Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.736
5-Year Impact Factor – 2.135
Index Copernicus  – 168.52
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

Ahead of print

doi: 10.17219/acem/160003

Publication type: original article

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Cite as:


Świrta JS, Wątor G, Seweryn M, Kapusta P, Barczyński M, Wołkow P. Expression of micro-ribonucleic acids in thyroid nodules and serum to discriminate between follicular adenoma and cancer in patients with a fine needle aspiration biopsy classified as suspicious for follicular neoplasm: A preliminary study [published online as ahead of print on March 10, 2023]. Adv Clin Exp Med. 2023. doi:10.17219/acem/160003

Expression of micro-ribonucleic acids in thyroid nodules and serum to discriminate between follicular adenoma and cancer in patients with a fine needle aspiration biopsy classified as suspicious for follicular neoplasm: A preliminary study

Jarosław Szymon Świrta1,A,B,C,D,F, Gracjan Wątor2,A,B,C,D,F, Michał Seweryn2,C,D,F, Przemysław Kapusta2,C,D,F, Marcin Barczyński3,A,D,E,F, Paweł Wołkow2,C,E,F

1 Department of Thoracic Surgery, Pulmonary Hospital, Zakopane, Poland

2 Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland

3 Department of Endocrine Surgery, Third Chair of General Surgery, Jagiellonian University Medical College, Kraków, Poland

Abstract

Background. Approximately 10% of thyroid nodules undergoing fine needle aspiration biopsy (FNAB) receive a suspicious for follicular neoplasm (SFN) classification. Currently, there is no diagnostic tool to preoperatively discriminate between follicular adenoma (FA) and thyroid cancer (TC), and most patients require surgery to exclude malignancy.
Objectives. To characterize the micro-ribonucleic acid (miRNA) signature of tumors assessed as SFN and define circulating miRNA patterns to distinguish FA from follicular cancer in patients with thyroid nodules biopsied using FNAB.
Material and Methods. The study included excised tumor and thyroid tissue samples from 80 consecutive patients collected by a pathologist in the operating theater. The miRNA was isolated from specimens at the Center for Medical Genomics OMICRON, and next-generation sequencing (NGS) was used to obtain target miRNAs. In addition, miRNA expression was detected in serum using polymerase chain reaction (PCR).
Results. Well-differentiated thyroid cancer (WDTC) samples had significantly higher expression levels of hsa-miR-146b-5p (p = 0.030) and hsa-miR-146b-3p (p = 0.032), while the expression levels of hsa-miR-195-3p were significantly lower (p = 0.032) in WDTC samples compared to FA specimens. The serum of TC patients showed markedly higher expression of the unique miRNA hsa-miR-195-3p (p = 0.039).
Conclusion. The overexpression of hsa-miR-146b-5p and hsa-miR-146b-3p, and the downregulation of hsa-miR-195-3p expression could be used as biomarkers to distinguish FA from WDTC in patients with FNAB results classified as Bethesda tier IV. In addition, hsa-miR-195-3p could act as a serum biomarker for differentiating patients with FA from those with WDTC, and preoperative measurement of its expression would help avoid unnecessary surgeries. However, this concept needs further verification in a more substantial prospective study.

Key words

thyroid cancer, follicular adenoma, suspicious for follicular neoplasm, next-generation sequencing

References (92)

