Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.736
5-Year Impact Factor – 2.135
Index Copernicus  – 168.52
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

Ahead of print

doi: 10.17219/acem/157193

Publication type: meta-analysis

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Cite as:

Zhou S, Li B, Deng Y, et al. Meta-analysis of the relations between gut microbiota and pathogens and Parkinson’s disease [published online as ahead of print on March 7, 2023]. Adv Clin Exp Med. 2023. doi:10.17219/acem/157193

Meta-analysis of the relations between gut microbiota and pathogens and Parkinson’s disease

Shengqiang Zhou1,A,B,C,D,F, Bo Li2,A,B,C,D,F, Yihui Deng3,A,B,C,D,F, Jian Yi4,A,B,C,D,F, Guo Mao5,A,B,C,D,E,F, Ruizhen Wang6,A,B,D,E,F, Wen Zeng6,A,B,C,D,F, Baiyan Liu7,A,B,C,D,E,F, Dahua Wu8,A,B,C,E,F, Fang Liu1,A,B,C,E,F

1 National TCM Master Liu Zuyi Inheritance Studio, The Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, China

2 Department of Pediatrics, The First Hospital of Hunan University of Chinese Medicine, Changsha, China

3 Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China

4 Key Laboratory of Ministry of Education on Prevention and Treatment of Major Diseases in Internal Medicine of Traditional Chinese Medicine, The First Hospital of Hunan University of Chinese Medicine, Changsha, China

5 Key Project Office, The Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, China

6 Graduate School, Hunan University of Chinese Medicine, Changsha, China

7 College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China

8 Department of Neurology, The Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, China


Background. The motor symptoms in patients with Parkinson’s disease (PD) are commonly preceded by gastrointestinal (GI) symptoms. The enteric nervous system (ENS) has also been reported to exhibit neuropathological characteristics of PD.
Objectives. To evaluate the relationship between the incidence of parkinsonism and alteration in gut microbiota and pathogens.
Material and Methods. Studies in different languages that evaluate the relationship between gut microorganisms and PD were included into this meta-analysis. The outcomes of these studies were analyzed using a random effects model; it was also used to calculate the mean difference (MD) with 95% confidence interval (95% CI) in order to quantify the impact of different rehabilitation techniques on clinical parameters. Dichotomous and continuous models were used for the analysis of extracted data.
Results. A total of 28 studies were included in our analysis. The analysis of small intestinal bacterial overgrowth showed a significant correlation with Parkinson’s subjects compared with controls (p < 0.001). In addition, the presence of Helicobacter pylori (HP) infection was significantly related to the Parkinson’s group (p < 0.001). On the other hand, there was a significantly higher abundance level of Bifidobacteriaceae (p = 0.008), Verrucomicrobiaceae (p < 0.001) and Christensenellaceae (p = 0.003) in Parkinson’s subjects. In contrast, a significantly lower abundance levels in Parkinson’s subjects were found in Faecalibacterium (p = 0.03), Lachnospiraceae (p = 0.005) and Prevotellaceae (p = 0.005). No significant difference was related to Ruminococcaceae.
Conclusion. Parkinson’s subjects showed a higher degree of alteration of gut microbiota and pathogens compared with normal human subjects. Future multicenter randomized trials are needed.

Key words

intestinal bacteria, Helicobacter pylori, microbiota, Parkinson’s, gut

Graphical abstract

Graphical abstracts

References (67)

