Advances in Clinical and Experimental Medicine
Ahead of print
doi: 10.17219/acem/160003
Publication type: original article
Language: English
License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)
Download citation:
Cite as:
Świrta JS, Wątor G, Seweryn M, Kapusta P, Barczyński M, Wołkow P. Expression of micro-ribonucleic acids in thyroid nodules and serum to discriminate between follicular adenoma and cancer in patients with a fine needle aspiration biopsy classified as suspicious for follicular neoplasm: A preliminary study [published online as ahead of print on March 10, 2023]. Adv Clin Exp Med. 2023. doi:10.17219/acem/160003
Expression of micro-ribonucleic acids in thyroid nodules and serum to discriminate between follicular adenoma and cancer in patients with a fine needle aspiration biopsy classified as suspicious for follicular neoplasm: A preliminary study
1 Department of Thoracic Surgery, Pulmonary Hospital, Zakopane, Poland
2 Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
3 Department of Endocrine Surgery, Third Chair of General Surgery, Jagiellonian University Medical College, Kraków, Poland
Abstract
Background. Approximately 10% of thyroid nodules undergoing fine needle aspiration biopsy (FNAB) receive a suspicious for follicular neoplasm (SFN) classification. Currently, there is no diagnostic tool to preoperatively discriminate between follicular adenoma (FA) and thyroid cancer (TC), and most patients require surgery to exclude malignancy.
Objectives. To characterize the micro-ribonucleic acid (miRNA) signature of tumors assessed as SFN and define circulating miRNA patterns to distinguish FA from follicular cancer in patients with thyroid nodules biopsied using FNAB.
Material and Methods. The study included excised tumor and thyroid tissue samples from 80 consecutive patients collected by a pathologist in the operating theater. The miRNA was isolated from specimens at the Center for Medical Genomics OMICRON, and next-generation sequencing (NGS) was used to obtain target miRNAs. In addition, miRNA expression was detected in serum using polymerase chain reaction (PCR).
Results. Well-differentiated thyroid cancer (WDTC) samples had significantly higher expression levels of hsa-miR-146b-5p (p = 0.030) and hsa-miR-146b-3p (p = 0.032), while the expression levels of hsa-miR-195-3p were significantly lower (p = 0.032) in WDTC samples compared to FA specimens. The serum of TC patients showed markedly higher expression of the unique miRNA hsa-miR-195-3p (p = 0.039).
Conclusion. The overexpression of hsa-miR-146b-5p and hsa-miR-146b-3p, and the downregulation of hsa-miR-195-3p expression could be used as biomarkers to distinguish FA from WDTC in patients with FNAB results classified as Bethesda tier IV. In addition, hsa-miR-195-3p could act as a serum biomarker for differentiating patients with FA from those with WDTC, and preoperative measurement of its expression would help avoid unnecessary surgeries. However, this concept needs further verification in a more substantial prospective study.
Key words
thyroid cancer, follicular adenoma, suspicious for follicular neoplasm, next-generation sequencing
References (92)
- Sipos JA, Mazzaferri EL. Thyroid cancer epidemiology and prognostic variables. Clin Oncol (R Coll Radiol). 2010;22(6):395–404. doi:10.1016/j.clon.2010.05.004
- Zevallos JP, Hartman CM, Kramer JR, Sturgis EM, Chiao EY. Increased thyroid cancer incidence corresponds to increased use of thyroid ultrasound and fine-needle aspiration: A study of the Veterans Affairs health care system. Cancer. 2015;121(5):741–746. doi:10.1002/cncr.29122
- Didkowska J, Wojciechowska U, Czaderny K, Olasek P, Ciuba A. Nowotwory Złośliwe w Polsce 2017. Warszawa, Poland: Centrum Onkologii-Instytut; 2019.