  1. Sipos JA, Mazzaferri EL. Thyroid cancer epidemiology and prognostic variables. Clin Oncol (R Coll Radiol). 2010;22(6):395–404. doi:10.1016/j.clon.2010.05.004
  2. Zevallos JP, Hartman CM, Kramer JR, Sturgis EM, Chiao EY. Increased thyroid cancer incidence corresponds to increased use of thyroid ultrasound and fine-needle aspiration: A study of the Veterans Affairs health care system. Cancer. 2015;121(5):741–746. doi:10.1002/cncr.29122
  3. Didkowska J, Wojciechowska U, Czaderny K, Olasek P, Ciuba A. Nowotwory Złośliwe w Polsce 2017. Warszawa, Poland: Centrum Onkologii-Instytut; 2019.
  4. Gharib H, Papini E, Garber JR, et al. American Association of Clinical Endocrinologists, American College of Endocrinology, and Associazione Medici Endocrinologi medical guidelines for clinical practice for the diagnosis and management of thyroid nodules – 2016 update. Endocr Pract. 2016;22(5):622–639. doi:10.4158/EP161208.GL
  5. Migda B, Migda M, Migda AM, et al. Evaluation of four variants of the thyroid imaging reporting and data system (TIRADS) classification in patients with multinodular goitre: Initial study. Endokrynol Pol. 2015;69(2):156–162. doi:10.5603/EP.a2018.0012
  6. Lee HJ, Yoon DY, Seo YL, et al. Intraobserver and interobserver variability in ultrasound measurements of thyroid nodules. J Ultrasound Med. 2018;37(1):173–178. doi:10.1002/jum.14316
  7. Burman KD, Wartofsky L. Thyroid nodules. N Engl J Med. 2015;373(24):2347–2356. doi:10.1056/NEJMcp1415786
  8. Rago T, Vitti P. Risk stratification of thyroid nodules: From ultrasound features to TIRADS. Cancers. 2022;14(3):717. doi:10.3390/cancers14030717
  9. Trimboli P, Castellana M, Virili C, et al. Performance of contrast-enhanced ultrasound (CEUS) in assessing thyroid nodules: A systematic review and meta-analysis using histological standard of reference. Radiol Med. 2020;125(4):406–415. doi:10.1007/s11547-019-01129-2
  10. Kwak JY. Indications for fine needle aspiration in thyroid nodules. Endocrinol Metab (Seoul). 2013;28(2):81–85. doi:10.3803/EnM.2013.28.2.81
  11. Hoang JK, Middleton WD, Langer JE, et al. Comparison of thyroid risk categorization systems and fine-needle aspiration recommendations in a multi-institutional thyroid ultrasound registry. J Am Coll Cardiol. 2021;18(12):1605–1613. doi:10.1016/j.jacr.2021.07.019
  12. Brito JP, Gionfriddo MR, Al Nofal A, et al. The accuracy of thyroid nodule ultrasound to predict thyroid cancer: Systematic review and meta-analysis. J Clin Endocrinol Metab. 2014;99(4):1253–1263. doi:10.1210/jc.2013-2928
  13. Remonti LR, Kramer CK, Leitão CB, Pinto LCF, Gross JL. Thyroid ultrasound features and risk of carcinoma: A systematic review and meta-analysis of observational studies. Thyroid. 2015;25(5):538–550. doi:10.1089/thy.2014.0353
  14. Campanella P, Ianni F, Rota CA, Corsello SM, Pontecorvi A. Quantification of cancer risk of each clinical and ultrasonographic suspicious feature of thyroid nodules: A systematic review and meta-analysis. Eur J Endocrinol. 2014;170(5):R203–R211. doi:10.1530/EJE-13-0995
  15. Xu L, Zeng F, Wang Y, Bai Y, Shan X, Kong L. Prevalence and associated metabolic factors for thyroid nodules: A cross-sectional study in Southwest of China with more than 120 thousand populations. BMC Endocr Disord. 2021;21(1):175. doi:10.1186/s12902-021-00842-2
  16. Paskaš S, Janković J, Živaljević V, et al. Malignant risk stratification of thyroid FNA specimens with indeterminate cytology based on molecular testing. Cancer Cytopathol. 2015;123(8):471–479. doi:10.1002/cncy.21554
  17. Yang X, Zhai D, Zhang T, Zhang S. Use of strain ultrasound elastography versus fine-needle aspiration cytology for the differential diagnosis of thyroid nodules: A retrospective analysis. Clinics (Sao Paulo). 2020;75:e1594. doi:10.6061/clinics/2020/e1594