  1. Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Primers. 2017;3(1):17013. doi:10.1038/nrdp.2017.13
  2. Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386(9996):896–912. doi:10.1016/S0140-6736(14)61393-3
  3. Su A, Gandhy R, Barlow C, Triadafilopoulos G. A practical review of gastrointestinal manifestations in Parkinson’s disease. Parkinsonism Relat Disord. 2017;39:17–26. doi:10.1016/j.parkreldi s. 2017.02.029
  4. Berg D, Postuma RB, Adler CH, et al. MDS research criteria for prodromal Parkinson’s disease. Mov Disord. 2015;30(12):1600–1611. doi:10.1002/mds.26431
  5. Abeliovich A, Gitler AD. Defects in trafficking bridge Parkinson’s disease pathology and genetics. Nature. 2016;539(7628):207–216. doi:10.1038/nature20414
  6. Rietdijk CD, Perez-Pardo P, Garssen J, van Wezel RJA, Kraneveld AD. Exploring Braak’s hypothesis of Parkinson’s disease. Front Neurol. 2017;8:37. doi:10.3389/fneur.2017.00037
  7. Huang HK, Wang JH, Lei WY, Chen CL, Chang CY, Liou LS. Helicobacter pylori infection is associated with an increased risk of Parkinson’s disease: A population-based retrospective cohort study. Parkinsonism Relat Disord. 2018;47:26–31. doi:10.1016/j.parkreldis.2017.11.331
  8. Brudek T. Inflammatory bowel diseases and Parkinson’s disease. J Parkinsons Dis. 2019;9(S2):S331–S344. doi:10.3233/JPD-191729
  9. Matheoud D, Cannon T, Voisin A, et al. Intestinal infection triggers Parkinson’s disease-like symptoms in Pink1−/− mice. Nature. 2019;571(7766):565–569. doi:10.1038/s41586-019-1405-y
  10. Bhogaraju S, Kalayil S, Liu Y, et al. Phosphoribosylation of ubiquitin promotes serine ubiquitination and impairs conventional ubiquitination. Cell. 2016;167(6):1636–1649.e13. doi:10.1016/j.cell.2016.11.019
  11. Nair AT, Ramachandran V, Joghee NM, Antony S, Ramalingam G. Gut microbiota dysfunction as reliable non-invasive early diagnostic biomarkers in the pathophysiology of Parkinson’s disease: A critical review. J Neurogastroenterol Motil. 2018;24(1):30–42. doi:10.5056/jnm17105
  12. McColl KEL. Helicobacter pylori infection. N Engl J Med. 2010;362(17):1597–1604. doi:10.1056/NEJMcp1001110
  13. Tan HJ, Goh KL. Extragastrointestinal manifestations of Helicobacter pylori infection: Facts or myth? A critical review. J Digest Dis. 2012;13(7):342–349. doi:10.1111/j.1751-2980.2012.00599.x
  14. Çamcı G, Oğuz S. Association between Parkinson’s disease and Helicobacter pylori. J Clin Neurol. 2016;12(2):147. doi:10.3988/jcn.2016.12.2.147
  15. Tan AH, Mahadeva S, Marras C, et al. Helicobacter pylori infection is associated with worse severity of Parkinson’s disease. Parkinsonism Relat Disord. 2015;21(3):221–225. doi:10.1016/j.parkreldis.2014.12.009
  16. Lahner E, Annibale B, Delle Fave G. Systematic review: Heliocobacter pylori infection and impaired drug absorption. Aliment Pharmacol Ther. 2009;29(4):379–386. doi:10.1111/j.1365-2036.2008.03906.x
  17. Aho VTE, Pereira PAB, Voutilainen S, et al. Gut microbiota in Parkinson’s disease: Temporal stability and relations to disease progression. EBioMedicine. 2019;44:691–707. doi:10.1016/j.ebiom.2019.05.064
  18. Barichella M, Severgnini M, Cilia R, et al. Unraveling gut microbiota in Parkinson’s disease and atypical parkinsonism. Mov Disord. 2019;34(3):396–405. doi:10.1002/mds.27581
