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Abstract

Background. Glioblastoma multiforme (GBM) is the most aggressive brain tumor malignancy in adults,
accounting for nearly 50% of all gliomas. Current medications for GBM frequently lead to drug resistance.

Objectives. Umbelliferone (UMB) is found extensively in many plants and shows numerous pharmacological
actions against inflammation, degenerative diseases and cancers. However, its anticancer effects on GBM
cells have not yet been explored.

Materials and methods. This research intended to assess the antitumor efficacy of UMB and the molecular
mechanism of cell—cell adhesion proteins in human U-87 GBM cells. The cytotoxicity assay, intracellular
reactive oxygen species (R0S), cell adhesion proteins, and cell apoptosis actions of UMB were assessed
using 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide (MTT), dichlorodihydrofluorescein
diacetate (DCFH-DA), 4',6-diamidino-2-phenylindole (DAPI), acridine orange/ethidium bromide (AO/EB),
and western blot.

Results. The findings revealed that UMB reduced the proliferation of GBM cells and cell adhesion proteins,
while augmenting apoptosis through the elevation of cellular ROS. Bcl-2 family protein levels of Bcl-2 and
Bcl-XL were mitigated; conversely, the pro-apoptotic proteins Bad and Bim were elevated upon treatment
with UMB in a quantity-dependent way. Furthermore, UMB-treated GBM cells suppressed N-cadherin,
B-catenin, Slug, and matrix metalloproteinase 2 (MMP-2) expression, whereas they showed enhanced TIMP
protein and E-cadherin levels.

Conclusions. Our findings suggest that UMB can prevent proliferation and metastasis and stimulate apop-
tosis in GBM cells.
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Background

Gliomas are the predominant kind of malignancy
in the central nervous system and are accountable for
a significant number of human deaths.! Gliomas com-
prise 24.7% of all primary brain tumors and 74.6% of all
malignancies, according to the American Brain Tumor As-
sociation (ABTA).2 Glioma patients have an extremely low
survival rate; with current treatments, the average survival
duration for low-grade gliomas is less than 60 months,
and for advanced phases, it is fewer than 15 months.?
As a recurrent brain tumor in adults, glioblastoma mul-
tiforme (GBM) is an extremely aggressive malignancy
owing to its highly invasive and vascularizing nature.*
Currently, available standard therapy for GBM is surgical
resection with subsequent radiotherapy and temozolo-
mide chemotherapy.® Because of the level of distortion and
chemoresistance, GBM certainly relapses despite recent
advancements in these treatments.® Thus, it is urgently
required to advance innovative therapeutic approaches for
the management and improvement of GBM survival rates.

Reactive metabolic byproducts, such as reactive oxygen
species (ROS), greatly influence both harmful and positive
actions. Reactive oxygen species in cells act as secondary
messengers in signaling cascades that are a threat to usual
physiological actions, including development and differen-
tiation.”® Conversely, hypergeneration of ROS can impair
biomolecules,” which leads to cell integrity harm followed
by cell pathology. Recently, ROS have been shown to pro-
mote tumorigenesis, angiogenesis and metastasis.!* How-
ever, extreme accumulation of ROS has been recognized
to bring about apoptotic cell death.!! Metastasis is the pri-
mary cause of cancer-associated mortality,'? along with
catastrophic organ dysfunction following the establish-
ment and uncontrolled progression of exogenous cancer
cells surrounded by normal tissue. Adhesion and cell—cell
interaction are crucial tools for effective tissue function
and homeostasis by describing compartmentalization and
polarity in cells.!®> Among the numerous adhesion mol-
ecules, the key group is the cadherins superfamily, which
are transmembrane proteins that are essential in the devel-
opment of adherens junctions.'* Matrix metalloproteinases
(MMPs) are endopeptidases in a zinc-dependent family
that are responsible for destroying constituents of the ex-
tracellular matrix (ECM),'® tumor cell incursion, angiogen-
esis, and the subduing of antitumor immune surveillance.'®
There are natural endogenous secreted proteins compris-
ing tissue inhibitors of metalloproteinases (TIMPs) that
constrain the actions of MMPs.1” Hence, TIMPs control
cellular functions, including proliferation, movement and
survival, by regulating ECM deprivation through com-
munication with MMPs.1#

Natural herbal constituents have been shown to be vi-
tal sources of medicines and models for drug design.
The well-known 7-hydroxycoumarin umbelliferone (UMB)
is extensively found in numerous popular plants from
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the Umbelliferae family comprising garden angelica, cori-
ander, carrot, etc. It displays numerous pharmacological ac-
tions against microbial infections, inflammation, degenera-
tive diseases, and cancers.!® It employs anticancer activities
against colon cancer,? laryngeal cancer® and liver cancer.??

Objectives

This report was intended to explore the anticancer ef-
ficacy of UMB in terms of cytotoxicity, apoptosis and me-
tastasis in the most commonly studied GBM cells.

