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Abstract
Background. High sepsis mortality rates pose a serious global health problem. Machine learning is a promis-
ing technique with the potential to improve mortality prediction for this disease in an accurate and timely 
manner.

Objectives. This study aimed to develop a model capable of rapidly and accurately predicting sepsis 
mortality using data that can be quickly obtained in an ambulance, with a focus on practical application 
during ambulance transport.

Materials and methods. Data from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) dataset 
were used to compare the performance of 11 machine learning algorithms against the widely utilized quick 
Sequential Organ Failure Assessment (qSOFA) score. A dynamic updating model was implemented. Perfor-
mance was evaluated using area under the curve (AUC) and precision-recall area under the curve (PRAUC) 
scores, and feature importance was assessed with SHapley Additive exPlanations (SHAP) values.

Results. The light gradient boosting machine (LightGBM) model achieved the highest AUC (0.79) and PRAUC 
(0.44) scores, outperforming the qSOFA score (AUC = 0.76, PRAUC = 0.40). The LightGBM also achieved 
the highest PRAUC (0.44), followed by Optuna_LightGBM (0.43) and random forest (0.42). The dynamically 
updated and tuned model further improved performance metrics (AUC = 0.79, PRAUC = 0.44) compared 
to the base model (AUC = 0.76, PRAUC = 0.39). Feature importance analysis offers clinicians insights for 
prioritizing patient assessments and interventions.

Conclusions. The LightGBM-based model demonstrated superior performance in predicting sepsis-related 
mortality in an ambulance setting. This study underscores the practical applicability of machine learning 
models, addressing the limitations of previous research, and highlights the importance of real-time updates 
and hyperparameter tuning in optimizing model performance.
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Introduction

Sepsis is a critical global health issue, contributing sig-
nificantly to worldwide morbidity and mortality. Rapid 
identification and intervention are crucial for improving 
patient outcomes because early interventions have been 
shown to increase survival rates. Developing accurate and ef-
ficient diagnostic tools for sepsis is, therefore, essential. Due 
to the limitations of current medical technologies in diag-
nosing sepsis from a biomarker perspective, statistics-driven 
machine learning techniques have gained increasing atten-
tion from medical diagnostic researchers. A growing volume 
of data, including laboratory results, vital signs, genetic, mo-
lecular, and clinical data, as well as patient health histories, 
is available in high resolution for high-risk individuals and 
sepsis patients.1–5 Gradient boosting trees (GBT) are among 
the most widely used machine learning methods,6 followed 
by logistic regression,6,7 random forest (RF),8 ridge regres-
sion,9 lasso regression (LR),10 naïve Bayes (NB),11 K-nearest 
neighbors (KNN),12–14 gated recurrent units,15,16 and long 
short-term memory.17 For hyperparameter tuning, 2 studies 
used grid search methods,18,19 and 2 use Bayesian optimiza-
tion methods.20,21 Amrollahi et al.22 and Zhang et al.23 com-
pared their algorithms to scoring systems used in clinical 
practice, such as systemic inflammatory response syndrome 
(SIRS), Sequential Organ Failure Assessment (SOFA), quick 
SOFA (qSOFA), Modified Early Warning System (MEWS), 
or targeted real-time Early Warning System (TREWScore).

However, the aforementioned papers have some short-
comings. Some studies have relatively small sample sizes, 
which may affect the generalizability of the results, such 
as the studies by Delahanty et al.24 and Hammoud et al.25 
In some studies, the proposed models were not adequately 
validated. For example, the study by Culliton et al.26 did 
not provide detailed information about the model’s perfor-
mance on an independent test set. Some studies used differ-
ent feature selection methods, making it difficult to fairly 
compare the performance differences between methods, 
such as the studies by Goh et al.3 and Qin et al.27 In some 
studies, multiple algorithms were compared without ex-
plaining why these particular algorithms were chosen, 
such as in the studies by Horng et al.28 and Apostolova and 
Velez.29 When using machine learning methods, several 
papers did not provide detailed information about hyper-
parameter tuning, such as the study by Amrollahi et al.22 
Other publications compared their algorithms to existing 
clinical scoring systems but did not elaborate on the limi-
tations of these scoring systems. For example, the study 
by Delahanty et al.24 compared their algorithm to SIRS, 
SOFA, qSOFA, MEWS, and TREWScore, without discuss-
ing the shortcomings of these scoring systems in detail. 
Additionally, racial, age and sex differences in the study 
participants were not adequately considered in some re-
search, which may affect the predictive ability of the model.