  19. Bedarf JR, Hildebrand F, Coelho LP, et al. Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naïve Parkinson’s disease patients. Genome Med. 2017;9(1):39. doi:10.1186/s13073-017-0428-y
  20. Blaecher C, Smet A, Flahou B, et al. Significantly higher frequency of Helicobacter suis in patients with idiopathic parkinsonism than in control patients. Aliment Pharmacol Ther. 2013;38(11–12):1347–1353. doi:10.1111/apt.12520
  21. Bu XL, Wang X, Xiang Y, et al. The association between infectious burden and Parkinson’s disease: A case-control study. Parkinsonism Relat Disord. 2015;21(8):877–881. doi:10.1016/j.parkreldis.2015.05.015
  22. Charlett A, Dobbs RJ, Dobbs SM, Weller C, Brady P, Peterson DW. Parkinsonism: Siblings share Helicobacter pylori seropositivity and facets of syndrome. Acta Neurol Scand. 2009;99(1):26–35. doi:10.1111/j.1600-0404.1999.tb00654.x
  23. Charlett A, Dobbs RJ, Dobbs SM, et al. Blood profile holds clues to role of infection in a premonitory state for idiopathic parkinsonism and of gastrointestinal infection in established disease. Gut Pathog. 2009;1(1):20. doi:10.1186/1757-4749-1-20
  24. Davies KN, King D, Billington D, Barrett JA. Intestinal permeability and orocaecal transit time in elderly patients with Parkinson’s disease. Postgrad Med J. 1996;72(845):164–167. doi:10.1136/pgmj.72.845.164
  25. Dobbs RJ, Charlett A, Dobbs SM, Weller C, Peterson DW. Parkinsonism: Differential age-trend in Helicobacter pylori antibody. Aliment Pharmacol Ther. 2000;14(9):1199–1205. doi:10.1046/j.1365-2036.2000.00815.x
  26. Efthymiou G, Dardiotis E, Liaskos C, et al. Immune responses against Helicobacter pylori-specific antigens differentiate relapsing–remitting from secondary progressive multiple sclerosis. Sci Rep. 2017;7(1):7929. doi:10.1038/s41598-017-07801-9
  27. Fasano A, Bove F, Gabrielli M, et al. The role of small intestinal bacterial overgrowth in Parkinson’s disease. Mov Disord. 2013;28(9):1241–1249. doi:10.1002/mds.25522
  28. Gabrielli M, Bonazzi P, Scarpellini E, et al. Prevalence of small intestinal bacterial overgrowth in Parkinson’s disease. Mov Disord. 2011;26(5):889–892. doi:10.1002/mds.23566
  29. Hasegawa S, Goto S, Tsuji H, et al. Intestinal dysbiosis and lowered serum lipopolysaccharide-binding protein in Parkinson’s disease. PLoS One. 2015;10(11):e0142164. doi:10.1371/journal.pone.0142164
  30. Hill-Burns EM, Debelius JW, Morton JT, et al. Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov Disord. 2017;32(5):739–749. doi:10.1002/mds.26942
  31. Hopfner F, Künstner A, Müller SH, et al. Gut microbiota in Parkinson disease in a Northern German cohort. Brain Res. 2017;1667:41–45. doi:10.1016/j.brainres.2017.04.019
  32. Li C, Cui L, Yang Y, et al. Gut microbiota differs between Parkinson’s disease patients and healthy controls in northeast China. Front Mol Neurosci. 2019;12:171. doi:10.3389/fnmol.2019.00171
  33. Li F, Wang P, Chen Z, Sui X, Xie X, Zhang J. Alteration of the fecal microbiota in northeastern Han Chinese population with sporadic Parkinson’s disease. Neurosci Lett. 2019;707:134297. doi:10.1016/j.neulet.2019.134297
  34. Li W, Wu X, Hu X, et al. Structural changes of gut microbiota in Parkinson’s disease and its correlation with clinical features. Sci China Life Sci. 2017;60(11):1223–1233. doi:10.1007/s11427-016-9001-4
