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Abstract

Background. High sepsis mortality rates pose a serious global health problem. Machine learning is a promis-
ing technique with the potential to improve mortality prediction for this disease in an accurate and timely
manner.

Objectives. This study aimed to develop a model capable of rapidly and accurately predicting sepsis
mortality using data that can be quickly obtained in an ambulance, with a focus on practical application
during ambulance transport.

Materials and methods. Data from the Medical Information Mart for Intensive Care-IV (MIMIC-1V) dataset
were used to compare the performance of 11 machine learning algorithms against the widely utilized quick
Sequential Organ Failure Assessment (qSOFA) score. A dynamic updating model was implemented. Perfor-
mance was evaluated using area under the curve (AUC) and precision-recall area under the curve (PRAUC)
scores, and feature importance was assessed with SHapley Additive exPlanations (SHAP) values.

Results. The light gradient boosting machine (LightGBM) model achieved the highest AUC (0.79) and PRAUC
(044) scores, outperforming the gSOFA score (AUC = 0.76, PRAUC = 0.40). The LightGBM also achieved
the highest PRAUC (0.44), followed by Optuna_LightGBM (0.43) and random forest (0.42). The dynamically
updated and tuned model further improved performance metrics (AUC = 0.79, PRAUC = 0.44) compared
to the base model (AUC = 0.76, PRAUC = 0.39). Feature importance analysis offers clinicians insights for
prioritizing patient assessments and interventions.

Conclusions. The LightGBM-based model demonstrated superior performance in predicting sepsis-related
mortality in an ambulance setting. This study underscores the practical applicability of machine learning
models, addressing the limitations of previous research, and highlights the importance of real-time updates
and hyperparameter tuning in optimizing model performance.
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Introduction

Sepsis is a critical global health issue, contributing sig-
nificantly to worldwide morbidity and mortality. Rapid
identification and intervention are crucial for improving
patient outcomes because early interventions have been
shown to increase survival rates. Developing accurate and ef-
ficient diagnostic tools for sepsis is, therefore, essential. Due
to the limitations of current medical technologies in diag-
nosing sepsis from a biomarker perspective, statistics-driven
machine learning techniques have gained increasing atten-
tion from medical diagnostic researchers. A growing volume
of data, including laboratory results, vital signs, genetic, mo-
lecular, and clinical data, as well as patient health histories,
is available in high resolution for high-risk individuals and
sepsis patients.!”> Gradient boosting trees (GBT) are among
the most widely used machine learning methods,® followed
by logistic regression,®” random forest (RF),® ridge regres-
sion,’ lasso regression (LR),!° naive Bayes (NB),!! K-nearest
neighbors (KNN),!* gated recurrent units,'>¢ and long
short-term memory.”” For hyperparameter tuning, 2 studies
used grid search methods,'®'® and 2 use Bayesian optimiza-
tion methods.?*! Amrollahi et al.>? and Zhang et al.?® com-
pared their algorithms to scoring systems used in clinical
practice, such as systemic inflammatory response syndrome
(SIRS), Sequential Organ Failure Assessment (SOFA), quick
SOFA (qSOFA), Modified Early Warning System (MEWS),
or targeted real-time Early Warning System (TREW Score).

However, the aforementioned papers have some short-
comings. Some studies have relatively small sample sizes,
which may affect the generalizability of the results, such
as the studies by Delahanty et al.?* and Hammoud et al.?®
In some studies, the proposed models were not adequately
validated. For example, the study by Culliton et al.?® did
not provide detailed information about the model’s perfor-
mance on an independent test set. Some studies used differ-
ent feature selection methods, making it difficult to fairly
compare the performance differences between methods,
such as the studies by Goh et al.? and Qin et al.?” In some
studies, multiple algorithms were compared without ex-
plaining why these particular algorithms were chosen,
such as in the studies by Horng et al.2® and Apostolova and
Velez.? When using machine learning methods, several
papers did not provide detailed information about hyper-
parameter tuning, such as the study by Amrollahi et al.??
Other publications compared their algorithms to existing
clinical scoring systems but did not elaborate on the limi-
tations of these scoring systems. For example, the study
by Delahanty et al.?* compared their algorithm to SIRS,
SOFA, qSOFA, MEWS, and TREW SScore, without discuss-
ing the shortcomings of these scoring systems in detail.
Additionally, racial, age and sex differences in the study
participants were not adequately considered in some re-
search, which may affect the predictive ability of the model.