Differences exist among various populations. For exam-
ple, in the study by Liu et al.,30 natural language processing 

methods were used to predict sepsis, but the demographic 
characteristics of the study participants were not discussed 
in detail. Some studies do not fully address the feasibil-
ity and practicality of the models in clinical practice. For 
example, in the studies by Goh et al.3 and Qin et al.,27 al-
though their models demonstrate high accuracy in pre-
dicting sepsis, challenges related to data acquisition, data 
processing and model deployment in actual clinical appli-
cations were not addressed. Additionally, some studies did 
not thoroughly discuss the handling methods and potential 
issues associated with different data types. For example, 
in the study by Johnson et al.,31 various types of data (such 
as laboratory, vital signs, genetic, molecular, and clinical 
data) were mentioned, but detailed integration methods 
and potential problems were not discussed. Furthermore, 
some studies did not explicitly point out the advantages 
and areas for improvement of machine learning methods 
in sepsis prediction. For example, Hammoud et al.25 used 
LR for prediction but did not discuss the advantages and 
limitations of this method compared to others. The choice 
of evaluation metrics may also affect the interpretation 
of results. For example, Horng et al.28 used multiple eval-
uation metrics but did not discuss the relationships be-
tween these metrics and their applicability in assessing 
model performance. Finally, some studies did not consider 
the baseline risk characteristics of patients, which may 
influence the accuracy and applicability of model predic-
tions. For example, Apostolova and Velez29 did not discuss 
the patient’s baseline risk characteristics and their impact 
on model predictions.

In  this study, we aimed to develop a model that can 
quickly and accurately predict sepsis mortality using data 
that can be rapidly obtained during ambulance transport. 
Using the Medical Information Mart for Intensive Care 
(MIMIC)-IV dataset, we  compared the  performance 
of 11 machine learning algorithms and benchmarked our 
results against the widely used qSOFA score. To enhance 
the clinical applicability of our model, we carefully selected 
features that are feasible to collect during ambulance trans-
port, addressed demographic differences among patients, 
and considered baseline risk characteristics that could im-
pact predictive performance. Additionally, we emphasized 
the importance of the precision-recall area under the curve 
(PRAUC) metric for evaluating models on imbalanced da-
tasets, a common challenge in sepsis research. To further 
improve the predictive capabilities of our clinical deci-
sion support system, we implemented a real-time updating 
model, leveraging both online and incremental learning 
approaches to dynamically incorporate new patient data.

Objectives

Our research contributes to the practical application 
of machine learning methods for predicting sepsis-related 
mortality.
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Materials and methods

The  data used in  this study were derived from 
the MIMIC-IV database, a comprehensive de-identified 
database that provides intensive care data from Beth Is-
rael Deaconess Medical Center (BIDMC; Boston, USA).31 
The database contains information on over 40,000 pa-
tients who were admitted to the intensive care units (ICUs) 
at BIDMC between 2008 and 2019. It adopts a modular 
approach to data organization, emphasizing data sources 
and enabling the separation and combination of different 
data types. The dataset includes ‘hosp’ modules and ‘icu’ 
modules. The ‘hosp’ module contains data from electronic 
health records throughout the hospital. These measure-
ments are mainly recorded during hospitalization, though 
some tables also include data from outpatient sources (e.g., 
outpatient laboratory tests). Patient demographics (pa-
tients), hospitalizations (admissions) and within-hospital 
transfers (transfers) are recorded in the  ‘hosp’ module. 
The  ‘icu’ module contains data from BIDMC’s clinical 
information system, MetaVision (iMDSoft).31 Necessary 
training data samples have been completed, with a record 
ID of 49953233.