  18. Valderrabano P, McIver B. Evaluation and management of indeterminate thyroid nodules: The revolution of risk stratification beyond cytological diagnosis. Cancer Control. 2017;24(5):107327481772923. doi:10.1177/1073274817729231
  19. Faquin WC, Baloch ZW. Fine-needle aspiration of follicular patterned lesions of the thyroid: Diagnosis, management, and follow-up according to National Cancer Institute (NCI) recommendations. Diagn Cytopathol. 2010;38(10):731–739. doi:10.1002/dc.21292
  20. Durante C, Grani G, Lamartina L, Filetti S, Mandel SJ, Cooper DS. The diagnosis and management of thyroid nodules: A review. JAMA. 2018;319(9):914–924. doi:10.1001/jama.2018.0898
  21. Wong R, Farrell SG, Grossmann M. Thyroid nodules: Diagnosis and management. Med J Aust. 2018;209(2):92–98. doi:10.5694/mja17.01204
  22. Alexander EK, Kennedy GC, Baloch ZW, et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med. 2012;367(8):705–715. doi:10.1056/NEJMoa1203208
  23. Papanastasiou A, Sapalidis K, Goulis DG, et al. Thyroid nodules as a risk factor for thyroid cancer in patients with Graves’ disease: A systematic review and meta‐analysis of observational studies in surgically treated patients. Clin Endocrinol (Oxf). 2019;91(4):571–577. doi:10.1111/cen.14069
  24. Oczko-Wojciechowska M, Kotecka-Blicharz A, Krajewska J, et al. European perspective on the use of molecular tests in the diagnosis and therapy of thyroid neoplasms. Gland Surg. 2020;9(Suppl 2):S69–S76. doi:10.21037/gs.2019.10.26
  25. Lan L, Luo Y, Zhou M, et al. Comparison of diagnostic accuracy of thyroid cancer with ultrasound-guided fine-needle aspiration and core-needle biopsy: A systematic review and meta-analysis. Front Endocrinol (Lausanne). 2020;11:44. doi:10.3389/fendo.2020.00044
  26. Macerola E, Poma AM, Vignali P, et al. Molecular genetics of follicular-derived thyroid cancer. Cancers (Basel). 2021;13(5):1139. doi:10.3390/cancers13051139
  27. Lamartina L, Grani G, Durante C, Filetti S. Recent advances in managing differentiated thyroid cancer. F1000Res. 2018;7:86. doi:10.12688/f1000research.12811.1
  28. Wu D, Hu S, Hou Y, He Y, Liu S. Identification of potential novel biomarkers to differentiate malignant thyroid nodules with cytological indeterminate. BMC Cancer. 2020;20(1):199. doi:10.1186/s12885-020-6676-z
  29. Trimboli P, Virili C, Romanelli F, Crescenzi A, Giovanella L. Galectin-3 performance in histologic and cytologic assessment of thyroid nodules: A systematic review and meta-analysis. Int J Mol Sci. 2017;18(8):1756. doi:10.3390/ijms18081756
  30. Zhao C, Zheng J, Sun L, Xu R, Wei Q, Xu H. BRAFV600E mutation analysis in fine‐needle aspiration cytology specimens for diagnosis of thyroid nodules: The influence of false‐positive and false‐negative results. Cancer Med. 2019;8(12):5577–5589. doi:10.1002/cam4.2478
  31. Wang W, Chang J, Jia B, Liu J. The blood biomarkers of thyroid cancer. Cancer Manag Res. 2020;12:5431–5438. doi:10.2147/CMAR.S261170
  32. Khan TM, Zeiger MA. Thyroid nodule molecular testing: Is it ready for prime time? Front Endocrinol (Lausanne). 2020;11:590128. doi:10.3389/fendo.2020.590128
  33. Zaballos MA, Santisteban P. Key signaling pathways in thyroid cancer. J Endocrinol. 2017;235(2):R43–R61. doi:10.1530/JOE-17-0266
  34. Topf MC, Wang ZX, Tuluc M, Pribitkin EA. TERT, HRAS, and EIF1AX mutations in a patient with follicular adenoma. Thyroid. 2018;28(6):815–817. doi:10.1089/thy.2017.0504
  35. Duan H, Liu X, Ren X, Zhang H, Wu H, Liang Z. Mutation profiles of follicular thyroid tumors by targeted sequencing. Diagn Pathol. 2019;14(1):39. doi:10.1186/s13000-019-0817-1
