Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.736
5-Year Impact Factor – 2.135
Index Copernicus  – 168.52
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

Ahead of print

doi: 10.17219/acem/159947

Publication type: review

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Cite as:

Olasińska-Wiśniewska A, Urbanowicz TK, Gładki MM, Bobkowski W, Zalas D, Jemielity M. The beneficial role of simple inflammatory blood indices in pediatric cardiology [published online as ahead of print on March 15, 2023]. Adv Clin Exp Med. 2023. doi:10.17219/acem/159947

The beneficial role of simple inflammatory blood indices in pediatric cardiology

Anna Olasińska-Wiśniewska1,A,B,C,D,F, Tomasz Kamil Urbanowicz1,A,B,C,D,E,F, Marcin Michał Gładki2,C,E,F, Waldemar Bobkowski3,C,E,F, Dominika Zalas3,C,E,F, Marek Jemielity1,2,A,E,F

1 Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, Poland

2 Department of Pediatric Cardiac Surgery, Poznan University of Medical Sciences, Poland

3 Department of Pediatric Cardiology, Poznan University of Medical Sciences, Poland


Simple whole blood analysis can effectively demonstrate complex changes in inflammatory responses to cardiovascular disorders in adults and enable the prediction of adverse outcomes or diminished survival. Such inflammatory activation has also been detected in the pediatric population. Blood analysis results are repeatable and readily available, which gives the method an advantage over others. Inflammatory phenomena such as a high leukocyte count and an increased neutrophil-to-lymphocyte ratio (NLR) are related to a poor prognosis of advanced heart defects and worse outcomes after pediatric cardiac surgery in the advanced stages of the disease. Surgery-associated inflammation exacerbates these diseases, and the inflammatory response may further complicate the postoperative period. Simple blood cell counts and indices may be beneficial for evaluating cardiac surgery outcomes and cardiovascular disorder prognosis in infants and children. This review summarizes current knowledge on inflammatory markers in pediatric cardiovascular diseases and surgery.

Key words

surgery, inflammation, congenital heart disease, neutrophil-to-lymphocyte ratio

Graphical abstract

Graphical abstracts

References (71)

