Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.736
5-Year Impact Factor – 2.135
Index Copernicus  – 168.52
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

Ahead of print

doi: 10.17219/acem/156834

Publication type: original article

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Cite as:


Al-Saigh RJ, Aldorkee SY, Rahi FA, Al-Humadi AH, Kadhum SA, Al-Humadi HW. Assessment of the activity of posaconazole against azole-resistant Aspergillus species studied in an in vitro pharmacokinetic/pharmacodynamic model [published online as ahead of print on March 7, 2023]. Adv Clin Exp Med. 2023. doi:10.17219/acem/156834

Assessment of the activity of posaconazole against azole-resistant Aspergillus species studied in an in vitro pharmacokinetic/pharmacodynamic model

Rafal Jalil Al-Saigh1,A,B,C,D,F, Suad Yousif Aldorkee2,C,D,E,F, Firas Aziz Rahi3,B,C,D,E,F, Ahmed H. Al-Humadi4,B,C,D,E,F, Samah Ahmed Kadhum1,B,C,D,E,F, Hussam W. Al-Humadi5,A,B,C,D,E,F

1 Department of Clinical Laboratory Sciences, Faculty of Pharmacy, University of Babylon, Iraq

2 Department of Pharmacy, Al-Kitab University, Kirkuk, Iraq

3 Department of Pharmacy, Al-Nisour University College, Baghdad, Iraq

4 Medical School, National and Kapodistrian University of Athens, Athens, Greece

5 Pharmacy College, University of Babylon, Iraq

Abstract

Background. Invasive pulmonary aspergillosis (IPA) with azole resistance is associated with a high death rate. Posaconazole is used for IPA as preventive and salvage therapy, and exhibits considerable efficacy against the majority of Aspergillus strains.
Objectives. An in vitro pharmacokinetic-pharmacodynamic (PK-PD) model was used to examine the potential use of posaconazole in a primary therapy against azole-resistant IPA.
Material and Methods. In an in vitro PK-PD model simulating human pharmacokinetics (PKs), 4 clinical isolates of A. fumigatus with Clinical and Laboratory Standards Institute (CLSI) minimum inhibitory concentrations (MICs) ranging from 0.030 mg/L to 16 mg/L were examined. A bioassay was used to determine drug levels, and galactomannan production was used to evaluate fungal growth. The CLSI/European Committee on Antimicrobial Susceptibility Testing (EUCAST) 48-hour values, gradient concentration strip methodologies (MTS) 24-hour values, in vitro PK-PD relationships, and the Monte Carlo method were used to estimate the simulation of the human dosing regimens of oral 400 mg twice-daily and intravenous (i.v.) 300 mg onceand twice-daily using susceptibility breakpoints.
Results. With 1 or 2 daily dosage regimes, the area under the curve (AUC)/MIC associated with 50% of the maximum antifungal activity was 160 and 22.3, respectively. For CLSI/EUCAST, the susceptibility/intermediate/resistant breakpoints were 0.125/0.25–0.5/1 mg/L. For therapeutic drug monitoring (TDM), a trough/MIC ratio of 2.6 was calculated. Therapeutic drug monitoring is not necessary for isolates with MICs of 0.06 mg/L with oral 400 mg twice-daily regimens. However, it is important to obtain MICs of 0.125 mg/L and unavoidable when MICs of 0.25–0.5 mg/L are needed. For non-wild type isolates with MICs of 1–2 mg/L, only i.v. 300 mg twice-daily regimen was effective.
Conclusion. Oral therapy with posaconazole can be considered in A. fumigatus isolates with low MIC values without TDM, whereas i.v. therapy should be considered with higher MIC values and may be important in the primary treatment of azole-resistant IPA.

Key words

posaconazole, therapeutic drug monitoring, azole-resistant Aspergillus fumigatus, invasive pulmonary aspergillosis, in vitro pharmacokinetic-pharmacodynamic model

Graphical abstract


Graphical abstracts

References (38)