Differences exist among various populations. For exam-
ple, in the study by Liu et al.,?° natural language processing
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methods were used to predict sepsis, but the demographic
characteristics of the study participants were not discussed
in detail. Some studies do not fully address the feasibil-
ity and practicality of the models in clinical practice. For
example, in the studies by Goh et al.? and Qin et al.,” al-
though their models demonstrate high accuracy in pre-
dicting sepsis, challenges related to data acquisition, data
processing and model deployment in actual clinical appli-
cations were not addressed. Additionally, some studies did
not thoroughly discuss the handling methods and potential
issues associated with different data types. For example,
in the study by Johnson et al.,?! various types of data (such
as laboratory, vital signs, genetic, molecular, and clinical
data) were mentioned, but detailed integration methods
and potential problems were not discussed. Furthermore,
some studies did not explicitly point out the advantages
and areas for improvement of machine learning methods
in sepsis prediction. For example, Hammoud et al.?® used
LR for prediction but did not discuss the advantages and
limitations of this method compared to others. The choice
of evaluation metrics may also affect the interpretation
of results. For example, Horng et al.?® used multiple eval-
uation metrics but did not discuss the relationships be-
tween these metrics and their applicability in assessing
model performance. Finally, some studies did not consider
the baseline risk characteristics of patients, which may
influence the accuracy and applicability of model predic-
tions. For example, Apostolova and Velez? did not discuss
the patient’s baseline risk characteristics and their impact
on model predictions.

In this study, we aimed to develop a model that can
quickly and accurately predict sepsis mortality using data
that can be rapidly obtained during ambulance transport.
Using the Medical Information Mart for Intensive Care
(MIMIC)-IV dataset, we compared the performance
of 11 machine learning algorithms and benchmarked our
results against the widely used qSOFA score. To enhance
the clinical applicability of our model, we carefully selected
features that are feasible to collect during ambulance trans-
port, addressed demographic differences among patients,
and considered baseline risk characteristics that could im-
pact predictive performance. Additionally, we emphasized
the importance of the precision-recall area under the curve
(PRAUC) metric for evaluating models on imbalanced da-
tasets, a common challenge in sepsis research. To further
improve the predictive capabilities of our clinical deci-
sion support system, we implemented a real-time updating
model, leveraging both online and incremental learning
approaches to dynamically incorporate new patient data.

Objectives

Our research contributes to the practical application
of machine learning methods for predicting sepsis-related
mortality.
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Materials and methods

The data used in this study were derived from
the MIMIC-IV database, a comprehensive de-identified
database that provides intensive care data from Beth Is-
rael Deaconess Medical Center (BIDMC; Boston, USA).3!
The database contains information on over 40,000 pa-
tients who were admitted to the intensive care units (ICUs)
at BIDMC between 2008 and 2019. It adopts a modular
approach to data organization, emphasizing data sources
and enabling the separation and combination of different
data types. The dataset includes ‘hosp’ modules and ‘icw’
modules. The ‘hosp’ module contains data from electronic
health records throughout the hospital. These measure-
ments are mainly recorded during hospitalization, though
some tables also include data from outpatient sources (e.g.,
outpatient laboratory tests). Patient demographics (pa-
tients), hospitalizations (admissions) and within-hospital
transfers (transfers) are recorded in the ‘hosp’ module.
The ‘ic’ module contains data from BIDMC’s clinical
information system, MetaVision (iMDSoft).3! Necessary
training data samples have been completed, with a record
ID of 49953233.