Ambulance measurable features

The features in the MIMIC-IV dataset (Table 1) can 
be rapidly measured during ambulance transport. Early 
assessment and intervention by ambulance teams are 
crucial for improving patient outcomes and minimizing 
complications. Real-time monitoring of vital signs and 
laboratory indicators allows emergency medical providers 
to assess the patient’s condition promptly and administer 
appropriate treatment. This approach can improve patient 
survival rates, shorten hospital stays and reduce medical 
costs.32,33

Methods

Features

The features in the dataset are mainly divided into 2 types: 
numerical and categorical. Numerical features are repre-
sented by real numbers, such as age, heart rate (HR) and 
blood pressure, and usually require scaling (normalization 
or standardization). Categorical features consist of fixed cat-
egories, such as sex, ethnicity and marital status, and must 
usually be encoded (e.g., one-hot encoding) to convert them 
into numerical form. To distinguish between numerical and 
categorical features in the dataset, we defined 2 separate lists 
and applied different preprocessing steps to them. Missing 
values in numerical features were filled with the median, 
whereas missing values in categorical features were filled 
with the mode. For outlier handling, HR values were limited 
to the range of 30–200 bpm.

Although both feature and label values after one-hot 
encoding were represented as 0/1, their meanings differed. 
Features after one-hot encoding indicated the presence 
of a particular category, whereas label values represented 
the survival status of the patient. During model training, 
the algorithm attempts to combine all features to predict 
the target variable. If concerns arise about the potential 
negative impact of one-hot encoding on predictions, al-
ternative encoding methods, such as ordinal encoding 
or target encoding, may be considered. However, in most 
cases, one-hot encoding is an effective method for encod-
ing categorical features.

Statistical analyses

When the dataset contains many categorical features, 
each with multiple categories, one-hot encoding can result 
in a significant increase in data dimensionality. In such 
cases, dimensionality reduction methods (e.g., principal 

Table 1. Features that can be measured quickly in an ambulance from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) dataset

Category Feature Meaning

Vital signs

heart rate (HR) An abnormal HR may indicate deterioration of the patient’s condition.

systolic blood pressure (SBP) Abnormal blood pressure may be a sign of septic shock.

diastolic blood pressure (DBP) ?

respiratory rate (RR) An increased RR may be a sign of complications such as hypoxemia.

temperature (temp) Abnormal temperature may be a sign of infection.

oxygen saturation (SpO2) Low oxygen saturation may indicate hypoxemia.

Laboratory 
indicators

white blood cell count (WBC) Abnormal WBC count may indicate infection.

lactic acid Elevated lactic acid levels may be associated with septic shock.

C-reactive protein (CRP) Elevated CRP levels during the acute-phase response may indicate infection.

creatinine Elevated creatinine levels may be a sign of renal impairment.

liver function indicators (e.g., ALT, AST) Abnormal liver function indicators may indicate liver damage.

Patient 
demographics

age Age may be an important factor in determining the patient’s health status.

sex
Different sexes may have different risks for certain diseases, such as cardiovascular diseases 

or cancers.



Fig. 1. Performance 
comparison of machine 
learning algorithms for sepsis-
related mortality prediction. 
This figure presents the area 
under the curve (AUC) and 
precision-recall area under 
the curve (PRAUC) scores 
for 11 machine learning 
algorithms and the quick 
Sequential Organ Failure 
Assessment (qSOFA)  score 
evaluated in our study. 
The LightGBM algorithm 
achieved the highest AUC 
score (0.79) and PRAUC score 
(0.44), outperforming both 
the qSOFA score (AUC = 0.76, 
PRAUC = 0.40) and other 
machine learning models. 
These results highlight 
the superior performance 
of the LightGBM-based 
model for predicting 
sepsis-related mortality 
in an ambulance setting
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component analysis) or feature selection methods can be 
used to reduce the number of features.

In clinical applications, identifying minority samples 
is often more valuable than identifying majority samples, 
which is the focus of classifier construction. However, cur-
rent machine learning models for predicting sepsis mortal-
ity are mainly designed to maximize overall classification 
accuracy, which limits their ability to effectively identify 
minority samples. Therefore, we included both PRAUC 
and area under the curve (AUC) as indicators to select 
the optimal algorithm.