  36. Jung CK, Kim Y, Jeon S, Jo K, Lee S, Bae JS. Clinical utility of EZH1 mutations in the diagnosis of follicular-patterned thyroid tumors. Hum Pathol. 2018;81:9–17. doi:10.1016/j.humpath.2018.04.018
  37. Vojtechova Z, Zavadil J, Klozar J, Grega M, Tachezy R. Comparison of the miRNA expression profiles in fresh frozen and formalin-fixed paraffin-embedded tonsillar tumors. PLoS One. 2017;12(6):e0179645. doi:10.1371/journal.pone.0179645
  38. Sempere LF, Azmi AS, Moore A. MicroRNA‐based diagnostic and therapeutic applications in cancer medicine. Wiley Interdiscip Rev RNA. 2021;12(6):e1662. doi:10.1002/wrna.1662
  39. Ye Q, Wang Q, Qi P, et al. Development and clinical validation of a 90-gene expression assay for identifying tumor tissue origin. J Mol Diagn. 2020;22(9):1139–1150. doi:10.1016/j.jmoldx.2020.06.005
  40. Ghafouri-Fard S, Shirvani-Farsani Z, Taheri M. The role of microRNAs in the pathogenesis of thyroid cancer. Noncoding RNA Res. 2020;5(3):88–98. doi:10.1016/j.ncrna.2020.06.001
  41. Pietrus M, Seweryn M, Kapusta P, Wołkow P, Pityński K, Wątor G. Low expression of miR-375 and miR-190b differentiates grade 3 patients with endometrial cancer. Biomolecules. 2021;11(2):274. doi:10.3390/biom11020274
  42. Ward CM, To TH, Pederson SM. NgsReports: A Bioconductor package for managing FastQC reports and other NGS related log files. Bioinformatics. 2020;36(8):2587–2588. doi:10.1093/bioinformatics/btz937
  43. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):10. doi:10.14806/ej.17.1.200
  44. Kozomara A, Birgaoanu M, Griffiths-Jones S. MiRBase: From microRNA sequences to function. Nucleic Acids Res. 2019;47(D1):D155–D162. doi:10.1093/nar/gky1141
  45. Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N. MiRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012;40(1):37–52. doi:10.1093/nar/gkr688
  46. Jarząb B, Dedecjus M, Słowińska-Klencka D, et al. Guidelines of Polish National Societies Diagnostics and Treatment of Thyroid Carcinoma: 2018 update. Endokrynol Pol. 2018;69(1):34–74. doi:10.5603/EP.2018.0014
  47. Russ G, Bonnema SJ, Erdogan MF, Durante C, Ngu R, Leenhardt L. European Thyroid Association Guidelines for ultrasound malignancy risk stratification of thyroid nodules in adults: The EU-TIRADS. Eur Thyroid J. 2017;6(5):225–237. doi:10.1159/000478927
  48. Law CW, Alhamdoosh M, Su S, et al. RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR. F1000Res. 2016;5:1408. doi:10.12688/f1000research.9005.3
  49. Costa-Silva J, Domingues D, Lopes FM. RNA-Seq differential expression analysis: An extended review and a software tool. PLoS One. 2017;12(12):e0190152. doi:10.1371/journal.pone.0190152
  50. Law CW, Chen Y, Shi W, Smyth GK. Voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15(2):R29. doi:10.1186/gb-2014-15-2-r29
  51. Reading CC, Charboneau JW, Hay ID, Sebo TJ. Sonography of thyroid nodules: A “classic pattern” diagnostic approach. Ultrasound Q. 2005;21(3):157–165. doi:10.1097/01.ruq.0000174750.27010.68
  52. Horvath E, Majlis S, Rossi R, et al. An ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management. J Clin Endocrinol Metab. 2009;94(5):1748–1751. doi:10.1210/jc.2008-1724
  53. Park SH, Kim SJ, Kim EK, Kim MJ, Son EJ, Kwak JY. Interobserver agreement in assessing the sonographic and elastographic features of malignant thyroid nodules. AJR Am J Roentgenol. 2009;193(5):W416–W423. doi:10.2214/AJR.09.2541
  54. Vannini I, Fanini F, Fabbri M. Emerging roles of microRNAs in cancer. Curr Opin Genet Dev. 2018;48:128–133. doi:10.1016/j.gde.2018.01.001
  55. Wei H, Pu K, Liu X, et al. The diagnostic value of circulating microRNAs as a biomarker for gastric cancer: A meta analysis. Oncol Rep. 2019;41(1):87–102. doi:10.3892/or.2018.6782