  1. Grajek S, Michalak M, Urbanowicz T, Olasińska-Wiśniewska A. A meta-analysis evaluating the colchicine therapy in patients with coronary artery disease. Front Cardiovasc Med. 2021;8:740896. doi:10.3389/fcvm.2021.740896
  2. Urbanowicz T, Michalak M, Olasińska-Wiśniewska A, et al. Neutrophil counts, neutrophil-to-lymphocyte ratio, and systemic inflammatory response index (SIRI) predict mortality after off-pump coronary artery bypass surgery. Cells. 2022;11(7):1124. doi:10.3390/cells11071124
  3. Meyer-Lindemann U, Mauersberger C, Schmidt AC, et al. Colchicine impacts leukocyte trafficking in atherosclerosis and reduces vascular inflammation. Front Immunol. 2022;13:898690. doi:10.3389/fimmu.2022.898690
  4. Urbanowicz T, Olasińska-Wiśniewska A, Michalak M, et al. The prognostic significance of neutrophil to lymphocyte ratio (NLR), monocyte to lymphocyte ratio (MLR) and platelet to lymphocyte ratio (PLR) on long-term survival in off-pump coronary artery bypass grafting (OPCAB) procedures. Biology (Basel). 2021;11(1):34. doi:10.3390/biology11010034
  5. Wang X, Ni Q, Wang J, Wu S, Chen P, Xing D. Systemic inflammation response index is a promising prognostic marker in elderly patients with heart failure: A retrospective cohort study. Front Cardiovasc Med. 2022;9:871031. doi:10.3389/fcvm.2022.871031
  6. Budde H, Hassoun R, Mügge A, Kovács Á, Hamdani N. Current understanding of molecular pathophysiology of heart failure with preserved ejection fraction. Front Physiol. 2022;13:928232. doi:10.3389/fphys.2022.928232
  7. Wang Y, Li Y, Zhang W, Yuan Z, Lv S, Zhang J. NLRP3 inflammasome: A novel insight into heart failure [published online as ahead of print on June 13, 2022]. J Cardiovasc Transl Res. 2022. doi:10.1007/s12265-022-10286-1
  8. Urbanowicz T, Olasińska-Wiśniewska A, Michalak M, Straburzyńska-Migaj E, Jemielity M. Neutrophil to lymphocyte ratio as noninvasive predictor of pulmonary vascular resistance increase in congestive heart failure patients: Single-center preliminary report. Adv Clin Exp Med. 2020;29(11):1313–1317. doi:10.17219/acem/126292
  9. Yuan Y, Liu J, Zhou Y, et al. The relationship between monocyte-to-lymphocyte ratio and the risk of gastrointestinal system involvement in children with IgA vasculitis: A preliminary report. Adv Clin Exp Med. 2021;30(10):999–1005. doi:10.17219/acem/138906
  10. Gładki M, Składzień T, Żurek R, Broniatowska E, Wójcik E, Skalski JH. Effect of acid–base balance on postoperative course in children with hypoplastic left heart syndrome after the modified Norwood procedure. Medicine (Baltimore). 2017;96(34):e7739. doi:10.1097/MD.0000000000007739
  11. Urbanowicz TK, Rodzki M, Michalak M, et. al. Large unstained cell (LUC) count as a predictor of carotid artery occlusion [published online as head of print on March 15,2023]. Adv Clin Exp Med. 2023. doi:10.17219/acem/159756
  12. Bohn MK, Steele S, Hall A, Poonia J, Jung B, Adeli K. Cardiac biomarkers in pediatrics: An undervalued resource. Clin Chem. 2021;67(7):947–958. doi:10.1093/clinchem/hvab063
  13. Parker DM, Everett AD, Stabler ME, et al. The association between cardiac biomarker NT-proBNP and 30-day readmission or mortality after pediatric congenital heart surgery. World J Pediatr Congenit Heart Surg. 2019;10(4):446–453. doi:10.1177/2150135119842864
  14. Bobillo-Perez S, Jordan I, Corniero P, et al. Prognostic value of biomarkers after cardiopulmonary bypass in pediatrics: The prospective PANCAP study. PLoS One. 2019;14(6):e0215690. doi:10.1371/journal.pone.0215690
  15. Bobillo-Perez S, Girona-Alarcon M, Corniero P, et al. Pro-atrial natriuretic peptide and pro-adrenomedullin before cardiac surgery in children: Can we predict the future? PLoS One. 2020;15(7):e0236377. doi:10.1371/journal.pone.0236377
  16. Błażejowska E, Urbanowicz T, Gąsecka A, et al. Diagnostic and prognostic value of miRNAs after coronary artery bypass grafting: A review. Biology (Basel). 2021;10(12):1350. doi:10.3390/biology10121350
  17. Pluta K, Porębska K, Urbanowicz T, et al. Platelet–leucocyte aggregates as novel biomarkers in cardiovascular diseases. Biology (Basel). 2022;11(2):224. doi:10.3390/biology11020224
  18. Adamstein NH, MacFadyen JG, Rose LM, et al. The neutrophil–lymphocyte ratio and incident atherosclerotic events: Analyses from five contemporary randomized trials. Eur Heart J. 2021;42(9):896–903. doi:10.1093/eurheartj/ehaa1034