Ambulance measurable features

The features in the MIMIC-IV dataset (Table 1) can
be rapidly measured during ambulance transport. Early
assessment and intervention by ambulance teams are
crucial for improving patient outcomes and minimizing
complications. Real-time monitoring of vital signs and
laboratory indicators allows emergency medical providers
to assess the patient’s condition promptly and administer
appropriate treatment. This approach can improve patient
survival rates, shorten hospital stays and reduce medical
costs.3%33
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Methods
Features

The features in the dataset are mainly divided into 2 types:
numerical and categorical. Numerical features are repre-
sented by real numbers, such as age, heart rate (HR) and
blood pressure, and usually require scaling (normalization
or standardization). Categorical features consist of fixed cat-
egories, such as sex, ethnicity and marital status, and must
usually be encoded (e.g., one-hot encoding) to convert them
into numerical form. To distinguish between numerical and
categorical features in the dataset, we defined 2 separate lists
and applied different preprocessing steps to them. Missing
values in numerical features were filled with the median,
whereas missing values in categorical features were filled
with the mode. For outlier handling, HR values were limited
to the range of 30-200 bpm.

Although both feature and label values after one-hot
encoding were represented as 0/1, their meanings differed.
Features after one-hot encoding indicated the presence
of a particular category, whereas label values represented
the survival status of the patient. During model training,
the algorithm attempts to combine all features to predict
the target variable. If concerns arise about the potential
negative impact of one-hot encoding on predictions, al-
ternative encoding methods, such as ordinal encoding
or target encoding, may be considered. However, in most
cases, one-hot encoding is an effective method for encod-
ing categorical features.

Statistical analyses

When the dataset contains many categorical features,
each with multiple categories, one-hot encoding can result
in a significant increase in data dimensionality. In such
cases, dimensionality reduction methods (e.g., principal

Table 1. Features that can be measured quickly in an ambulance from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) dataset

Category | Feature |
heart rate (HR)
systolic blood pressure (SBP)
diastolic blood pressure (DBP)
Vital signs
respiratory rate (RR)
temperature (temp)
oxygen saturation (SpO,)
white blood cell count (WBC)
lactic acid
Laboratory ) )
indicators C-reactive protein (CRP)
creatinine
liver function indicators (e.g., ALT, AST)
Patient
demographics sex

An abnormal HR may indicate deterioration of the patient’s condition.

An increased RR may be a sign of complications such as hypoxemia.

Elevated lactic acid levels may be associated with septic shock.
Elevated CRP levels during the acute-phase response may indicate infection.
Elevated creatinine levels may be a sign of renal impairment.
Abnormal liver function indicators may indicate liver damage.
age Age may be an important factor in determining the patient’s health status.

Different sexes may have different risks for certain diseases, such as cardiovascular diseases

Meaning

Abnormal blood pressure may be a sign of septic shock.
?

Abnormal temperature may be a sign of infection.
Low oxygen saturation may indicate hypoxemia.

Abnormal WBC count may indicate infection.

or cancers.




Fig. 1. Performance
comparison of machine
learning algorithms for sepsis-
related mortality prediction.
This figure presents the area
under the curve (AUC) and
precision-recall area under
the curve (PRAUC) scores

for 11 machine learning
algorithms and the quick
Sequential Organ Failure
Assessment (qSOFA) score
evaluated in our study.

The LightGBM algorithm
achieved the highest AUC
score (0.79) and PRAUC score
(0.44), outperforming both
the gSOFA score (AUC = 0.76,
PRAUC = 0.40) and other
machine learning models.
These results highlight

the superior performance

of the LightGBM-based
model for predicting
sepsis-related mortality

in an ambulance setting
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component analysis) or feature selection methods can be
used to reduce the number of features.

In clinical applications, identifying minority samples
is often more valuable than identifying majority samples,
which is the focus of classifier construction. However, cur-
rent machine learning models for predicting sepsis mortal-
ity are mainly designed to maximize overall classification
accuracy, which limits their ability to effectively identify
minority samples. Therefore, we included both PRAUC
and area under the curve (AUC) as indicators to select
the optimal algorithm.