  56. Hoshino I, Ishige F, Iwatate Y, et al. Cell-free microRNA-1246 in different body fluids as a diagnostic biomarker for esophageal squamous cell carcinoma. PLoS One. 2021;16(3):e0248016. doi:10.1371/journal.pone.0248016
  57. Dasgupta I, Chatterjee A. Recent advances in miRNA delivery systems. Methods Protoc. 2021;4(1):10. doi:10.3390/mps4010010
  58. Wang F, Jiang C, Sun Q, et al. MiR-195 is a key regulator of Raf1 in thyroid cancer. Onco Targets Ther. 2015;8:3021–3028. doi:10.2147/OTT.S90710
  59. Marques MM, Evangelista AF, Macedo T, et al. Expression of tumor suppressors miR-195 and let-7a as potential biomarkers of invasive breast cancer. Clinics (Sao Paulo). 2018;73:e184. doi:10.6061/clinics/2018/e184
  60. Ye S, Song W, Xu X, Zhao X, Yang L. IGF2BP2 promotes colorectal cancer cell proliferation and survival through interfering with RAF-1 degradation by miR-195. FEBS Lett. 2016;590(11):1641–1650. doi:10.1002/1873-3468.12205
  61. Yin Y, Hong S, Yu S, et al. MiR-195 inhibits tumor growth and metastasis in papillary thyroid carcinoma cell lines by targeting CCND1 and FGF2. Int J Endocrinol. 2017;2017:6180425. doi:10.1155/2017/6180425
  62. Tahamtan A, Teymoori-Rad M, Nakstad B, Salimi V. Anti-inflammatory miRNAs and their potential for inflammatory diseases treatment. Front Immunol. 2018;9:1377. doi:10.3389/fimmu.2018.01377
  63. Lambert KA, Roff AN, Panganiban RP, Douglas S, Ishmael FT. MicroRNA-146a is induced by inflammatory stimuli in airway epithelial cells and augments the anti-inflammatory effects of glucocorticoids. PLoS One. 2018;13(10):e0205434. doi:10.1371/journal.pone.0205434
  64. Sun H, Cong D, He M, Chen S, Liu X, Liu X. Expression profiles of pivotal microRNAs and targets in thyroid papillary carcinoma: An analysis of The Cancer Genome Atlas. Onco Targets Ther. 2015;8:2271–2277. doi:10.2147/OTT.S85753
  65. Sun M, Fang S, Li W, et al. Associations of miR-146a and miR-146b expression and clinical characteristics in papillary thyroid carcinoma. Cancer Biomark. 2015;15(1):33–40. doi:10.3233/CBM-140431
  66. Laukiene R, Jakubkevicius V, Ambrozaityte L, Cimbalistiene L, Utkus A. Dysregulation of microRNAs as the risk factor of lymph node metastasis in papillary thyroid carcinoma: Systematic review. Endokrynol Pol. 2021;72(2):145–152. doi:10.5603/EP.a2021.0010
  67. Qiu J, Zhang W, Zang C, et al. Identification of key genes and miRNAs markers of papillary thyroid cancer. Biol Res. 2018;51(1):45. doi:10.1186/s40659-018-0188-1
  68. Qiu Z, Li H, Wang J, Sun C. MiR-146a and miR-146b in the diagnosis and prognosis of papillary thyroid carcinoma. Oncol Rep. 2017;38(5):2735–2740. doi:10.3892/or.2017.5994
  69. Yang SI, Choi YS. Expressions of miRNAs in papillary thyroid carcinoma and their associations with the BRAFV600E mutation and clinicopathological features. KMJ. 2020;35(1):1–14. doi:10.7180/kmj.2020.35.1.1
  70. Lima CR, Geraldo MV, Fuziwara CS, Kimura ET, Santos MF. MiRNA-146b-5p upregulates migration and invasion of different papillary thyroid carcinoma cells. BMC Cancer. 2016;16:108. doi:10.1186/s12885-016-2146-z
  71. Zhou C, Zhao L, Wang K, et al. MicroRNA 146a inhibits NF κB activation and pro inflammatory cytokine production by regulating IRAK1 expression in THP 1 cells. Exp Ther Med. 2019;18(4):3078–3084. doi:10.3892/etm.2019.7881
  72. Li L, Lv B, Chen B, et al. Inhibition of miR-146b expression increases radioiodine-sensitivity in poorly differential thyroid carcinoma via positively regulating NIS expression. Biochem Biophys Res Commun. 2015;462(4):314–321. doi:10.1016/j.bbrc.2015.04.134
  73. Zedan AH, Hansen TF, Assenholt J, Pleckaitis M, Madsen JS, Osther PJS. MicroRNA expression in tumour tissue and plasma in patients with newly diagnosed metastatic prostate cancer. Tumour Biol. 2018;40(5):101042831877586. doi:10.1177/1010428318775864