- Gharib H, Papini E, Garber JR, et al. American Association of Clinical Endocrinologists, American College of Endocrinology, and Associazione Medici Endocrinologi medical guidelines for clinical practice for the diagnosis and management of thyroid nodules – 2016 update. Endocr Pract. 2016;22(5):622–639. doi:10.4158/EP161208.GL
- Migda B, Migda M, Migda AM, et al. Evaluation of four variants of the thyroid imaging reporting and data system (TIRADS) classification in patients with multinodular goitre: Initial study. Endokrynol Pol. 2015;69(2):156–162. doi:10.5603/EP.a2018.0012
- Lee HJ, Yoon DY, Seo YL, et al. Intraobserver and interobserver variability in ultrasound measurements of thyroid nodules. J Ultrasound Med. 2018;37(1):173–178. doi:10.1002/jum.14316
- Burman KD, Wartofsky L. Thyroid nodules. N Engl J Med. 2015;373(24):2347–2356. doi:10.1056/NEJMcp1415786
- Rago T, Vitti P. Risk stratification of thyroid nodules: From ultrasound features to TIRADS. Cancers. 2022;14(3):717. doi:10.3390/cancers14030717
- Trimboli P, Castellana M, Virili C, et al. Performance of contrast-enhanced ultrasound (CEUS) in assessing thyroid nodules: A systematic review and meta-analysis using histological standard of reference. Radiol Med. 2020;125(4):406–415. doi:10.1007/s11547-019-01129-2
- Kwak JY. Indications for fine needle aspiration in thyroid nodules. Endocrinol Metab (Seoul). 2013;28(2):81–85. doi:10.3803/EnM.2013.28.2.81
- Hoang JK, Middleton WD, Langer JE, et al. Comparison of thyroid risk categorization systems and fine-needle aspiration recommendations in a multi-institutional thyroid ultrasound registry. J Am Coll Cardiol. 2021;18(12):1605–1613. doi:10.1016/j.jacr.2021.07.019
- Brito JP, Gionfriddo MR, Al Nofal A, et al. The accuracy of thyroid nodule ultrasound to predict thyroid cancer: Systematic review and meta-analysis. J Clin Endocrinol Metab. 2014;99(4):1253–1263. doi:10.1210/jc.2013-2928
- Remonti LR, Kramer CK, Leitão CB, Pinto LCF, Gross JL. Thyroid ultrasound features and risk of carcinoma: A systematic review and meta-analysis of observational studies. Thyroid. 2015;25(5):538–550. doi:10.1089/thy.2014.0353
- Campanella P, Ianni F, Rota CA, Corsello SM, Pontecorvi A. Quantification of cancer risk of each clinical and ultrasonographic suspicious feature of thyroid nodules: A systematic review and meta-analysis. Eur J Endocrinol. 2014;170(5):R203–R211. doi:10.1530/EJE-13-0995
- Xu L, Zeng F, Wang Y, Bai Y, Shan X, Kong L. Prevalence and associated metabolic factors for thyroid nodules: A cross-sectional study in Southwest of China with more than 120 thousand populations. BMC Endocr Disord. 2021;21(1):175. doi:10.1186/s12902-021-00842-2
- Paskaš S, Janković J, Živaljević V, et al. Malignant risk stratification of thyroid FNA specimens with indeterminate cytology based on molecular testing. Cancer Cytopathol. 2015;123(8):471–479. doi:10.1002/cncy.21554
- Yang X, Zhai D, Zhang T, Zhang S. Use of strain ultrasound elastography versus fine-needle aspiration cytology for the differential diagnosis of thyroid nodules: A retrospective analysis. Clinics (Sao Paulo). 2020;75:e1594. doi:10.6061/clinics/2020/e1594
- Valderrabano P, McIver B. Evaluation and management of indeterminate thyroid nodules: The revolution of risk stratification beyond cytological diagnosis. Cancer Control. 2017;24(5):107327481772923. doi:10.1177/1073274817729231
- Faquin WC, Baloch ZW. Fine-needle aspiration of follicular patterned lesions of the thyroid: Diagnosis, management, and follow-up according to National Cancer Institute (NCI) recommendations. Diagn Cytopathol. 2010;38(10):731–739. doi:10.1002/dc.21292