  19. Olasińska-Wiśniewska A, Urbanowicz T, Grodecki K, et al. Neutrophil-to-lymphocyte ratio as a predictor of inflammatory response in patients with acute kidney injury after transcatheter aortic valve implantation. Adv Clin Exp Med. 2022;31(9):937–945. doi:10.17219/acem/149229
  20. Çelik SF, Çelik E. The neutrophil-to-lymphocyte ratio and mean platelet volume can be associated with severity of valvular involvement in patients with acute rheumatic carditis. Cardiovasc J Afr. 2018;29(5):296–300. doi:10.5830/CVJA-2018-031
  21. Arslanoğlu E, Çine N, Kara KA, et al. Do platelet-to-lymphocyte ratio (PLR) and neutrophil-to-lymphocyte ratio (NLR) have a predictive value on pediatric extracorporeal membrane oxygenation (ECMO) results? Cardiol Young. 2021;31(6):1003–1008. doi:10.1017/S1047951121001918
  22. Urbanowicz TK, Michalak M, Mikołajewska W, et al. Mean platelet volume as a simple marker of repeated coronary artery intervention after off-pump technique (OPCAB) procedures: Initial report. Kardiochir Torakochirurgia Pol. 2021;18(4):231–235. doi:10.5114/kitp.2021.112190
  23. Szafran E, Baszko A, Bukowska-Posadzy A, et al. Do children with supraventricular tachycardia treated with ablation therapy have similar quality of life as healthy children? JMS. 2017;86(2):141–147. doi:10.20883/jms.2016.208
  24. Bassareo PP, Fanos V, Pala M, et al. Supraventricular tachycardia during the first year of life: Is subclinical inflammation the trigger? J Matern Fetal Neonatal Med. 2018;31(1):53–58. doi:10.1080/14767058.2016.1275545
  25. Čulić V. Inflammation, coagulation, weather and arrhythmogenesis: Is there a linkage? Int J Cardiol. 2014;176(1):289–293. doi:10.1016/j.ijcard.2014.06.078
  26. Aydin M, Yıldız A, Yuksel M, Polat N, Aktan A, İslamoglu Y. Assessment of the neutrophil/lymphocyte ratio in patients with supraventricular tachycardia. Anatol J Cardiol. 2015;16(1):29–33. doi:10.5152/akd.2015.5927
  27. Tian J, An X, Niu L. Analysis of the correlation between the neutrophil–lymphocyte ratio in peripheral blood and perioperative myocardial damage in pediatric patients with frequent ventricular premature beat. Eur Rev Med Pharmacol Sci. 2018;22(6):1752–1757. doi:10.26355/eurrev_201803_14591
  28. Urbanowicz T, Olasińska-Wiśniewska A, Gładki M, et al. Neutrophil count as atrioventricular block (AVB) predictor following pediatric heart surgery. Int J Mol Sci. 2022;23(20):12409. doi:10.3390/ijms232012409
  29. Chang LS, Lin YJ, Yan JH, Guo MMH, Lo MH, Kuo HC. Neutrophil-to-lymphocyte ratio and scoring system for predicting coronary artery lesions of Kawasaki disease. BMC Pediatr. 2020;20(1):398. doi:10.1186/s12887-020-02285-5
  30. Smorczewska-Kiljan A, Marszał M, Friedman-Gruszczyńska J, et al. Clinical characteristics of Kawasaki disease in Polish children: A retrospective study. Kardiol Pol. 2022;80(6):657–663. doi:10.33963/KP.a2022.0090
  31. Kanai T, Takeshita S, Kawamura Y, et al. The combination of the neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios as a novel predictor of intravenous immunoglobulin resistance in patients with Kawasaki disease: A multicenter study. Heart Vessels. 2020;35(10):1463–1472. doi:10.1007/s00380-020-01622-z
  32. Yan JH, Chang LS, Lin YJ, Guo MMH, Huang YH, Kuo HC. Clinical characteristics for differentiating febrile children with suspected Kawasaki disease diagnosis. Front Pediatr. 2020;8:221. doi:10.3389/fped.2020.00221
  33. Diez S, Besendörfer M, Weyerer V, et al. DMBT1 expression and neutrophil-to-lymphocyte ratio during necrotizing enterocolitis are influenced by impaired perfusion due to cardiac anomalies. Mol Cell Pediatr. 2022;9(1):1. doi:10.1186/s40348-021-00133-9
  34. Kumar V, Ganguly NK, Anand IS, Wahi PL. Release of oxygen free radicals by macrophages and neutrophils in patients with rheumatic fever. Eur Heart J. 1991;12(Suppl D):163–165. doi:10.1093/eurheartj/12.suppl_D.163
  35. Giray D, Hallioglu O. Are there any novel markers in acute rheumatic fever: Neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and monocyte-to-lymphocyte ratio. Cardiol Young. 2020;30(5):717–721. doi:10.1017/S104795112000089X