  1. Sherif R, Segal BH. Pulmonary aspergillosis: Clinical presentation, diagnostic tests, management and complications. Curr Opin Pulm Med. 2010;16(3):242–250. doi:10.1097/MCP.0b013e328337d6de
  2. Maertens J, Marchetti O, Herbrecht R, et al. European guidelines for antifungal management in leukemia and hematopoietic stem cell transplant recipients: Summary of the ECIL 3 – 2009 update. Bone Marrow Transplant. 2011;46(5):709–718. doi:10.1038/bmt.2010.175
  3. Magill SS, Chiller TM, Warnock DW. Evolving strategies in the management of aspergillosis. Expert Opin Pharmacother. 2008;9(2):193–209. doi:10.1517/14656566.9.2.193
  4. Meis JF, Chowdhary A, Rhodes JL, Fisher MC, Verweij PE. Clinical implications of globally emerging azole resistance in Aspergillus fumigatus. Phil Trans R Soc B. 2016;371(1709):20150460. doi:10.1098/rstb.2015.0460
  5. Snelders E, Karawajczyk A, Schaftenaar G, Verweij PE, Melchers WJG. Azole resistance profile of amino acid changes in Aspergillus fumigatus CYP51A based on protein homology modeling. Antimicrob Agents Chemother. 2010;54(6):2425–2430. doi:10.1128/AAC.01599-09
  6. Verweij PE, Howard SJ, Melchers WJG, Denning DW. Azole-resistance in Aspergillus: Proposed nomenclature and breakpoints. Drug Resist Updat. 2009;12(6):141–147. doi:10.1016/j.drup.2009.09.002
  7. Rodriguez-Tudela JL, Alcazar-Fuoli L, Mellado E, Alastruey-Izquierdo A, Monzon A, Cuenca-Estrella M. Epidemiological cutoffs and cross-resistance to azole drugs in Aspergillus fumigatus. Antimicrob Agents Chemother. 2008;52(7):2468–2472. doi:10.1128/AAC.00156-08
  8. Heinz WJ, Egerer G, Lellek H, Boehme A, Greiner J. Posaconazole after previous antifungal therapy with voriconazole for therapy of invasive Aspergillus disease: A retrospective analysis. Mycoses. 2013;56(3):304–310. doi:10.1111/myc.12023
  9. Maertens J, Cornely OA, Ullmann AJ, et al. Phase 1B study of the pharmacokinetics and safety of posaconazole intravenous solution in patients at risk for invasive fungal disease. Antimicrob Agents Chemother. 2014;58(7):3610–3617. doi:10.1128/AAC.02686-13
  10. Seyedmousavi S, Mouton JW, Melchers WJG, Brüggemann RJM, Verweij PE. The role of azoles in the management of azole-resistant aspergillosis: From the bench to the bedside. Drug Resist Updat. 2014;17(3):37–50. doi:10.1016/j.drup.2014.06.001
  11. Mavridou E, Brüggemann RJM, Melchers WJG, Mouton JW, Verweij PE. Efficacy of posaconazole against three clinical Aspergillus fumigatus isolates with mutations in the cyp51A gene. Antimicrob Agents Chemother. 2010;54(2):860–865. doi:10.1128/AAC.00931-09
  12. Howard SJ, Lestner JM, Sharp A, et al. Pharmacokinetics and pharmacodynamics of posaconazole for invasive pulmonary aspergillosis: Clinical implications for antifungal therapy. J Infect Dis. 2011;203(9):1324–1332. doi:10.1093/infdis/jir023
  13. Lepak AJ, Marchillo K, Vanhecker J, Andes DR. Posaconazole pharmacodynamic target determination against wild-type and Cyp51 mutant isolates of Aspergillus fumigatus in an in vivo model of invasive pulmonary aspergillosis. Antimicrob Agents Chemother. 2013;57(1):579–585. doi:10.1128/AAC.01279-12
  14. Ullmann AJ, Cornely OA, Burchardt A, et al. Pharmacokinetics, safety, and efficacy of posaconazole in patients with persistent febrile neutropenia or refractory invasive fungal infection. Antimicrob Agents Chemother. 2006;50(2):658–666. doi:10.1128/AAC.50.2.658-666.2006
  15. Manavathu EK. A comparative study of the in vitro susceptibilities of clinical and laboratory-selected resistant isolates of Aspergillus spp. to amphotericin B, itraconazole, voriconazole and posaconazole (SCH 56592). J Antimicrob Chemother. 2000;46(2):229–234. doi:10.1093/jac/46.2.229
  16. Jeans AR, Howard SJ, Al-Nakeeb Z, et al. Combination of voriconazole and anidulafungin for treatment of triazole-resistant Aspergillus fumigatus in an in vitro model of invasive pulmonary aspergillosis. Antimicrob Agents Chemother. 2012;56(10):5180–5185. doi:10.1128/AAC.01111-12
  17. Bellmann R, Smuszkiewicz P. Pharmacokinetics of antifungal drugs: Practical implications for optimized treatment of patients. Infection. 2017;45(6):737–779. doi:10.1007/s15010-017-1042-z
  18. Rex J, Ghannoum M, Alexander B, et al. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi: Approved standard. Second edition M38-A2. Clinical and Laboratory Standards Institute. 2008. https://clsi.org/media/1455/m38a2_sample.pdf. Accessed April 15, 2022.
  19. Subcommittee on Antifungal Susceptibility Testing of the ESCMID European Committee for Antimicrobial Susceptibility Testing. EUCAST technical note on the method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia-forming moulds. Clin Microbiol Infect. 2008;14(10):982–984. doi:10.1111/j.1469-0691.2008.02086.x