- Durante C, Grani G, Lamartina L, Filetti S, Mandel SJ, Cooper DS. The diagnosis and management of thyroid nodules: A review. JAMA. 2018;319(9):914–924. doi:10.1001/jama.2018.0898
- Wong R, Farrell SG, Grossmann M. Thyroid nodules: Diagnosis and management. Med J Aust. 2018;209(2):92–98. doi:10.5694/mja17.01204
- Alexander EK, Kennedy GC, Baloch ZW, et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med. 2012;367(8):705–715. doi:10.1056/NEJMoa1203208
- Papanastasiou A, Sapalidis K, Goulis DG, et al. Thyroid nodules as a risk factor for thyroid cancer in patients with Graves’ disease: A systematic review and meta‐analysis of observational studies in surgically treated patients. Clin Endocrinol (Oxf). 2019;91(4):571–577. doi:10.1111/cen.14069
- Oczko-Wojciechowska M, Kotecka-Blicharz A, Krajewska J, et al. European perspective on the use of molecular tests in the diagnosis and therapy of thyroid neoplasms. Gland Surg. 2020;9(Suppl 2):S69–S76. doi:10.21037/gs.2019.10.26
- Lan L, Luo Y, Zhou M, et al. Comparison of diagnostic accuracy of thyroid cancer with ultrasound-guided fine-needle aspiration and core-needle biopsy: A systematic review and meta-analysis. Front Endocrinol (Lausanne). 2020;11:44. doi:10.3389/fendo.2020.00044
- Macerola E, Poma AM, Vignali P, et al. Molecular genetics of follicular-derived thyroid cancer. Cancers (Basel). 2021;13(5):1139. doi:10.3390/cancers13051139
- Lamartina L, Grani G, Durante C, Filetti S. Recent advances in managing differentiated thyroid cancer. F1000Res. 2018;7:86. doi:10.12688/f1000research.12811.1
- Wu D, Hu S, Hou Y, He Y, Liu S. Identification of potential novel biomarkers to differentiate malignant thyroid nodules with cytological indeterminate. BMC Cancer. 2020;20(1):199. doi:10.1186/s12885-020-6676-z
- Trimboli P, Virili C, Romanelli F, Crescenzi A, Giovanella L. Galectin-3 performance in histologic and cytologic assessment of thyroid nodules: A systematic review and meta-analysis. Int J Mol Sci. 2017;18(8):1756. doi:10.3390/ijms18081756
- Zhao C, Zheng J, Sun L, Xu R, Wei Q, Xu H. BRAFV600E mutation analysis in fine‐needle aspiration cytology specimens for diagnosis of thyroid nodules: The influence of false‐positive and false‐negative results. Cancer Med. 2019;8(12):5577–5589. doi:10.1002/cam4.2478
- Wang W, Chang J, Jia B, Liu J. The blood biomarkers of thyroid cancer. Cancer Manag Res. 2020;12:5431–5438. doi:10.2147/CMAR.S261170
- Khan TM, Zeiger MA. Thyroid nodule molecular testing: Is it ready for prime time? Front Endocrinol (Lausanne). 2020;11:590128. doi:10.3389/fendo.2020.590128
- Zaballos MA, Santisteban P. Key signaling pathways in thyroid cancer. J Endocrinol. 2017;235(2):R43–R61. doi:10.1530/JOE-17-0266
- Topf MC, Wang ZX, Tuluc M, Pribitkin EA. TERT, HRAS, and EIF1AX mutations in a patient with follicular adenoma. Thyroid. 2018;28(6):815–817. doi:10.1089/thy.2017.0504
- Duan H, Liu X, Ren X, Zhang H, Wu H, Liang Z. Mutation profiles of follicular thyroid tumors by targeted sequencing. Diagn Pathol. 2019;14(1):39. doi:10.1186/s13000-019-0817-1
- Jung CK, Kim Y, Jeon S, Jo K, Lee S, Bae JS. Clinical utility of EZH1 mutations in the diagnosis of follicular-patterned thyroid tumors. Hum Pathol. 2018;81:9–17. doi:10.1016/j.humpath.2018.04.018
- Vojtechova Z, Zavadil J, Klozar J, Grega M, Tachezy R. Comparison of the miRNA expression profiles in fresh frozen and formalin-fixed paraffin-embedded tonsillar tumors. PLoS One. 2017;12(6):e0179645. doi:10.1371/journal.pone.0179645
