test

M–W test

group 1 vs group 4

group 1

control

(n = 8)

group 2

GCBE

(n = 8)

group 3

CA

(n = 8)

H

p-value

group 4

control

(n = 8)

group 5

GCBE

(n = 8)

group 6

CA 10

(n = 8)

group 7

CA 50

(n = 8)

H

p-value

U

p-value

Initial body weight [g]

min

Me

max

287.00

346.00

377.00

335.00

367.50

379.00

307.00

359.00

374.00

3.27

0.195

300.00

361.50

386.00

342.00

369.50

399.00

307.00

368.50

382.00

323.00

366.50

401.00

1.01

0.798

41

0.328

Terminal body weight [g]

min

Me

max

395.00

450.00

514.00

403.00

442.50

513.00

392.00

458.00

493.00

0.02

0.990

352.00

562.50

626.00

439.00

489.50

583.00

442.00

498.00

559.00

440.00

503.00

601.00

3.40

0.334

52

0.038

Weight gain [g]

min

Me

max

72.00

124.50

156.00

43.00

85.00

145.00

68.00

93.50

119.00

5.26

0.072

58.00

183.00

208.00

101.00

135.50

204.00

129.00

140.00

192.00

107.00

151.00

200.00

3.57

0.311

51

0.050

Terminal liver weight [g]

min

Me

max

9.42

10.92

14.30

10.61

13.10

16.23

10.49

11.51

13.59

5.46

0.065

16.70

32.80

38.76

19.80

23.00

33.05

21.90

25.00

30.70

21.80

27.35

33.60

5.78

0.123

64

<0.001

Terminal liver/body weight [g]

min

Me

max

0.020

0.025

0.030

0.024

0.028

0.030

0.020

0.026

0.030

8.07a

0.018

0.050

0.057

0.070

0.040

0.048

0.060

0.040

0.052

0.060

0.050

0.053

0.060

6.59

0.086

64

<0.001

The Kruskal–Wallis (K–W) test was performed, followed by Dunn’s multiple comparison test (statistically significant difference a: group 1–2) to compare normal rat chow groups and NAFLD groups. Dunn’s test results are provided in Supplementary Table 1. Mann–Whitney (M–W) U test was used to compare 2 controls (group 1 vs group 4); min – minimum; Me – median; max – maximum; NAFLD – non-alcoholic fatty liver disease; GCBE – green coffee bean extract; CA – chlorogenic acid. Values in bold indicate statistical significance.
Table 3. Biochemical characteristics

Serum biochemistry

Statistics

Normal rat chow groups (n = 24)

K–W test

NAFLD groups (n = 32)

K–W test

M–W test

group 1 vs group 4

group 1

control

(n = 8)

group 2

GCBE

(n = 8)

group 3

CA

(n = 8)

H

p-value

group 4

control

(n = 8)

group 5

GCBE

(n = 8)

group 6

CA 10

(n = 8)

group 7

CA 50

(n= 8)

H

p-value

U

p-value

Glucose [mg/dL]

min

Me

max

87.00

101.00

130.00

119.00

164.50

244.00

105.00

154.50

209.00

13.69a,b

0.001

151.00

160.00

200.00

57.00

93.00

154.00

90.00

112.50

149.00

107.00

128.00

169.00

14.76d,e

0.002

64

<0.001

ALT

[U/L]

min

Me

max

33.00

38.50

46.00

39.00

51.00

65.00

34.00

42.00

56.00

8.14a

0.017

149.00

240.50

661.00

243.00

509.50

2512.50

280.00

978.00

2748.00

312.00

838.00

1337.00

13.17e,f

0.004

64

<0.001

AST

[U/L]

min

Me

max

100.00

142.00

202.00

127.00

165.00

217.00

129.00

174.50

220.00

1.77

0.412

221.00

303.00

769.00

338.00

492.50

2912.00

348.00

960.50

3502.00

341.00

640.00

1272.00

11.57e,f

0.009

64

<0.001

Total cholesterol

[mg/dL]