  36. Kucuk M, Ozdemir R, Karadeniz C, et al. Red blood cell distribution width: Can it be a predictive marker for long-term valvular involvement in children with acute rheumatic carditis? Int J Lab Hematol. 2016;38(5):569–575. doi:10.1111/ijlh.12544
  37. Yousef AM, Rifaie OA, Hamza MA, Amin SA. Study of the relation between serum levels of long-acting penicillin and the inflammatory markers: C-reactive protein and interleukin-6 in patients with chronic rheumatic heart disease. Egypt Heart J. 2021;73(1):19. doi:10.1186/s43044-021-00141-0
  38. Diamantino Soares AC, Araújo Passos LS, Sable C, et al. Circulating cytokines predict severity of rheumatic heart disease. Int J Cardiol. 2019;289:107–109. doi:10.1016/j.ijcard.2019.04.063
  39. Settin A, Abdel-Hady H, El-Baz R, Saber I. Gene polymorphisms of TNF-alpha(-308), IL-10(-1082), IL-6(-174), and IL-1Ra(VNTR) related to susceptibility and severity of rheumatic heart disease. Pediatr Cardiol. 2007;28(5):363–371. doi:10.1007/s00246-006-0002-7
  40. Bester J, Pretorius E. Effects of IL-1β, IL-6 and IL-8 on erythrocytes, platelets and clot viscoelasticity. Sci Rep. 2016;6:32188. doi:10.1038/srep32188
  41. Skrzypczyk P, Zacharzewska A, Szyszka M, Ofiara A, Pańczyk-Tomaszewska M. Arterial stiffness in children with primary hypertension is related to subclinical inflammation. Cent Eur J Immunol. 2021;46(3):336–343. doi:10.5114/ceji.2021.109156
  42. Rai V, Gładki M, Dudyńska M, et al. Pneumatic paracorporeal ventricular assist device as bridge to transplant in children ≤ 20 kg: Krakow experience. Indian J Thorac Cardiovasc Surg. 2018;34(1):19–24. doi:10.1007/s12055-017-0583-1
  43. Patel MS, Berg AM, Vincent RN, Mahle WT. Serum parameters and echocardiographic predictors of death or need for transplant in newborns, children, and young adults with heart failure. Am J Cardiol. 2010;105(12):1798–1801. doi:10.1016/j.amjcard.2010.01.357
  44. Araújo F da R, Silva RF da L, Lima Oliveira C, Meira ZA. Neutrophil-to-lymphocyte ratio used as prognostic factor marker for dilated cardiomyopathy in childhood and adolescence. Ann Pediatr Card. 2019;12(1):18–24. doi:10.4103/apc.APC_47_18
  45. Gursoy M, Salihoglu E, Hatemi AC, Hokenek AF, Ozkan S, Ceyran H. Inflammation and congenital heart disease associated pulmonary hypertension. Heart Surg Forum. 2015;18(1):E38–E41. doi:10.1532/hsf.1228
  46. Gao P, Liu J, Wang X, et al. The association between neutrophil–lymphocyte ratio and poor outcomes following infant cardiac surgery. BMC Cardiovasc Disord. 2021;21(1):529. doi:10.1186/s12872-021-02345-3
  47. Nasser BA, Mesned AR, Tageldein M, Kabbani MS, Sayed NS. Can acute-phase response biomarkers differentiate infection from inflammation postpediatric cardiac surgery? Avicenna J Med. 2017;7(4):182–188. doi:10.4103/ajm.AJM_51_17
  48. Garcia IJ, Gargallo MB, Torné EE, et al. Procalcitonin: A useful biomarker to discriminate infection after cardiopulmonary bypass in children. Pediatr Crit Care Med. 2012;13(4):441–445. doi:10.1097/PCC.0b013e31823890de
  49. Séguéla PE, Joram N, Romefort B, et al. Procalcitonin as a marker of bacterial infection in children undergoing cardiac surgery with cardiopulmonary bypass. Cardiol Young. 2011;21(4):392–399. doi:10.1017/S104795111100014X
  50. Haponiuk I, Jaworski R, Paczkowski K, et al. Postoperative kinetics of common inflammatory biomarkers after congenital heart defect procedures with extracorporeal circulation in children. Kardiol Pol. 2018;76(6):968–973. doi:10.5603/KP.a2018.0038
  51. Manuel V, Miana LA, Solla DJF, Fernandes N, Carrillo G, Jatene MB. Preoperative level of neutrophil‐lymphocyte ratio: Comparison between cyanotic and acyanotic congenital heart disease. J Card Surg. 2021;36(4):1376–1380. doi:10.1111/jocs.15413
  52. Qing M, Schumacher K, Heise R, et al. Intramyocardial synthesis of pro- and anti-inflammatory cytokines in infants with congenital cardiac defects. J Am Coll Cardiol. 2003;41(12):2266–2274. doi:10.1016/S0735-1097(03)00477-7
  53. Hövels-Gürich HH, Schumacher K, Vazquez-Jimenez JF, et al. Cytokine balance in infants undergoing cardiac operation. Ann Thorac Surg. 2002;73(2):601–608. doi:10.1016/S0003-4975(01)03391-4
  54. Manuel V, Miana LA, Jatene MB. Neutrophil-lymphocyte ratio in congenital heart surgery: What is known and what is new? World J Pediatr Congenit Heart Surg. 2022;13(2):208–216. doi:10.1177/21501351211064143
