Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.736
5-Year Impact Factor – 2.135
Index Copernicus  – 168.52
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

Ahead of print

doi: 10.17219/acem/156958

Publication type: original article

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Cite as:


Zhang T, Ji Y, Yu S, Wang N, Zhang Q, Guo K. Rspo1 inhibited apoptosis of glucocorticoid-induced osteoblasts via Wnt/β-catenin pathway in Legg–Calve–Perthes disease [published online as ahead of print on March 7, 2023]. Adv Clin Exp Med. 2023. doi:10.17219/acem/156958

Rspo1 inhibited apoptosis of glucocorticoid-induced osteoblasts via Wnt/β-catenin pathway in Legg–Calve–Perthes disease

Tianjiu Zhang1,A,B,C,D,E,F, Yifa Ji2,A,F, Song Yu1,A,B,C,D,E,F, Nankai Wang3,A,F, Qixiao Zhang3,B,C,D,F, Kaicheng Guo3,A,B,C,D,F

1 School of Clinical Medicine, Guizhou Medical University, Guiyang, China

2 Fengtai YouAnMen Hospital, Beijing, China

3 Department of Pediatric Orthopaedics, Affiliated Hospital of Zunyi Medical University, China

Abstract

Background. The pathogenesis of Legg–Calve–Perthes disease (LCPD), a juvenile form of avascular necrosis of the femoral head (ANFH), is not fully understood.
Objectives. The purpose of this work was to study the regulatory effect of R-spondin 1 (Rspo1) on osteoblastic apoptosis and evaluate the pre-clinical efficacy of recombinant human protein Rspo1 (rhRspo1) in treatment of LCPD.
Material and Methods. This is an experimental study. In vivo rabbit ANFH model was established. Human osteoblast cell line hFOB1.19 (hFOB) was used to overexpress and silence Rspo1 in vitro. Additionally, hFOB cells were induced with glucocorticoid (GC) and methylprednisolone (MP), and treated with rhRspo1. The expressions of Rspo1, β-catenin, Dkk-1, Bcl-2, and caspase-3, and the apoptosis rate of hFOB cells were examined.
Results. The expressions of Rspo1 and β-catenin were lower in ANFH rabbits. The expression of Rspo1 was decreased in GC-induced hFOB cells. Compared to the control group, after 1 μM MP induction for 72 h, the expressions of β-catenin and Bcl-2 were higher, while Dkk-1, caspase-3 and cleaved caspase-3 expressions were lower in Rspo1 overexpression and rhRspo1-treated groups. The apoptosis rate of GC-induced hFOB cells was decreased in Rspo1 overexpression and rhRspo1-treated groups compared to the control group.
Conclusion. R-spondin 1 inhibited GC-induced osteoblast apoptosis via Wnt/β-catenin pathway, which might be associated with the development of ANFH. Moreover, rhRspo1 had a potential pre-clinical therapeutic effect on LCPD.

Key words

apoptosis, Wnt/β-catenin pathway, osteoblast, R-spondin 1, Perthes disease

Graphical abstract


Graphical abstracts

References (29)