  35. Lin A, Zheng W, He Y, et al. Gut microbiota in patients with Parkinson’s disease in southern China. Parkinsonism Relat Disord. 2018;53:82–88. doi:10.1016/j.parkreldis.2018.05.007
  36. Nafisah WY, Mohamed Ibrahim N, Najman Achok H, et al. High prevalence of Helicobacter pylori infection in Malaysian Parkinson’s disease patients. J Parkinsonism Restless Legs Syndrome. 2013;2013:63–67. doi:10.2147/JPRLS.S50491
  37. Nielsen HH, Qiu J, Friis S, Wermuth L, Ritz B. Treatment for Helicobacter pylori infection and risk of Parkinson’s disease in Denmark. Eur J Neurol. 2012;19(6):864–869. doi:10.1111/j.1468-1331.2011.03643.x
  38. Niu XL, Liu L, Song ZX, et al. Prevalence of small intestinal bacterial overgrowth in Chinese patients with Parkinson’s disease. J Neural Transm. 2016;123(12):1381–1386. doi:10.1007/s00702-016-1612-8
  39. Petrov VA, Saltykova IV, Zhukova IA, et al. Analysis of gut microbiota in patients with Parkinson’s disease. Bull Exp Biol Med. 2017;162(6):734–737. doi:10.1007/s10517-017-3700-7
  40. Ren T, Gao Y, Qiu Y, et al. Gut microbiota altered in mild cognitive impairment compared with normal cognition in sporadic Parkinson’s disease. Front Neurol. 2020;11:137. doi:10.3389/fneur.2020.00137
  41. Scheperjans F, Aho V, Pereira PAB, et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord. 2015;30(3):350–358. doi:10.1002/mds.26069
  42. Tsolaki F, Kountouras J, Topouzis F, Tsolaki M. Helicobacter pylori infection, dementia and primary open-angle glaucoma: Are they connected? BMC Ophthalmol. 2015;15(1):24. doi:10.1186/s12886-015-0006-2
  43. Unger MM, Spiegel J, Dillmann KU, et al. Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord. 2016;32:66–72. doi:10.1016/j.parkreldis.2016.08.019
  44. Tan AH, Chong CW, Lim S, et al. Gut microbial ecosystem in Parkinson disease: New clinicobiological insights from multi-omics. Ann Neurol. 2021;89(3):546–559. doi:10.1002/ana.25982
  45. Qian Y, Yang X, Xu S, et al. Alteration of the fecal microbiota in Chinese patients with Parkinson’s disease. Brain Behav Immun. 2018;70:194–202. doi:10.1016/j.bbi.2018.02.016
  46. Minato T, Maeda T, Fujisawa Y, et al. Progression of Parkinson’s disease is associated with gut dysbiosis: Two-year follow-up study. PLoS One. 2017;12(11):e0187307. doi:10.1371/journal.pone.0187307
  47. Dutta SK, Verma S, Jain V, et al. Parkinson’s disease: The emerging role of gut dysbiosis, antibiotics, probiotics, and fecal microbiota transplantation. J Neurogastroenterol Motil. 2019;25(3):363–376. doi:10.5056/jnm19044
  48. Pietrucci D, Teofani A, Unida V, et al. Can gut microbiota be a good predictor for Parkinson’s disease? A machine learning approach. Brain Sci. 2020;10(4):242. doi:10.3390/brainsci10040242
  49. Maini Rekdal V, Bess EN, Bisanz JE, Turnbaugh PJ, Balskus EP. Discovery and inhibition of an interspecies gut bacterial pathway for levodopa metabolism. Science. 2019;364(6445):eaau6323. doi:10.1126/science.aau6323
  50. Zhuang X, Xiong L, Li L, Li M, Chen M. Alterations of gut microbiota in patients with irritable bowel syndrome: A systematic review and meta-analysis. J Gastroenterol Hepatol. 2017;32(1):28–38. doi:10.1111/jgh.13471
  51. Baizabal-Carvallo JF, Alonso-Juarez M. The link between gut dysbiosis and neuroinflammation in Parkinson’s disease. Neuroscience. 2020;432:160–173. doi:10.1016/j.neuroscience.2020.02.030