  74. Garrido-Cano I, Constâncio V, Adam-Artigues A, et al. Circulating miR-99a-5p expression in plasma: A potential biomarker for early diagnosis of breast cancer. Int J Mol Sci. 2020;21(19):7427. doi:10.3390/ijms21197427
  75. Singh PK, Preus L, Hu Q, et al. Serum microRNA expression patterns that predict early treatment failure in prostate cancer patients. Oncotarget. 2014;5(3):824–840. doi:10.18632/oncotarget.1776
  76. Mori MA, Ludwig RG, Garcia-Martin R, Brandão BB, Kahn CR. Extracellular miRNAs: From biomarkers to mediators of physiology and disease. Cell Metab. 2019;30(4):656–673. doi:10.1016/j.cmet.2019.07.011
  77. Thomas M, Fraser D, Bowen T. Biogenesis, stabilization, and transport of miRNAs in kidney health and disease. Noncoding RNA. 2018;4(4):30. doi:10.3390/ncrna4040030
  78. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9:402. doi:10.3389/fendo.2018.00402
  79. Geekiyanage H, Rayatpisheh S, Wohlschlegel JA, Brown R, Ambros V. Extracellular microRNAs in human circulation are associated with miRISC complexes that are accessible to anti-AGO2 antibody and can bind target mimic oligonucleotides. Proc Natl Acad Sci U S A. 2020;117(39):24213–24223. doi:10.1073/pnas.2008323117
  80. Zhang Q, Wang W, Zhou Q, et al. Roles of circRNAs in the tumour microenvironment. Mol Cancer. 2020;19(1):14. doi:10.1186/s12943-019-1125-9
  81. De Crea C, Raffaelli M, Sessa L, et al. Actual incidence and clinical behaviour of follicular thyroid carcinoma: An institutional experience. ScientificWorldJournal. 2014;2014:952095. doi:10.1155/2014/952095
  82. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133. doi:10.1089/thy.2015.0020
  83. Rosignolo F, Memeo L, Monzani F, et al. MicroRNA-based molecular classification of papillary thyroid carcinoma. Int J Oncol. 2017;50(5):1767–1777. doi:10.3892/ijo.2017.3960
  84. Mazeh H, Deutch T, Karas A, et al. Next-generation sequencing identifies a highly accurate miRNA panel that distinguishes well-differentiated thyroid cancer from benign thyroid nodules. Cancer Epidemiol Biomarkers Prev. 2018;27(8):858–863. doi:10.1158/1055-9965.EPI-18-0055
  85. Aquino-Jarquin G. Emerging role of CRISPR/Cas9 technology for miRNAs editing in cancer research. Cancer Res. 2017;77(24):6812–6817. doi:10.1158/0008-5472.CAN-17-2142
  86. Silaghi CA, Lozovanu V, Silaghi H, et al. The prognostic value of miRNAs in thyroid cancers; A systematic review and meta-analysis. Cancers (Basel). 2020;12(9):2608. doi:10.3390/cancers12092608
  87. Simonson B, Das S. MicroRNA therapeutics: The next magic bullet? Mini Rev Med Chem. 2015;15(6):467–474. doi:10.2174/1389557515666150324123208
  88. Misiak D, Hagemann S, Bell JL, et al. The miRNA landscape of MYCN-amplified neuroblastoma. Front Oncol. 2021;11:647737. doi:10.3389/fonc.2021.647737
  89. Yoshino H, Yonemori M, Miyamoto K, et al. MicroRNA-210-3p depletion by CRISPR/Cas9 promoted tumorigenesis through revival of TWIST1 in renal cell carcinoma. Oncotarget. 2017;8(13):20881–20894. doi:10.18632/oncotarget.14930
  90. Reda El Sayed S, Cristante J, Guyon L, Denis J, Chabre O, Cherradi N. MicroRNA therapeutics in cancer: Current advances and challenges. Cancers (Basel). 2021;13(11):2680. doi:10.3390/cancers13112680
  91. Guo F, Wang C, Wang S, et al. Alteration in gene expression profile of thymomas with or without myasthenia gravis linked with the nuclear factor‐kappaB/autoimmune regulator pathway to myasthenia gravis pathogenesis. Thorac Cancer. 2019;10(3):564–570. doi:10.1111/1759-7714.12980
  92. Takakuwa T, Nomura S, Matsuzuka F, Inoue H, Aozasa K. Expression of interleukin-7 and its receptor in thyroid lymphoma. Lab Invest. 2000;80(10):1483–1490. doi:10.1038/labinvest.3780157