min

Me

max

42.00

47.00

54.00

42.00

66.00

98.00

51.00

72.00

82.00

9.48b

0.009

134.00

158.00

250.00

56.00

118.50

286.00

118.00

193.00

222.00

129.00

183.50

213.00

2.86

0.413

64

<0.001

HDL-C

[mg/dL]

min

Me

max

21.00

25.50

30.00

22.00

30.50

42.00

24.00

27.50

35.00

3.95

0.139

43.00

57.50

71.00

19.00

44.50

85.00

33.00

55.00

66.00

37.00

56.00

66.00

1.10

0.777

64

<0.001

Triglyceride

[mg/dL]

min

Me

max

33.00

40.00

58.00

33.00

68.00

108.00

33.00

56.00

107.00

5.31

0.070

52.00

67.50

101.00

17.00

23.50

65.00

21.00

29.50

45.00

21.00

33.00

52.00

16.87d,e,f

0.001

60

0.002

Amylase

[U/L]

min

Me

max

1190.0

1441.5

1797.0

1649.0

1962.0

2353.0

1275.0

1666.5

1964.0

12.06a

0.002

2346.0

3213.5

4251.0

743.0

1574.0

2386.0

1245.0

2027.0

2613.0

2078.0

2381.0

2861.0

18.30d,e

<0.001

64

<0.001

Lipase

[U/L]

min

med

max

3.00

5.00

6.00

5.00

7.00

8.00

2.00

5.50

8.00

5.37

0.068

15.00

23.50

37.00

6.00

18.00

49.00

20.00

30.50

36.00

15.00

21.50

36.00

3.54

0.314

64

<0.001

The Kruskal–Wallis (K–W) test was performed followed by Dunn’s multiple comparison test (statistically significant difference a group 1–2, b group 1–3, c group 2–3, d group 4–5, e goup 4–6, f group 4–7) to compare normal rat chow groups and NAFLD groups. Dunn’s test results are provided in Supplementary Table 2. Mann–Whitney (M–W) U test was used to compare 2 controls (group 1 vs group 4); min – minimum; Me – median; max – maximum; NAFLD – non-alcoholic fatty liver disease; GCBE – green coffee bean extract; CA – chlorogenic acid; ALT – alanine aminotransferase; AST – aspartate aminotransferase; HDL-C – high-density lipoprotein cholesterol. Values in bold indicate statistical significance.
Table 4. Serum GLO1 and oxidative stress parameters

Enzymatic anti­oxidants

Statistics

Normal rat chow groups (n = 24)

K–W test

NAFLD groups (n = 32)

K–W test

M–W test

G1 vs G4

group 1

control

(n = 8)

group 2

GCBE

(n = 8)

group 3

CA

(n = 8)

H

p-value

group 4

control

(n = 8)

group 5

GCBE

(n = 8)

group 6

CA 10

(n = 8)

group 7

CA 50

(n = 8)

H

p-value

U

p-value

GLO1 [ng/mL]

min

Me

max

38.57

39.71

42.01

34.37

36.58

39.75

35.42

37.76

47.85

6.48a

0.039

78.67

110.43

145.58

64.51

141.97

557.83

70.74

203.32

590.68

92.81

180.84

288.92

8.30e

0.040

64.00

<0.001

GSHPX [mIU/mL]

min

Me

max

96.00

151.20

240.00

105.60

124.80

153.60

96.00

122.40

148.80

2.31

0.314

110.40

172.80

249.60

96.00

134.40

216.00

115.20

148.80

163.20

115.20

139.20

187.20

1.64

0.649

34.60

0.798

Catalase [IU/mL]

min

Me

max

0.73

2.93

3.66

0.01

1.46

2.93

1.46

1.83

3.66

5.08

0.079

0.73

1.46

2.20

0.73

1.46

2.20

0.01

1.46

3.66

0.01

2.20

3.66

3.23

0.357

11.00

0.022

MDA [pmol/mL]