We used several algorithms to classify the dataset,
including XGBoost, light gradient boosting machine
(LightGBM) (https://github.com/microsoft/LightGBM),
RE, support vector machine, logistic regression, decision
tree, KNN, linear discriminant analysis, Gaussian NB,
support vector classification, and multilayer perceptron.

The purpose of this study was to analyze specific data-
sets. The chosen algorithm may not always be the one con-
sidered best for general use, but rather the most appropriate
one for the specific data at hand. In addition to the afore-
mentioned algorithms, we introduced an updating model
strategy to improve the predictive performance of our
clinical decision support system. We explored both online
learning and incremental learning approaches to dynami-
cally update the model as new patient data became avail-
able. This updating strategy enables the model to adapt
to changes in patient physiological parameters, providing
more accurate predictions for clinicians.

The updating model involves retraining the classifier
with new data, which can be achieved by either retraining
the model from scratch or updating the existing model
with the new data. For algorithms that support incremental
learning (e.g., XGBoost, LightGBM), we employed an in-
cremental learning approach. For algorithms that do not
support incremental learning, we used an online learn-
ing approach, which involves retraining the model from
scratch using the updated dataset.

In summary, our methodology involved preprocessing
the dataset, selecting the optimal algorithm based on PR-
AUC and AUC indicators, and implementing an updating
model strategy to ensure the model’s performance remains
accurate and relevant in the face of changing patient data.

The underlying hypothesis for our methodology is
the variance contribution hypothesis, which posits that
the variance of the data is mainly contributed by a few
principal components (i.e., most of the information can be
summarized by a smaller number of composite variables).
This hypothesis is tested by evaluating the cumulative vari-
ance contribution ratio.

Results

The LightGBM algorithm achieved the highest AUC
score of 0.79, followed closely by RF (AUC = 0.78) and
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XGBoost (AUC = 0.77), as shown in Fig. 1, which provides
a comprehensive comparison of the AUC and PRAUC
scores for all evaluated models. The qSOFA score had
an AUC of 0.76, demonstrating that the LightGBM-
based model outperformed traditional methods in terms
of discriminatory ability. In terms of PRAUC, LightGBM
also achieved the highest score (0.44), followed by Op-
tuna_LightGBM (0.43) and RF (0.42). The qSOFA score
had a PRAUC of 0.40, demonstrating the advantage of our
proposed model in detecting the positive class in the pres-
ence of class imbalance.

Despite involving hyperparameter tuning, the Optuna_
LightGBM model did not outperform the default Light-
GBM model in terms of AUC and PRAUC scores.

By calculating the SHAP values of the Light GBM model,
as shown in Fig. 2, we ranked the features by importance
in descending order: maximum blood urea nitrogen, pa-
tient age at admission, maximum HR, minimum mean
arterial pressure, minimum blood glucose, patient eth-
nicity, maximum blood sodium concentration, mini-
mum respiratory rate, maximum respiratory rate, maxi-
mum blood creatinine, minimum blood urea nitrogen,
minimum HR, minimum blood sodium concentration,
minimum blood creatinine, minimum white blood cell
count, minimum hematocrit, maximum blood glucose,
maximum mean arterial pressure, maximum white blood
cell count, and maximum hematocrit. These features are
ranked according to their contribution to the model’s
predictions.

In this study, we implemented a real-time updating
model to improve the predictive performance of our clin-
ical decision support system. We explored both online
learning and incremental learning approaches to dynami-
cally update the model as new patient data became avail-
able. The incremental GBT, which was compatible with
our current LightGBM model, was used as the incremental
learning method.

To evaluate the performance of our dynamically updated
model, we used sliding window validation and other time
series validation methods. The results show that the dy-
namically updated model better adapts to changes in pa-
tient physiological parameters, providing more accurate
predictions for clinicians.

We also addressed the issue of overfitting by incorporat-
ing regularization, reducing model complexity, employing
early stopping, and utilizing additional data when available.
These techniques help prevent overfitting while ensuring
optimal model performance with the available data.