We  used several algorithms to  classify the  dataset, 
including XGBoost, light gradient boosting machine 
(LightGBM) (https://github.com/microsoft/LightGBM), 
RF, support vector machine, logistic regression, decision 
tree, KNN, linear discriminant analysis, Gaussian NB, 
support vector classification, and multilayer perceptron.

The purpose of this study was to analyze specific data
sets. The chosen algorithm may not always be the one con-
sidered best for general use, but rather the most appropriate 
one for the specific data at hand. In addition to the afore-
mentioned algorithms, we introduced an updating model 
strategy to  improve the predictive performance of our 
clinical decision support system. We explored both online 
learning and incremental learning approaches to dynami-
cally update the model as new patient data became avail-
able. This updating strategy enables the model to adapt 
to changes in patient physiological parameters, providing 
more accurate predictions for clinicians.

The updating model involves retraining the classifier 
with new data, which can be achieved by either retraining 
the model from scratch or updating the existing model 
with the new data. For algorithms that support incremental 
learning (e.g., XGBoost, LightGBM), we employed an in-
cremental learning approach. For algorithms that do not 
support incremental learning, we used an online learn-
ing approach, which involves retraining the model from 
scratch using the updated dataset.

In summary, our methodology involved preprocessing 
the dataset, selecting the optimal algorithm based on PR-
AUC and AUC indicators, and implementing an updating 
model strategy to ensure the model’s performance remains 
accurate and relevant in the face of changing patient data.

The  underlying hypothesis for our methodology is 
the variance contribution hypothesis, which posits that 
the variance of the data is mainly contributed by a few 
principal components (i.e., most of the information can be 
summarized by a smaller number of composite variables). 
This hypothesis is tested by evaluating the cumulative vari-
ance contribution ratio.

Results

The LightGBM algorithm achieved the highest AUC 
score of 0.79, followed closely by RF (AUC = 0.78) and 

XGBoost (AUC = 0.77), as shown in Fig. 1, which provides 
a comprehensive comparison of  the AUC and PRAUC 
scores for all evaluated models. The qSOFA score had 
an  AUC of  0.76, demonstrating that the  LightGBM-
based model outperformed traditional methods in terms 
of discriminatory ability. In terms of PRAUC, LightGBM 
also achieved the highest score (0.44), followed by Op-
tuna_LightGBM (0.43) and RF (0.42). The qSOFA score 
had a PRAUC of 0.40, demonstrating the advantage of our 
proposed model in detecting the positive class in the pres-
ence of class imbalance.

Despite involving hyperparameter tuning, the Optuna_
LightGBM model did not outperform the default Light-
GBM model in terms of AUC and PRAUC scores.

By calculating the SHAP values of the LightGBM model, 
as shown in Fig. 2, we ranked the features by importance 
in descending order: maximum blood urea nitrogen, pa-
tient age at admission, maximum HR, minimum mean 
arterial pressure, minimum blood glucose, patient eth-
nicity, maximum blood sodium concentration, mini-
mum respiratory rate, maximum respiratory rate, maxi-
mum blood creatinine, minimum blood urea nitrogen, 
minimum HR, minimum blood sodium concentration, 
minimum blood creatinine, minimum white blood cell 
count, minimum hematocrit, maximum blood glucose, 
maximum mean arterial pressure, maximum white blood 
cell count, and maximum hematocrit. These features are 
ranked according to their contribution to the model’s 
predictions.

In  this study, we  implemented a  real-time updating 
model to improve the predictive performance of our clin-
ical decision support system. We explored both online 
learning and incremental learning approaches to dynami-
cally update the model as new patient data became avail-
able. The incremental GBT, which was compatible with 
our current LightGBM model, was used as the incremental 
learning method.

To evaluate the performance of our dynamically updated 
model, we used sliding window validation and other time 
series validation methods. The results show that the dy-
namically updated model better adapts to changes in pa-
tient physiological parameters, providing more accurate 
predictions for clinicians.

We also addressed the issue of overfitting by incorporat-
ing regularization, reducing model complexity, employing 
early stopping, and utilizing additional data when available. 
These techniques help prevent overfitting while ensuring 
optimal model performance with the available data.