min

Me

max

206.00

228.00

253.00

66.00

71.50

82.00

94.00

100.50

109.00

20.48a

<0.001

124.00

146.00

160.00

98.00

104.50

140.00

99.00

116.00

123.00

86.00

96.50

112.00

19.58d,f

<0.001

64.00

<0.001

SOD [U/mL]

min

Me

max

7.40

7.86

8.32

6.91

7.45

7.93

7.06

7.25

7.57

9.35b

0.009

5.58

6.08

7.69

4.35

5.94

8.10

6.90

8.06

8.60

6.95

7.57

8.00

17.57e,g

0.001

3.00

0.001

The Kruskal–Wallis test was performed followed by Dunn’s multiple comparison test (statistically significant difference a group 1–2, b group 1–3, c group 2–3, d group 4–5, e group 4–6, f Group 4–7, g group 5–6) to compare normal rat chow groups and NAFLD groups. Dunn’s test results are provided in Supplementary Table 3. Mann–Whitney U test was used to compare 2 controls (group 1 vs group 4); min – minimum; Me – median; max – maximum; NAFLD – non-alcoholic fatty liver disease; GCBE – green coffee bean extract; CA – chlorogenic acid; GLO1 – glyoxalase 1; GSH-PX – glutathione peroxidase; MDA – malondialdehyde; SOD – superoxide dismutase. Values in bold indicate statistical significance.
Table 5. NAFLD activity scores

Activity scores

Statistics

NAFLD groups (n = 32)

K–W test

group 4

control

(n = 8)

group 5

GCBE

(n = 8)

group 6

CA 10

(n = 8)

group 7

CA 50

(n = 8)

H

p-value

Steatosis score

min

Me

max

5.00

5.50

7.00

4.00

4.00

5.00

3.00

4.00

7.00

4.00

4.00

6.00

9.53

0.023

Fibrosis score

min

Me

max

1.00

2.00

3.00

1.00

1.00

3.00

1.00

3.00

3.00

1.00

1.00

2.00

7.79

p = 0.050

Inflammation score

min

Me

max

4.00

6.00

6.00

2.00

5.00

5.00

2.00

4.00

5.00

2.00

4.00

5.00

9.65e,f

0.022

Liver cell injury score

min

Me

max

3.00

4.00

4.00

1.00

1.50

2.00

1.00

2.00

2.00

1.00

1.50

2.00

19.84d,e,f

<0.001

Other findings score

min

Me

max

2.00

2.00

2.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

31.00d,e,f

<0.001

Total score

min

Me

max

17.00

19.00

22.00

10.00

12.00

14.00

11.00

13.00

14.00

9.00

11.00

13.00

20.49d,f

<0.001

The Kruskal–Wallis (K–W) test was performed followed by Dunn’s multiple comparison test (statistically significant difference; d group 4–5, e group 4–6, f group 4–7) to compare the groups. Dunn’s test results are provided in Supplementary Table 4; min – minimum; Me – median; max – maximum; NAFLD – non-alcoholic fatty liver disease; GCBE – green coffee bean extract; CA – chlorogenic acid. Values in bold indicate statistical significance.
Table 6. Correlation between serum parameters and NAS

Parameter

NAS

r

p-value

Glucose

0.476

0.006

ALT

–0.567

0.001

AST

–0.532

0.002

Total cholesterol

0.017

0.930

HDL-C

–0.260

0.890

Triglyceride

0.487

0.005

Amylase

0.407

0.021

Lipase

0.112

0.540

GLO1

–0.367

0.040

GSH-PX

0.250

0.170

Catalase

–0. 311

0.080

MDA

0.698

<0.001

SOD

–0.268

0.140

Spearman correlation was used; r – correlation coefficient; NAS – nonalcoholic fatty liver disease (NAFLD) activity score; ALT – alanine aminotransferase; AST – aspartate aminotransferase; HDL-C – high-density lipoprotein cholesterol; GLO1 – glyoxalase 1; GSH-PX – glutathione peroxidase; MDA – malondialdehyde; SOD – superoxide dismutase. Values in bold indicate statistical significance.