- Sempere LF, Azmi AS, Moore A. MicroRNA‐based diagnostic and therapeutic applications in cancer medicine. Wiley Interdiscip Rev RNA. 2021;12(6):e1662. doi:10.1002/wrna.1662
- Ye Q, Wang Q, Qi P, et al. Development and clinical validation of a 90-gene expression assay for identifying tumor tissue origin. J Mol Diagn. 2020;22(9):1139–1150. doi:10.1016/j.jmoldx.2020.06.005
- Ghafouri-Fard S, Shirvani-Farsani Z, Taheri M. The role of microRNAs in the pathogenesis of thyroid cancer. Noncoding RNA Res. 2020;5(3):88–98. doi:10.1016/j.ncrna.2020.06.001
- Pietrus M, Seweryn M, Kapusta P, Wołkow P, Pityński K, Wątor G. Low expression of miR-375 and miR-190b differentiates grade 3 patients with endometrial cancer. Biomolecules. 2021;11(2):274. doi:10.3390/biom11020274
- Ward CM, To TH, Pederson SM. NgsReports: A Bioconductor package for managing FastQC reports and other NGS related log files. Bioinformatics. 2020;36(8):2587–2588. doi:10.1093/bioinformatics/btz937
- Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):10. doi:10.14806/ej.17.1.200
- Kozomara A, Birgaoanu M, Griffiths-Jones S. MiRBase: From microRNA sequences to function. Nucleic Acids Res. 2019;47(D1):D155–D162. doi:10.1093/nar/gky1141
- Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N. MiRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012;40(1):37–52. doi:10.1093/nar/gkr688
- Jarząb B, Dedecjus M, Słowińska-Klencka D, et al. Guidelines of Polish National Societies Diagnostics and Treatment of Thyroid Carcinoma: 2018 update. Endokrynol Pol. 2018;69(1):34–74. doi:10.5603/EP.2018.0014
- Russ G, Bonnema SJ, Erdogan MF, Durante C, Ngu R, Leenhardt L. European Thyroid Association Guidelines for ultrasound malignancy risk stratification of thyroid nodules in adults: The EU-TIRADS. Eur Thyroid J. 2017;6(5):225–237. doi:10.1159/000478927
- Law CW, Alhamdoosh M, Su S, et al. RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR. F1000Res. 2016;5:1408. doi:10.12688/f1000research.9005.3
- Costa-Silva J, Domingues D, Lopes FM. RNA-Seq differential expression analysis: An extended review and a software tool. PLoS One. 2017;12(12):e0190152. doi:10.1371/journal.pone.0190152
- Law CW, Chen Y, Shi W, Smyth GK. Voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15(2):R29. doi:10.1186/gb-2014-15-2-r29
- Reading CC, Charboneau JW, Hay ID, Sebo TJ. Sonography of thyroid nodules: A “classic pattern” diagnostic approach. Ultrasound Q. 2005;21(3):157–165. doi:10.1097/01.ruq.0000174750.27010.68
- Horvath E, Majlis S, Rossi R, et al. An ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management. J Clin Endocrinol Metab. 2009;94(5):1748–1751. doi:10.1210/jc.2008-1724
- Park SH, Kim SJ, Kim EK, Kim MJ, Son EJ, Kwak JY. Interobserver agreement in assessing the sonographic and elastographic features of malignant thyroid nodules. AJR Am J Roentgenol. 2009;193(5):W416–W423. doi:10.2214/AJR.09.2541
- Vannini I, Fanini F, Fabbri M. Emerging roles of microRNAs in cancer. Curr Opin Genet Dev. 2018;48:128–133. doi:10.1016/j.gde.2018.01.001
- Wei H, Pu K, Liu X, et al. The diagnostic value of circulating microRNAs as a biomarker for gastric cancer: A meta analysis. Oncol Rep. 2019;41(1):87–102. doi:10.3892/or.2018.6782
- Hoshino I, Ishige F, Iwatate Y, et al. Cell-free microRNA-1246 in different body fluids as a diagnostic biomarker for esophageal squamous cell carcinoma. PLoS One. 2021;16(3):e0248016. doi:10.1371/journal.pone.0248016
- Dasgupta I, Chatterjee A. Recent advances in miRNA delivery systems. Methods Protoc. 2021;4(1):10. doi:10.3390/mps4010010