  55. Manuel V, Miana LA, Guerreiro GP, et al. Prognostic value of the preoperative neutrophil–lymphocyte ratio in patients undergoing the bidirectional Glenn procedure. J Card Surg. 2020;35(2):328–334. doi:10.1111/jocs.14381
  56. Moosmann J, Schroeder C, Cesnjevar R, Rottermann K, Weigelt A, Dittrich S. Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratio in univentricular patients from birth to follow-up after fontan-predicting lymphatic abnormalities. Front Pediatr. 2021;9:740951. doi:10.3389/fped.2021.740951
  57. Walian A, Kohli JK, Magoon R, et al. Retrospective evaluation of platelet-leukocyte indices and cardiac surgical outcomes in acyanotic heart disease patients with pulmonary hypertension (REPLICA-PH). Braz J Cardiovasc Surg. 2022;37(6):866–874. doi:10.21470/1678-9741-2020-0648
  58. Yin X, Xin M, Ding S, et al. Predictive role of perioperative neutrophil to lymphocyte ratio in pediatric congenital heart disease associated with pulmonary arterial hypertension. BMC Surg. 2021;21(1):3. doi:10.1186/s12893-020-01009-x
  59. Xu H, Sun Y, Zhang S. The relationship between neutrophil to lymphocyte ratio and clinical outcome in pediatric patients after cardiopulmonary bypass surgery: A retrospective study. Front Pediatr. 2019;7:308. doi:10.3389/fped.2019.00308
  60. Şişli E, Yalçınbaş YK, Türkekul Y, Yüksek A, Saygılı A, Sarıoğlu C. Does preoperative neutrophil-lymphocyte ratio indicate postoperative morbidity after repair of tetralogy of Fallot? Turk Gogus Kalp Dama. 2016;24(2):220–226. doi:10.5606/tgkdc.dergisi.2016.12043
  61. Savluk OF, Guzelmeric F, Yavuz Y, et al. The neutrophil lymphocyte ratio as a successful extubation predictor of prolonged intubation in pediatric heart surgery. Iran J Pediatr. 2017;27(5):e9416. doi:10.5812/ijp.9416
  62. Manuel V, Miana LA, Turquetto A, Guerreiro GP, Fernandes N, Jatene MB. The role of the neutrophil–lymphocyte ratio for pre-operative risk stratification of acute kidney injury after tetralogy of Fallot repair. Cardiol Young. 2021;31(6):1009–1014. doi:10.1017/S1047951121001943
  63. Savluk OF, Guzelmeric F, Yavuz Y, et al. Neutrophil–lymphocyte ratio as a mortality predictor for Norwood stage I operations. Gen Thorac Cardiovasc Surg. 2019;67(8):669–676. doi:10.1007/s11748-019-01081-y
  64. Cabrera AG, Dyamenahalli U, Gossett J, et al. Preoperative lymphopenia is a predictor of postoperative adverse outcomes in children with congenital heart disease. J Thorac Cardiovasc Surg. 2009;138(5):1172–1179. doi:10.1016/j.jtcvs.2009.06.016
  65. Jones SM, McCracken C, Alsoufi B, Mahle WT, Oster ME. Association of preoperative cell counts with outcomes after operation for congenital heart disease. Ann Thorac Surg. 2018;106(4):1234–1240. doi:10.1016/j.athoracsur.2018.04.022
  66. Wu X, Luo Q, Su Z, et al. Prognostic value of preoperative absolute lymphocyte count in children with tetralogy of Fallot. J Am Heart Assoc. 2021;10(11):e019098. doi:10.1161/JAHA.120.019098
  67. Gupta-Malhotra M, Kern JH, Flynn PA, Schiller MS, Quaegebeur JM, Friedman DM. Early pleural effusions related to the myocardial injury after open-heart surgery for congenital heart disease. Congenit Heart Dis. 2010;5(3):256–261. doi:10.1111/j.1747-0803.2010.00403.x
  68. Yakuwa K, Miyaji K, Kitamura T, Miyamoto T, Ono M, Kaneko Y. Neutrophil-to-lymphocyte ratio is prognostic factor of prolonged pleural effusion after pediatric cardiac surgery. JRSM Cardiovasc Dis. 2021;10:204800402110094. doi:10.1177/20480040211009438
  69. Gupta M, Johann-Liang R, Sison CP, Quaegebeur J, Friedman DM. Relation of early pleural effusion after pediatric open heart surgery to cardiopulmonary bypass time and systemic inflammation as measured by serum interleukin-6. Am J Cardiol. 2001;87(10):1220–1223. doi:10.1016/S0002-9149(01)01503-X
  70. Bocsi J, Hambsch J, Osmancik P, Schneider P, Valet G, Tárnok A. Preoperative prediction of pediatric patients with effusions and edema following cardiopulmonary bypass surgery by serological and routine laboratory data. Crit Care. 2002;6(3):226–233. doi:10.1186/cc1494
  71. Iliopoulos I, Alder MN, Cooper DS, et al. Pre-operative neutrophil–lymphocyte ratio predicts low cardiac output in children after cardiac surgery. Cardiol Young. 2020;30(4):521–525. doi:10.1017/S1047951120000487