Figures


Fig. 1. Histological changes in the liver: control, NASH, GCBE (20 mg/kg), CA (10 mg/kg), and CA (50 mg/kg) groups (n = 8). Hepatoxylin & eosin (H&E) stain (A,B,C,D,G,H,I,J,K,L) and Masson trichrome stain (E,F) (×100 and ×400 magnification). A,B. In control group rats, liver tissue structure was histologically normal and hepatocytes were located around VC regularly. C,D,E,F. Significant hepatic steatosis, inflammation, ballooning degeneration, and fibrosis (see pictograms) were observed in NASH model group. G,H. In GCBE group, hepatocyte ballooning was found to decrease but macrovesicular and microvesicular steatosis still existed. Hepatocytes with normal histological appearance were observed around the vessel walls (). Also, lymphocyte infiltration was significantly reduced compared to the NASH model group. I,J. Fibrosis localized to perisinusoidal and periportal areas was observed in 10 mg/kg CA group. K,L. In 50 mg/kg CA group, hepatic steatosis, inflammation and ballooning degeneration were found to decrease while number of hepatocytes with normal histological appearance increased
NASH – non-alcoholic steatohepatitis; GCBE – green coffee bean extract; CA – chlorogenic acid; VC – vena centralis; PT – portal triad.
Fig. 2. Transmission electron microscopic images of NASH model, GCBE and 50 mg/kg CA groups: Hepatocyte (H), nucleus (N), lipid droplets (LD), sinusoids (S), erythrocyte (R), nucleolus (nu), polymorphonuclear neutrophils (PMN), mitochondria (m), and mitochondrial cristae (mc). A,B. Hepatic steatosis and structural damage in hepatocytes in NASH model group (×2,000 magnification); C,D. Macrovesicular and microvesicular steatosis exists in GCBE group (×2,000 magnification); E,F. A significant decrease in both number and diameter of lipid droplets was observed in 50 mg/kg CA group compared to NASH model group (×3,000 magnification) and (×4,000 magnification), respectively
NASH – non-alcoholic steatohepatitis; GCBE – green coffee bean extract; CA – chlorogenic acid.
Fig. 3. Relationship between serum malondialdehyde (MDA) and total liver non-alcoholic fatty liver disease (NAFLD) activity score for NAFLD groups
Fig. 4. Relationship between serum triglyceride and total liver non-alcoholic fatty liver disease (NAFLD) activity score for NAFLD groups

References (26)