  52. Bullich C, Keshavarzian A, Garssen J, Kraneveld A, Perez‐Pardo P. Gut vibes in Parkinson’s disease: The microbiota–gut–brain axis. Mov Disord Clin Pract. 2019;6(8):639–651. doi:10.1002/mdc3.12840
  53. Hu L, Dong MX, Huang YL, et al. Integrated metabolomics and proteomics analysis reveals plasma lipid metabolic disturbance in patients with Parkinson’s disease. Front Mol Neurosci. 2020;13:80. doi:10.3389/fnmol.2020.00080
  54. Mori A, Imai Y, Hattori N. Lipids: Key players that modulate α-synuclein toxicity and neurodegeneration in Parkinson’s disease. Int J Mol Sci. 2020;21(9):3301. doi:10.3390/ijms21093301
  55. Li Z, Liang H, Hu Y, et al. Gut bacterial profiles in Parkinson’s disease: A systematic review [published online as ahead of print on October 25, 2022]. CNS Neurosci Ther. 2022. doi:10.1111/cns.13990
  56. Romano S, Savva GM, Bedarf JR, Charles IG, Hildebrand F, Narbad A. Meta-analysis of the Parkinson’s disease gut microbiome suggests alterations linked to intestinal inflammation. NPJ Parkinsons Dis. 2021;7(1):27. doi:10.1038/s41531-021-00156-z
  57. Danzer M, Samberger C, Schicho R, Lippe ITH, Holzer P. Immunocytochemical characterization of rat brainstem neurons with vagal afferent input from the stomach challenged by acid or ammonia. Eur J Neurosci. 2004;19(1):85–92. doi:10.1111/j.1460-9568.2004.03109.x
  58. Nakamura T, Lipton SA. Redox regulation of mitochondrial fission, protein misfolding, synaptic damage, and neuronal cell death: Potential implications for Alzheimer’s and Parkinson’s diseases. Apoptosis. 2010;15(11):1354–1363. doi:10.1007/s10495-010-0476-x
  59. Lema Tomé CM, Tyson T, Rey NL, Grathwohl S, Britschgi M, Brundin P. Inflammation and α-synuclein’s prion-like behavior in Parkinson’s disease: Is there a link? Mol Neurobiol. 2013;47(2):561–574. doi:10.1007/s12035-012-8267-8
  60. Visanji NP, Brooks PL, Hazrati LN, Lang AE. The prion hypothesis in Parkinson’s disease: Braak to the future. Acta Neuropathol Commun. 2013;1(1):2. doi:10.1186/2051-5960-1-2
  61. Braak H, Rüb U, Gai WP, Del Tredici K. Idiopathic Parkinson’s disease: Possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm. 2003;110(5):517–536. doi:10.1007/s00702-002-0808-2
  62. Fasano A, Visanji NP, Liu LWC, Lang AE, Pfeiffer RF. Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol. 2015;14(6):625–639. doi:10.1016/S1474-4422(15)00007-1
  63. Kountouras J, Zavos C, Polyzos SA, et al. Helicobacter pylori infection and Parkinson’s disease: Apoptosis as an underlying common contributor. Eur J Neurol. 2012;19(6):e56. doi:10.1111/j.1468–1331.2012.03695.x
  64. Yang YJ, Sheu BS. Metabolic interaction of Helicobacter pylori infection and gut microbiota. Microorganisms. 2016;4(1):15. doi:10.3390/microorganisms4010015
  65. Dukowicz AC, Lacy BE, Levine GM. Small intestinal bacterial overgrowth: A comprehensive review. Gastroenterol Hepatol (N Y). 2007;3(2):112–122. PMID:21960820.
  66. Yin YN, Wang CL, Liu XW, et al. Gastric and duodenum microflora analysis after long-term Helicobacter pylori infection in Mongolian gerbils. Heliobacter. 2011;16(5):389–397. doi:10.1111/j.1523-5378.2011.00862.x
  67. Heimesaat MM, Fischer A, Plickert R, et al. Helicobacter pylori induced gastric immunopathology is associated with distinct microbiota changes in the large intestines of long-term infected Mongolian gerbils. PLoS One. 2014;9(6):e100362. doi:10.1371/journal.pone.0100362