Additionally, we conducted hyperparameter tuning us-
ing grid search, focusing on key parameters such as “num_
leaves”, “feature_fraction”, “bagging_fraction”, “bagging_
freq”, and “learning_rate”. We then compared the tuned
model to the base model in terms of AUC and PRAUC.

The results showed that the tuned model with dynamic
updating outperformed the base model, achieving an AUC
of 0.79 (compared to 0.76 for the base model) and a PRAUC
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of 0.44 (compared to 0.39 for the base model), as illustrated
in Fig. 3, which highlights the advantages of real-time up-
dates and hyperparameter tuning.

Discussion

Addressing the challenges posed by imbalanced classifi-
cation problems, this study applies machine learning algo-
rithms to improve sepsis mortality prediction. Our results
show that the LightGBM algorithm outperformed other
classifiers in this context, largely due to its ability to handle
imbalanced datasets and its efficient computational proper-
ties. Furthermore, we found that the PRAUC was a more
appropriate evaluation metric for imbalanced classifica-
tion problems because it better reflected the performance
changes of the classifier at different thresholds and provided
insight into the trade-off between precision and recall.

P.Zhou, J. Duan, J. Li. Improving sepsis mortality prediction

Fig. 2. Feature importance
ranking for the LightGBM

model using SHAP values. This
figure presents a horizontal bar
chart illustrating the relative
importance of the top

20 features, ranked in descending
order, for predicting sepsis-
related mortality using

the LightGBM model. The x-axis
represents the SHAP (SHapley
Additive exPlanations) values,
reflecting each feature’s
contribution to the model’s
prediction. The y-axis lists

the features, with the most
important feature (maximum
blood urea nitrogen) at the top
and the least important

feature (maximum hematocrit)
at the bottom. This ranking helps
healthcare professionals prioritize
physiological indicators and
focus on critical factors when
assessing a patient’s condition
during ambulance transport

The Optuna_LightGBM did not outperform the default
LightGBM model in terms of AUC and PRAUC scores.
This may be because the default hyperparameters of Light-
GBM were already well optimized for this specific problem,
and additional tuning did not result in a significant im-
provement. Moreover, hyperparameter tuning may intro-
duce the risk of overfitting, which could potentially limit
the generalizability of the model.

The superior performance of Light GBM over other clas-
sifiers can be attributed to its ability to handle large-scale
data, high-dimensional features and class imbalance more
effectively. As a gradient boosting framework, Light GBM
is known for its efficiency and scalability, making it well-
suited for the complex nature of sepsis-related mortality
prediction.

These results are of great value for doctors using
the LightGBM model to predict sepsis mortality in pa-
tients transported using ambulances. First, doctors can
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Fig. 3. Performance comparison of the dynamically updated model and the base model. The dynamically updated model achieves higher area
under the curve (AUC) (0.79) and precision-recall area under the curve (PRAUC) (0.44) scores compared to the base model (AUC = 0.76, PRAUC = 0.39),
demonstrating the advantages of real-time updates and hyperparameter tuning in improving the model’s predictive performance for sepsis-related
mortality in an ambulance setting



1400

understand which physiological indicators play a more
significant role in mortality prediction, based on feature
rankings, allowing them to prioritize attention to these in-
dicators. Second, the feature rankings help doctors quickly
assess the patient’s condition in the ambulance and take
appropriate intervention measures based on the model’s
predictions.

The LightGBM demonstrates superior performance
in our experiment for several reasons:

Data structure: As a gradient boosted trees-based al-
gorithm, LightGBM employs an optimized feature his-
togram method that handles large-scale datasets and
high-dimensional features more efficiently. Additionally,
it incorporates gradient-based one-side sampling and ex-
clusive feature bundling techniques to reduce memory
consumption and computational complexity, enabling
faster convergence while maintaining high accuracy.

Model structure: LightGBM uses a leaf-wise growth strat-
egy that reduces the risk of overfitting compared to traditional
level-wise growth strategies. This approach focuses on fitting
the training data by splitting the leaf with the highest gain.