- Wang F, Jiang C, Sun Q, et al. MiR-195 is a key regulator of Raf1 in thyroid cancer. Onco Targets Ther. 2015;8:3021–3028. doi:10.2147/OTT.S90710
- Marques MM, Evangelista AF, Macedo T, et al. Expression of tumor suppressors miR-195 and let-7a as potential biomarkers of invasive breast cancer. Clinics (Sao Paulo). 2018;73:e184. doi:10.6061/clinics/2018/e184
- Ye S, Song W, Xu X, Zhao X, Yang L. IGF2BP2 promotes colorectal cancer cell proliferation and survival through interfering with RAF-1 degradation by miR-195. FEBS Lett. 2016;590(11):1641–1650. doi:10.1002/1873-3468.12205
- Yin Y, Hong S, Yu S, et al. MiR-195 inhibits tumor growth and metastasis in papillary thyroid carcinoma cell lines by targeting CCND1 and FGF2. Int J Endocrinol. 2017;2017:6180425. doi:10.1155/2017/6180425
- Tahamtan A, Teymoori-Rad M, Nakstad B, Salimi V. Anti-inflammatory miRNAs and their potential for inflammatory diseases treatment. Front Immunol. 2018;9:1377. doi:10.3389/fimmu.2018.01377
- Lambert KA, Roff AN, Panganiban RP, Douglas S, Ishmael FT. MicroRNA-146a is induced by inflammatory stimuli in airway epithelial cells and augments the anti-inflammatory effects of glucocorticoids. PLoS One. 2018;13(10):e0205434. doi:10.1371/journal.pone.0205434
- Sun H, Cong D, He M, Chen S, Liu X, Liu X. Expression profiles of pivotal microRNAs and targets in thyroid papillary carcinoma: An analysis of The Cancer Genome Atlas. Onco Targets Ther. 2015;8:2271–2277. doi:10.2147/OTT.S85753
- Sun M, Fang S, Li W, et al. Associations of miR-146a and miR-146b expression and clinical characteristics in papillary thyroid carcinoma. Cancer Biomark. 2015;15(1):33–40. doi:10.3233/CBM-140431
- Laukiene R, Jakubkevicius V, Ambrozaityte L, Cimbalistiene L, Utkus A. Dysregulation of microRNAs as the risk factor of lymph node metastasis in papillary thyroid carcinoma: Systematic review. Endokrynol Pol. 2021;72(2):145–152. doi:10.5603/EP.a2021.0010
- Qiu J, Zhang W, Zang C, et al. Identification of key genes and miRNAs markers of papillary thyroid cancer. Biol Res. 2018;51(1):45. doi:10.1186/s40659-018-0188-1
- Qiu Z, Li H, Wang J, Sun C. MiR-146a and miR-146b in the diagnosis and prognosis of papillary thyroid carcinoma. Oncol Rep. 2017;38(5):2735–2740. doi:10.3892/or.2017.5994
- Yang SI, Choi YS. Expressions of miRNAs in papillary thyroid carcinoma and their associations with the BRAFV600E mutation and clinicopathological features. KMJ. 2020;35(1):1–14. doi:10.7180/kmj.2020.35.1.1
- Lima CR, Geraldo MV, Fuziwara CS, Kimura ET, Santos MF. MiRNA-146b-5p upregulates migration and invasion of different papillary thyroid carcinoma cells. BMC Cancer. 2016;16:108. doi:10.1186/s12885-016-2146-z
- Zhou C, Zhao L, Wang K, et al. MicroRNA 146a inhibits NF κB activation and pro inflammatory cytokine production by regulating IRAK1 expression in THP 1 cells. Exp Ther Med. 2019;18(4):3078–3084. doi:10.3892/etm.2019.7881
- Li L, Lv B, Chen B, et al. Inhibition of miR-146b expression increases radioiodine-sensitivity in poorly differential thyroid carcinoma via positively regulating NIS expression. Biochem Biophys Res Commun. 2015;462(4):314–321. doi:10.1016/j.bbrc.2015.04.134
- Zedan AH, Hansen TF, Assenholt J, Pleckaitis M, Madsen JS, Osther PJS. MicroRNA expression in tumour tissue and plasma in patients with newly diagnosed metastatic prostate cancer. Tumour Biol. 2018;40(5):101042831877586. doi:10.1177/1010428318775864