  1. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease: Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84. doi:10.1002/hep.28431
  2. Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67(1):328–357. doi:10.1002/hep.29367
  3. Baffy G. Is the name ‘NAFLD’ too big to fail? Let’s keep it for ‘nutrition-associated fatty liver disease.’ J Hepatol. 2021;74(4):988. doi:10.1016/j.jhep.2020.11.011
  4. Younossi ZM, Rinella ME, Sanyal AJ, et al. From NAFLD to MAFLD: Implications of a premature change in terminology. Hepatology. 2021;73(3):1194–1198. doi:10.1002/hep.31420
  5. Sodum N, Kumar G, Bojja SL, Kumar N, Rao CM. Epigenetics in NAFLD/NASH: Targets and therapy. Pharmacol Res. 2021;167:105484. doi:10.1016/j.phrs.2021.105484
  6. He Y, Zhou C, Huang M, et al. Glyoxalase system: A systematic review of its biological activity, related-diseases, screening methods and small molecule regulators. Biomed Pharmacother. 2020;131:110663. doi:10.1016/j.biopha.2020.110663
  7. Rabbani N, Thornalley PJ. Glyoxalase 1 modulation in obesity and diabetes. Antioxid Redox Signal. 2019;30(3):354–374. doi:10.1089/ars.2017.7424
  8. Rabbani N, Xue M, Thornalley PJ. Dicarbonyl stress, protein glycation and the unfolded protein response. Glycoconj J. 2021;38(3):331–340. doi:10.1007/s10719-021-09980-0
  9. Ludwig IA, Clifford MN, Lean MEJ, Ashihara H, Crozier A. Coffee: Biochemistry and potential impact on health. Food Funct. 2014;5(8):1695–1717. doi:10.1039/C4FO00042K
  10. Garg SK, Shukla A, Choudhury S. Green coffee beans. In: Gupta RC, Lall R, Sristava A, eds.Nutraceuticals. Cambridge, USA: Academic Press; 2021:725–748. doi:10.1016/B978-0-12-821038-3.00042-2
  11. Miao M, Xiang L. Pharmacological action and potential targets of chlorogenic acid. Adv Pharmacol. 2020;87:71–88. doi:10.1016/bs.apha.2019.12.002
  12. Ma WN, Zhou MM, Gou XJ, et al. Urinary metabolomic study of chlorogenic acid in a rat model of chronic sleep deprivation using gas chromatography-mass spectrometry. Int J Genomics. 2018;2018:1361402. doi:10.1155/2018/1361402
  13. Shin JY, Sohn J, Park KH. Chlorogenic acid decreases retinal vascular hyperpermeability in diabetic rat model. J Korean Med Sci. 2013;28(4):608. doi:10.3346/jkms.2013.28.4.608
  14. Christensen CU, Glavind E, Thomsen KL, et al. Niemann–Pick type C2 protein supplementation in experimental non-alcoholic fatty liver disease. PLoS One. 2018;13(3):e0192728. doi:10.1371/journal.pone.0192728
  15. Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem. 1988;34(3):497–500. PMID:3349599.
  16. Van Ye TM, Roza AM, Pieper GM, Henderson J, Johnson CP, Adams MB. Inhibition of intestinal lipid peroxidation does not minimize morphologic damage. J Surg Res. 1993;55(5):553–558. doi:10.1006/jsre.1993.1183
  17. Aebi H. Catalase. In: Bergmeyer UM, ed. Methods of Enzymatic Analysis. Cambridge, USA: Academic Press; 1974:673–684. doi:10.1016/B978-0-12-091302-2.50032-3
  18. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70(1):158–169. PMID:6066618.
  19. Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313–1321. doi:10.1002/hep.20701
  20. Kim E, Ban C, Kim SO, Lim S, Choi YJ. Applications and perspectives of polyphenol-loaded solid lipid nanoparticles and nanostructured lipid carriers for foods. Food Sci Biotechnol. 2022;31(8):1009–1026. doi:10.1007/s10068-022-01093-0
  21. Borowska S, Brzoska MM, Tomczyk M. Complexation of bioelements and toxic metals by polyphenolic compounds: Implications for health. Curr Drug Targets. 2018;19(14):1612–1638. doi:10.2174/1389450119666180403101555
  22. Al-Aubaidy H, Al-Bayati M, Jamil D. Cardiovascular effects of copper deficiency on activity of superoxide dismutase in diabetic nephropathy. North Am J Med Sci. 2015;7(2):41. doi:10.4103/1947-2714.152077
  23. Świderska M, Maciejczyk M, Zalewska A, Pogorzelska J, Flisiak R, Chabowski A. Oxidative stress biomarkers in the serum and plasma of patients with non-alcoholic fatty liver disease (NAFLD): Can plasma AGE be a marker of NAFLD? Free Radic Res. 2019;53(8):841–850. doi:10.1080/10715762.2019.1635691
  24. Wang D, Tian L, Lv H, et al. Chlorogenic acid prevents acute myocardial infarction in rats by reducing inflammatory damage and oxidative stress. Biomed Pharmacother. 2020;132:110773. doi:10.1016/j.biopha.2020.110773
  25. Albano E, Mottaran E, Vidali M, et al. Immune response towards lipid peroxidation products as a predictor of progression of non-alcoholic fatty liver disease to advanced fibrosis. Gut. 2005;54(7):987–993. doi:10.1136/gut.2004.057968
  26. Bence KK, Birnbaum MJ. Metabolic drivers of non-alcoholic fatty liver disease. Mol Metab. 2021;50:101143. doi:10.1016/j.molmet.2020.101143