  1. Kamiya N, Kim HK. Elevation of proinflammatory cytokine HMGB1 in the synovial fluid of patients with Legg–Calvé–Perthes disease and correlation with IL-6. JBMR Plus. 2021;5(2):e10429. doi:10.1002/jbm4.10429
  2. Ren Y, Deng Z, Gokani V, et al. Anti-interleukin 6 therapy decreases hip synovitis and bone resorption and increases bone formation following ischemic osteonecrosis of the femoral head. J Bone Miner Res. 2021;36(2):357–368. doi:10.1002/jbmr.4191
  3. Johnson CP, Wang L, Tóth F, et al. Quantitative susceptibility mapping detects neovascularization of the epiphyseal cartilage after ischemic injury in a piglet model of Legg–Calvé–Perthes disease. J Magn Reson Imaging. 2019;50(1):106–113. doi:10.1002/jmri.26552
  4. Morris WZ, Liu RW, Chen E, Kim HK. Analysis of trabecular microstructure and vascular distribution of capital femoral epiphysis relevant to Legg–Calve–Perthes disease. J Orthop Res. 2019;37(8):1784–1789. doi:10.1002/jor.24311
  5. Guan XY, Han D. Role of hypercoagulability in steroid-induced femoral head necrosis in rabbits. J Orthop Sci. 2010;15(3):365–370. doi:10.1007/s00776-010-1452-6
  6. Mulati M, Kobayashi Y, Takahashi A, et al. The long noncoding RNA Crnde regulates osteoblast proliferation through the Wnt/β-catenin signaling pathway in mice. Bone. 2020;130:115076. doi:10.1016/j.bone.2019.115076
  7. Geng A, Wu T, Cai C, et al. A novel function of R-spondin1 in regulating estrogen receptor expression independent of Wnt/β-catenin signaling. eLife. 2020;9:e56434. doi:10.7554/eLife.56434
  8. Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012;149(6):1192–1205. doi:10.1016/j.cell.2012.05.012
  9. Chen M, Han H, Zhou S, Wen Y, Chen L. Morusin induces osteogenic differentiation of bone marrow mesenchymal stem cells by canonical Wnt/β-catenin pathway and prevents bone loss in an ovariectomized rat model. Stem Cell Res Ther. 2021;12(1):173. doi:10.1186/s13287-021-02239-3
  10. Park S, Cui J, Yu W, Wu L, Carmon KS, Liu QJ. Differential activities and mechanisms of the four R-spondins in potentiating Wnt/β-catenin signaling. J Biol Chem. 2018;293(25):9759–9769. doi:10.1074/jbc.RA118.002743
  11. Cai C, Yu QC, Jiang W, et al. R-spondin1 is a novel hormone mediator for mammary stem cell self-renewal. Genes Dev. 2014;28(20):2205–2218. doi:10.1101/gad.245142.114
  12. Lacour F, Vezin E, Bentzinger CF, et al. R-spondin1 controls muscle cell fusion through dual regulation of antagonistic Wnt signaling pathways. Cell Rep. 2017;18(10):2320–2330. doi:10.1016/j.celrep.2017.02.036
  13. Lähde M, Heino S, Högström J, et al. Expression of R-spondin 1 in Apc mice suppresses growth of intestinal adenomas by altering Wnt and transforming growth factor beta signaling. Gastroenterology. 2021;160(1):245–259. doi:10.1053/j.gastro.2020.09.011
  14. Shi GX, Zheng XF, Zhu C, et al. Evidence of the role of R-spondin 1 and its receptor Lgr4 in the transmission of mechanical stimuli to biological signals for bone formation. Int J Mol Sci. 2017;18(3):564. doi:10.3390/ijms18030564
  15. Dai Z, Jin Y, Zheng J, et al. MiR-217 promotes cell proliferation and osteogenic differentiation of BMSCs by targeting DKK1 in steroid-associated osteonecrosis. Biomed Pharmacother. 2019;109:1112–1119. doi:10.1016/j.biopha.2018.10.166
  16. Lu W, Kim KA, Liu J, et al. R-spondin1 synergizes with Wnt3A in inducing osteoblast differentiation and osteoprotegerin expression. FEBS Lett. 2008;582(5):643–650. doi:10.1016/j.febslet.2008.01.035
  17. Kim KA, Kakitani M, Zhao J, et al. Mitogenic influence of human R-spondin1 on the intestinal epithelium. Science. 2005;309(5738):1256–1259. doi:10.1126/science.1112521
  18. Chen X, Chen L, Tan J, et al. Rspo1–LGR4 axis in BMSCs protects bone against radiation-induced injury through the mTOR-dependent autophagy pathway. J Cell Physiol. 2021;236(6):4273–4289. doi:10.1002/jcp.30051
  19. Sugano N, Atsumi T, Ohzono K, Kubo T, Hotokebuchi T, Takaoka K. The 2001 revised criteria for diagnosis, classification, and staging of idiopathic osteonecrosis of the femoral head. J Orthop Sci. 2002;7(5):601–605. doi:10.1007/s007760200108
  20. Levin G, Koga BAA, Belchior GG, Carreira ACO, Sogayar MC. Production, purification and characterization of recombinant human R-spondin1 (RSPO1) protein stably expressed in human HEK293 cells. BMC Biotechnol. 2020;20(1):5. doi:10.1186/s12896-020-0600-0
  21. Levin G, Zuber SM, Squillaro AI, Sogayar MC, Grikscheit TC, Carreira ACO. R-spondin 1 (RSPO1) increases mouse intestinal organoid unit size and survival in vitro and improves tissue-engineered small intestine formation in vivo. Front Bioeng Biotechnol. 2020;8:476. doi:10.3389/fbioe.2020.00476
  22. Kerachian MA, Séguin C, Harvey EJ. Glucocorticoids in osteonecrosis of the femoral head: A new understanding of the mechanisms of action. J Steroid Biochem Mol Biol. 2009;114(3–5):121–128. doi:10.1016/j.jsbmb.2009.02.007
  23. Pavone V, Chisari E, Vescio A, Lizzio C, Sessa G, Testa G. Aetiology of Legg–Calvé–Perthes disease: A systematic review. World J Orthop. 2019;10(3):145–165. doi:10.5312/wjo.v10.i3.145
  24. Wang H, Brennan TA, Russell E, et al. R-spondin 1 promotes vibration-induced bone formation in mouse models of osteoporosis. J Mol Med. 2013;91(12):1421–1429. doi:10.1007/s00109-013-1068-3
  25. Sharma AR, Choi BS, Park JM, et al. Rspo 1 promotes osteoblast differentiation via Wnt signaling pathway. Indian J Biochem Biophys. 2013;50(1):19–25. PMID:23617070.
  26. Gong Y, Yuan S, Sun J, et al. R-spondin 2 induces odontogenic differentiation of dental pulp stem/progenitor cells via regulation of Wnt/β-catenin signaling. Front Physiol. 2020;11:918. doi:10.3389/fphys.2020.00918
  27. Sato AY, Cregor M, McAndrews K, et al. Glucocorticoid-induced bone fragility is prevented in female mice by blocking Pyk2/Anoikis signaling. Endocrinology. 2019;160(7):1659–1673. doi:10.1210/en.2019-00237
  28. Joshi PA, Waterhouse PD, Kannan N, et al. RANK signaling amplifies WNT-responsive mammary progenitors through R-spondin 1. Stem Cell Rep. 2015;5(1):31–44. doi:10.1016/j.stemcr.2015.05.012
  29. Luo J, Han J, Li Y, Liu Y. Downregulated SOX9 mediated by miR 206 promoted cell apoptosis in Legg–Calvé–Perthes disease. Oncol Lett. 2017;15(1):1319–1324. doi:10.3892/ol.2017.7373