Regularization strategy: LightGBM implements effec-
tive regularization strategies, including L1 and L2 regular-
ization, along with parameters for maximum tree depth,
minimum leaf node weight and minimum split gain. These
strategies control model complexity, prevent overfitting
and enhance the classifier’s generalization ability.

Ability to handle class imbalance: LightGBM includes
built-in mechanisms for addressing class imbalance, such
as automatic class weight adjustment using the class_
weight parameter and adjusting the weights of positive
and negative samples via the scale_pos_weight parameter.
These mechanisms help the training process focus on im-
proving the prediction performance of minority classes,
resulting in better classification results.

The PRAUC is considered a more appropriate evalua-
tion metric for imbalanced classification problems because
it emphasizes the classifier’s performance in predicting
negative samples, such as deaths in sepsis mortality pre-
diction. Compared to other metrics, such as AUC and F1
scores, PRAUC provides a more accurate and reliable as-
sessment of the classifier’s performance in imbalanced
datasets. This is due to the following reasons:

Unaffected by the number of negative samples: PRAUC
is not influenced by the number of negative samples, unlike
the AUC of the receiver operating characteristic (ROC)
curve, which considers both the true positive rate (re-
call) and false positive rate. The latter is heavily affected
by the number of negative samples.

Focus on small probability events: PRAUC is more suited
for cases where the main concern is correctly detecting
positive samples, especially those with a small prob-
ability. Precision and recall rates provide a better reflec-
tion of model performance in these situations compared
to other evaluation metrics.
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Trade-off between precision and recall: PRAUC empha-
sizes both precision and recall, allowing for the identi-
fication of an optimal balance point to achieve the best
trade-off between these 2 metrics.

In our study, we also explored the performance of up-
dated models by incorporating additional features, fine-
tuning hyperparameters and employing ensemble tech-
niques. These updated models aim to further enhance
prediction accuracy and generalization ability for sepsis
mortality.

Additional features: By integrating relevant clinical data,
such as laboratory test results, vital signs and comorbidi-
ties, our updated models can capture a more comprehen-
sive view of the patient’s condition, which may contribute
to a better understanding of the underlying risk factors
associated with sepsis mortality.

Hyperparameter tuning: We performed a systematic
search for optimal hyperparameters using techniques such
as grid search and random search. These methods help our
updated models achieve better performance by optimizing
their configurations.

Ensemble techniques: By combining predictions from
multiple base models, we employed ensemble techniques
such as bagging, boosting and stacking. These techniques
aim to reduce overfitting, increase model stability and
improve overall performance by leveraging the strengths
of different base models.

Limitations

The updated models showed improved performance
compared to the initial models, indicating that incorpo-
rating additional features, fine-tuning hyperparameters
and using ensemble techniques can enhance the prediction
accuracy of sepsis mortality. However, further research
is needed to explore other potential factors influencing
sepsis mortality predictions and to investigate novel ma-
chine learning algorithms and techniques for continuously
improving model performance.

Conclusions

This study addressed the limitations and gaps in the ex-
isting literature on predicting sepsis-related mortality us-
ing machine learning models, focusing on their practical
application in an ambulance setting. We demonstrated that
the Light GBM-based model outperformed other classifiers
and the gSOFA score. By implementing a dynamic updat-
ing model and fine-tuning hyperparameters, we further
enhanced the model’s performance, resulting in more ac-
curate and reliable predictions for clinicians.

Our findings significantly contribute to the practical
application of machine learning models in the medical
field, particularly for predicting sepsis-related mortality
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in an ambulance setting. The feature importance analysis
provides valuable insights that help doctors prioritize pa-
tient assessment and interventions, ultimately improving
patient outcomes. This research demonstrates the potential
of real-time updating and hyperparameter tuning to further
optimize the performance and clinical utility of sepsis-re-
lated mortality prediction models in real-world ambulance
settings.

Supplementary data

The Supplementary materials are available at https://

doi.org/10.5281/zenodo.14644757. The package includes
the following files:

Supplementary Table 1. Training data for ASPII.
Supplementary Table 2. Training data for SOFA.
Supplementary Table 3. Testing data for sepsis.
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