- Garrido-Cano I, Constâncio V, Adam-Artigues A, et al. Circulating miR-99a-5p expression in plasma: A potential biomarker for early diagnosis of breast cancer. Int J Mol Sci. 2020;21(19):7427. doi:10.3390/ijms21197427
- Singh PK, Preus L, Hu Q, et al. Serum microRNA expression patterns that predict early treatment failure in prostate cancer patients. Oncotarget. 2014;5(3):824–840. doi:10.18632/oncotarget.1776
- Mori MA, Ludwig RG, Garcia-Martin R, Brandão BB, Kahn CR. Extracellular miRNAs: From biomarkers to mediators of physiology and disease. Cell Metab. 2019;30(4):656–673. doi:10.1016/j.cmet.2019.07.011
- Thomas M, Fraser D, Bowen T. Biogenesis, stabilization, and transport of miRNAs in kidney health and disease. Noncoding RNA. 2018;4(4):30. doi:10.3390/ncrna4040030
- O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9:402. doi:10.3389/fendo.2018.00402
- Geekiyanage H, Rayatpisheh S, Wohlschlegel JA, Brown R, Ambros V. Extracellular microRNAs in human circulation are associated with miRISC complexes that are accessible to anti-AGO2 antibody and can bind target mimic oligonucleotides. Proc Natl Acad Sci U S A. 2020;117(39):24213–24223. doi:10.1073/pnas.2008323117
- Zhang Q, Wang W, Zhou Q, et al. Roles of circRNAs in the tumour microenvironment. Mol Cancer. 2020;19(1):14. doi:10.1186/s12943-019-1125-9
- De Crea C, Raffaelli M, Sessa L, et al. Actual incidence and clinical behaviour of follicular thyroid carcinoma: An institutional experience. ScientificWorldJournal. 2014;2014:952095. doi:10.1155/2014/952095
- Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133. doi:10.1089/thy.2015.0020
- Rosignolo F, Memeo L, Monzani F, et al. MicroRNA-based molecular classification of papillary thyroid carcinoma. Int J Oncol. 2017;50(5):1767–1777. doi:10.3892/ijo.2017.3960
- Mazeh H, Deutch T, Karas A, et al. Next-generation sequencing identifies a highly accurate miRNA panel that distinguishes well-differentiated thyroid cancer from benign thyroid nodules. Cancer Epidemiol Biomarkers Prev. 2018;27(8):858–863. doi:10.1158/1055-9965.EPI-18-0055
- Aquino-Jarquin G. Emerging role of CRISPR/Cas9 technology for miRNAs editing in cancer research. Cancer Res. 2017;77(24):6812–6817. doi:10.1158/0008-5472.CAN-17-2142
- Silaghi CA, Lozovanu V, Silaghi H, et al. The prognostic value of miRNAs in thyroid cancers; A systematic review and meta-analysis. Cancers (Basel). 2020;12(9):2608. doi:10.3390/cancers12092608
- Simonson B, Das S. MicroRNA therapeutics: The next magic bullet? Mini Rev Med Chem. 2015;15(6):467–474. doi:10.2174/1389557515666150324123208
- Misiak D, Hagemann S, Bell JL, et al. The miRNA landscape of MYCN-amplified neuroblastoma. Front Oncol. 2021;11:647737. doi:10.3389/fonc.2021.647737
- Yoshino H, Yonemori M, Miyamoto K, et al. MicroRNA-210-3p depletion by CRISPR/Cas9 promoted tumorigenesis through revival of TWIST1 in renal cell carcinoma. Oncotarget. 2017;8(13):20881–20894. doi:10.18632/oncotarget.14930
- Reda El Sayed S, Cristante J, Guyon L, Denis J, Chabre O, Cherradi N. MicroRNA therapeutics in cancer: Current advances and challenges. Cancers (Basel). 2021;13(11):2680. doi:10.3390/cancers13112680
- Guo F, Wang C, Wang S, et al. Alteration in gene expression profile of thymomas with or without myasthenia gravis linked with the nuclear factor‐kappaB/autoimmune regulator pathway to myasthenia gravis pathogenesis. Thorac Cancer. 2019;10(3):564–570. doi:10.1111/1759-7714.12980
- Takakuwa T, Nomura S, Matsuzuka F, Inoue H, Aozasa K. Expression of interleukin-7 and its receptor in thyroid lymphoma. Lab Invest. 2000;80(10):1483–1490. doi:10.1038/labinvest.3780157