  20. Andes D, Safdar N, Marchillo K, Conklin R. Pharmacokinetic-pharmacodynamic comparison of amphotericin B (AMB) and two lipid-associated AMB preparations, liposomal AMB and AMB lipid complex, in murine candidiasis models. Antimicrob Agents Chemother. 2006;50(2):674–684. doi:10.1128/AAC.50.2.674-684.2006
  21. Hope WW, Cuenca-Estrella M, Lass-Florl C, Arendrup MC. EUCAST technical note on voriconazole and Aspergillus spp. Clin Microbiol Infect. 2013;19(6):E278–E280. doi:10.1111/1469-0691.12148
  22. Felton TW, Baxter C, Moore CB, Roberts SA, Hope WW, Denning DW. Efficacy and safety of posaconazole for chronic pulmonary aspergillosis. Clin Infect Dis. 2010;51(12):1383–1391. doi:10.1086/657306
  23. Bedin Denardi L, Hoch Dalla-Lana B, Pantella Kunz de Jesus F, et al. In vitro antifungal susceptibility of clinical and environmental isolates of Aspergillus fumigatus and Aspergillus flavus in Brazil. Braz J Infect Dis. 2018;22(1):30–36. doi:10.1016/j.bjid.2017.10.005
  24. Andes D, Marchillo K, Conklin R, et al. Pharmacodynamics of a new triazole, posaconazole, in a murine model of disseminated candidiasis. Antimicrob Agents Chemother. 2004;48(1):137–142. doi:10.1128/AAC.48.1.137-142.2004
  25. Courtney R, Sansone A, Smith W, et al. Posaconazole pharmacokinetics, safety, and tolerability in subjects with varying degrees of chronic renal disease. J Clin Pharmacol. 2005;45(2):185–192. doi:10.1177/0091270004271402
  26. Wiederhold NP, Pennick GJ, Dorsey SA, et al. A reference laboratory experience of clinically achievable voriconazole, posaconazole, and itraconazole concentrations within the bloodstream and cerebral spinal fluid. Antimicrob Agents Chemother. 2014;58(1):424–431. doi:10.1128/AAC.01558-13
  27. Lignell A, Löwdin E, Cars O, Chryssanthou E, Sjölin J. Posaconazole in human serum: A greater pharmacodynamic effect than predicted by the non-protein-bound serum concentration. Antimicrob Agents Chemother. 2011;55(7):3099–3104. doi:10.1128/AAC.01671-10
  28. Campoli P, Perlin DS, Kristof AS, White TC, Filler SG, Sheppard DC. Pharmacokinetics of posaconazole within epithelial cells and fungi: Insights into potential mechanisms of action during treatment and prophylaxis. J Infect Dis. 2013;208(10):1717–1728. doi:10.1093/infdis/jit358
  29. de Araujo BV, da Silva CF, Haas SE, Dalla Costa T. Free renal levels of voriconazole determined by microdialysis in healthy and Candida sp.-infected Wistar rats. Int J Antimicrob Agents. 2009;33(2):154–159. doi:10.1016/j.ijantimicag.2008.08.020
  30. Campoli P, Al Abdallah Q, Robitaille R, et al. Concentration of antifungal agents within host cell membranes: A new paradigm governing the efficacy of prophylaxis. Antimicrob Agents Chemother. 2011;55(12):5732–5739. doi:10.1128/AAC.00637-11
  31. Blennow O, Eliasson E, Pettersson T, et al. Posaconazole concentrations in human tissues after allogeneic stem cell transplantation. Antimicrob Agents Chemother. 2014;58(8):4941–4943. doi:10.1128/AAC.03252-14
  32. Manavathu EK. A comparative study of the post-antifungal effect (PAFE) of amphotericin B, triazoles and echinocandins on Aspergillus fumigatus and Candida albicans. J Antimicrob Chemother. 2004;53(2):386–389. doi:10.1093/jac/dkh066
  33. Chryssanthou E, Sjölin J. Post-antifungal effect of amphotericin B and voriconazole against Aspergillus fumigatus analysed by an automated method based on fungal CO2 production: Dependence on exposure time and drug concentration. J Antimicrob Chemother. 2004;54(5):940–943. doi:10.1093/jac/dkh459
  34. Duarte RF, López-Jiménez J, Cornely OA, et al. Phase 1b study of new posaconazole tablet for prevention of invasive fungal infections in high-risk patients with neutropenia. Antimicrob Agents Chemother. 2014;58(10):5758–5765. doi:10.1128/AAC.03050-14
  35. Seyedmousavi S, Mouton JW, Verweij PE, Brüggemann RJ. Therapeutic drug monitoring of voriconazole and posaconazole for invasive aspergillosis. Expert Rev Anti Infect Ther. 2013;11(9):931–941. doi:10.1586/14787210.2013.826989
  36. Guinea J. Updated EUCAST clinical breakpoints against Aspergillus: Implications for the clinical microbiology laboratory. J Fungi. 2020;6(4):343. doi:10.3390/jof6040343
  37. Kuipers S, Brüggemann RJM, de Sévaux RGL, et al. Failure of posaconazole therapy in a renal transplant patient with invasive aspergillosis due to Aspergillus fumigatus with attenuated susceptibility to posaconazole. Antimicrob Agents Chemother. 2011;55(7):3564–3566. doi:10.1128/AAC.01544-10
  38. Sabino R, Gonçalves P, Martins Melo A, et al. Trends on Aspergillus epidemiology: Perspectives from a National Reference Laboratory Surveillance Program. J Fungi. 2021;7(1):28. doi:10.3390/jof7010028