Additionally, we conducted hyperparameter tuning us-
ing grid search, focusing on key parameters such as “num_
leaves”, “feature_fraction”, “bagging_fraction”, “bagging_
freq”, and “learning_rate”. We then compared the tuned 
model to the base model in terms of AUC and PRAUC.

The results showed that the tuned model with dynamic 
updating outperformed the base model, achieving an AUC 
of 0.79 (compared to 0.76 for the base model) and a PRAUC 

https://github.com/microsoft/LightGBM
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of 0.44 (compared to 0.39 for the base model), as illustrated 
in Fig. 3, which highlights the advantages of real-time up-
dates and hyperparameter tuning.

Discussion

Addressing the challenges posed by imbalanced classifi-
cation problems, this study applies machine learning algo-
rithms to improve sepsis mortality prediction. Our results 
show that the LightGBM algorithm outperformed other 
classifiers in this context, largely due to its ability to handle 
imbalanced datasets and its efficient computational proper-
ties. Furthermore, we found that the PRAUC was a more 
appropriate evaluation metric for imbalanced classifica-
tion problems because it better reflected the performance 
changes of the classifier at different thresholds and provided 
insight into the trade-off between precision and recall.

The Optuna_LightGBM did not outperform the default 
LightGBM model in terms of AUC and PRAUC scores. 
This may be because the default hyperparameters of Light-
GBM were already well optimized for this specific problem, 
and additional tuning did not result in a significant im-
provement. Moreover, hyperparameter tuning may intro-
duce the risk of overfitting, which could potentially limit 
the generalizability of the model.

The superior performance of LightGBM over other clas-
sifiers can be attributed to its ability to handle large-scale 
data, high-dimensional features and class imbalance more 
effectively. As a gradient boosting framework, LightGBM 
is known for its efficiency and scalability, making it well-
suited for the complex nature of sepsis-related mortality 
prediction.

These results are of  great value for doctors using 
the LightGBM model to predict sepsis mortality in pa-
tients transported using ambulances. First, doctors can 

Fig. 2. Feature importance 
ranking for the LightGBM 
model using SHAP values. This 
figure presents a horizontal bar 
chart illustrating the relative 
importance of the top 
20 features, ranked in descending 
order, for predicting sepsis-
related mortality using 
the LightGBM model. The x-axis 
represents the SHAP (SHapley 
Additive exPlanations) values, 
reflecting each feature’s 
contribution to the model’s 
prediction. The y-axis lists 
the features, with the most 
important feature (maximum 
blood urea nitrogen) at the top 
and the least important 
feature (maximum hematocrit) 
at the bottom. This ranking helps 
healthcare professionals prioritize 
physiological indicators and 
focus on critical factors when 
assessing a patient’s condition 
during ambulance transport
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Fig. 3. Performance comparison of the dynamically updated model and the base model. The dynamically updated model achieves higher area 
under the curve (AUC) (0.79) and precision-recall area under the curve (PRAUC) (0.44) scores compared to the base model (AUC = 0.76, PRAUC = 0.39), 
demonstrating the advantages of real-time updates and hyperparameter tuning in improving the model’s predictive performance for sepsis-related 
mortality in an ambulance setting
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understand which physiological indicators play a more 
significant role in mortality prediction, based on feature 
rankings, allowing them to prioritize attention to these in-
dicators. Second, the feature rankings help doctors quickly 
assess the patient’s condition in the ambulance and take 
appropriate intervention measures based on the model’s 
predictions.

The  LightGBM demonstrates superior performance 
in our experiment for several reasons:

Data structure: As a gradient boosted trees-based al-
gorithm, LightGBM employs an optimized feature his-
togram method that handles large-scale datasets and 
high-dimensional features more efficiently. Additionally, 
it incorporates gradient-based one-side sampling and ex-
clusive feature bundling techniques to reduce memory 
consumption and computational complexity, enabling 
faster convergence while maintaining high accuracy.

Model structure: LightGBM uses a leaf-wise growth strat-
egy that reduces the risk of overfitting compared to traditional 
level-wise growth strategies. This approach focuses on fitting 
the training data by splitting the leaf with the highest gain.

Regularization strategy: LightGBM implements effec-
tive regularization strategies, including L1 and L2 regular-
ization, along with parameters for maximum tree depth, 
minimum leaf node weight and minimum split gain. These 
strategies control model complexity, prevent overfitting 
and enhance the classifier’s generalization ability.

Ability to handle class imbalance: LightGBM includes 
built-in mechanisms for addressing class imbalance, such 
as  automatic class weight adjustment using the class_
weight parameter and adjusting the weights of positive 
and negative samples via the scale_pos_weight parameter. 
These mechanisms help the training process focus on im-
proving the prediction performance of minority classes, 
resulting in better classification results.

The PRAUC is considered a more appropriate evalua-
tion metric for imbalanced classification problems because 
it emphasizes the classifier’s performance in predicting 
negative samples, such as deaths in sepsis mortality pre-
diction. Compared to other metrics, such as AUC and F1 
scores, PRAUC provides a more accurate and reliable as-
sessment of the classifier’s performance in imbalanced 
datasets. This is due to the following reasons:

Unaffected by the number of negative samples: PRAUC 
is not influenced by the number of negative samples, unlike 
the AUC of the receiver operating characteristic (ROC) 
curve, which considers both the true positive rate (re-
call) and false positive rate. The latter is heavily affected 
by the number of negative samples.

Focus on small probability events: PRAUC is more suited 
for cases where the main concern is correctly detecting 
positive samples, especially those with a  small prob-
ability. Precision and recall rates provide a better reflec-
tion of model performance in these situations compared 
to other evaluation metrics.

Trade-off between precision and recall: PRAUC empha-
sizes both precision and recall, allowing for the identi-
fication of an optimal balance point to achieve the best 
trade-off between these 2 metrics.

In our study, we also explored the performance of up-
dated models by incorporating additional features, fine-
tuning hyperparameters and employing ensemble tech-
niques. These updated models aim to further enhance 
prediction accuracy and generalization ability for sepsis 
mortality.

Additional features: By integrating relevant clinical data, 
such as laboratory test results, vital signs and comorbidi-
ties, our updated models can capture a more comprehen-
sive view of the patient’s condition, which may contribute 
to a better understanding of the underlying risk factors 
associated with sepsis mortality.

Hyperparameter tuning: We performed a systematic 
search for optimal hyperparameters using techniques such 
as grid search and random search. These methods help our 
updated models achieve better performance by optimizing 
their configurations.

Ensemble techniques: By combining predictions from 
multiple base models, we employed ensemble techniques 
such as bagging, boosting and stacking. These techniques 
aim to reduce overfitting, increase model stability and 
improve overall performance by leveraging the strengths 
of different base models.

Limitations

The updated models showed improved performance 
compared to the initial models, indicating that incorpo-
rating additional features, fine-tuning hyperparameters 
and using ensemble techniques can enhance the prediction 
accuracy of sepsis mortality. However, further research 
is needed to explore other potential factors influencing 
sepsis mortality predictions and to investigate novel ma-
chine learning algorithms and techniques for continuously 
improving model performance.

Conclusions

This study addressed the limitations and gaps in the ex-
isting literature on predicting sepsis-related mortality us-
ing machine learning models, focusing on their practical 
application in an ambulance setting. We demonstrated that 
the LightGBM-based model outperformed other classifiers 
and the qSOFA score. By implementing a dynamic updat-
ing model and fine-tuning hyperparameters, we further 
enhanced the model’s performance, resulting in more ac-
curate and reliable predictions for clinicians.

Our findings significantly contribute to  the practical 
application of machine learning models in  the medical 
field, particularly for predicting sepsis-related mortality 



Adv Clin Exp Med. 2025;34(8):1393–1402 1401

in an ambulance setting. The feature importance analysis 
provides valuable insights that help doctors prioritize pa-
tient assessment and interventions, ultimately improving 
patient outcomes. This research demonstrates the potential 
of real-time updating and hyperparameter tuning to further 
optimize the performance and clinical utility of sepsis-re-
lated mortality prediction models in real-world ambulance 
settings.
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