Materials and methods
Chemicals

Umbelliferone, Dulbecco’s modified Eagle’s me-
dium (DMEM), foetal bovine serum (FBS), antibiotics,
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT), 2'-7"-dichlorodihydrofluorescein diacetate
(DCFH-DA), 6-diamidino-2-phenylindole (DAPI), sodium
dodecyl sulphate (SDS), dimethyl sulphoxide (DMSO), and
phosphate-buffered saline (PBS) were acquired from Gibco
(Waltham, USA). The primary and secondary antibodies
for Western blot analysis were purchased from Beyotime
Biotechnology (Beijing, China). Analytical-grade biochem-
icals and solvents were used.

Cell culture

Human U-87 GBM cells were acquired from Shanghai
Aiyan Biotechnology Co., Ltd (Shanghai, China) and cul-
tured in DMEM medium, which contained 10% FBS, strep-
tomycin (100 pg/mL) and penicillin (100 U/mL) in a 5%
CO, atmosphere with below 95% humidity at 37°C.

Cell proliferation assay

Human glioma cell viability was evaluated using
the MTT test.? Briefly, U-87 GBM cells were sowed into
96-well plates (1x10° cells/well) and cultured at 37°C in a 5%
CO, wet incubator. Once they were incubated overnight,
the medium was separated, washed with PBS in the cells
and incubated through different concentrations of UMB
(5-60 uM/mL) for 1 day. Then, a 10 pL solution of MTT
was supplemented to the treated cells and sustained for an-
other 4 h. Subsequently, crystals of formazan were dissolved
by treating with DMSO (150 uL). The optical density (OD)
was determined at 490 nm using a multifunctional plate
reader (BD Biosciences, Franklin Lakes, USA). Cell prolif-
eration was measured as a percentage of viability against
control GBM cells (100%). The IC50 value was determined
using the method shown below:
cell viability inhibition (%) = (control OD - test OD) x 100.
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Determination of intracellular ROS

Human glioma cells were sowed in 6-well plates each
and kept for 1 day; then, different concentrations of UMB
(30 or 40 uM/mL) were added. Next, the control and treated
cells were stained with 10 uM of DCFH-DA and preserved
for 30 min at 37°C. The stained cells were washed with ice-
cold PBS twice to remove any excess dye. The excitation
and emission fluorescence were measured using a PR 4100
microplate reader, which is a next-generation 8-channel
absorbance microplate reader (Bio-Rad Laboratories India
Pvt. Ltd., Gurgaon, India), as described previously.?*

Evaluation of apoptosis using
dual staining with AO/EB

The apoptotic morphology of the human U87 cells after
exposure to UMB was evaluated using acridine orange/
ethidium bromide (AO/EB) staining.?” Glioblastoma mul-
tiforme cells were supplemented with different concen-
trations of UMB (30 or 40 uM/mL) and kept for 1 day.
The UMB-supplemented and control cells were treated
with an AO/EB (100 pg/mL each dye) mixture. All groups
were kept in the dark at room temperature for 20 min,
ensuring unattached dye was separated using PBS and
detected using a fluorescence microscope (model BX51;
Olympus Corp., Tokyo, Japan).

Apoptosis assessed using DAPI staining

Human GBM cells were sowed at 1x10° cells per plate
and added to UMB (30 or 40 uM/mL) and then fixed with
4% paraformaldehyde for 10 min at 37°C. These preserved
GBM cells underwent DAPI staining to evaluate the nucleus
changes related to apoptotic cell death using a method de-
scribed previously.?® Then, all samples were fixed on a glass
slip and examined through a BX51 fluorescence microscope
(Olympus Corp.).

Western blotting analysis

Human GBM cells were supplemented with 30 or 40 uM/mL
of UMB and cultivated for 1 day. The cell lysates were set
with lysis buffer in ice-cold conditions, ensuring protease
inhibitors, and western blot analysis was performed. Con-
cisely, protein measurement was achieved using a Protein
BCA Assay Kit (Pierce Chemical Co., Rockford, USA). Af-
ter these were quantified, they were electrophoretically
dispersed and moved into a polyvinylidene fluoride (PVDF)
film. At that point, the film was blocked with a probe pre-
served at room temperature for 1 h, treated with primary
antibodies in a 1:1,000 dilution (Bcl-XL, Bcl-2, Bim, Bad,
N-cadherin, E-cadherin, f-catenin, MMP-2, Slug, TIMP-1,
and TIMP-2), and set aside overnight at 4°C. Then, horse-
radish peroxidase (HRP)-conjugated secondary antibodies
were added. The protein bands were successively stained
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and then visualized. The protein band quantification was
determined using densitometry with Image] software
(National Institutes of Health (NIH), Bethesda, USA) and
normalized to GAPDH expression.

Statistical analyses

The statistical analysis of the data from each group
was conducted using GraphPad Prism v. 8.0.2 (GraphPad
Software, San Diego, USA) and IBM SPSS v. 25.0 (IBM
Corp., Armonk, USA). Measurement data were presented
as medians (min—-max). As the sample size was too small
to verify normal data distribution, the differences between
the groups were analyzed using the nonparametric Krus-
kal-Wallis test with Dunn’s post hoc test. Subsequently,
significant differences among multiple groups were exam-
ined using the Kruskal-Wallis test, and Dunn’s post hoc
test was employed for multiple comparisons. A statistically
significant data divergence was considered when p < 0.05.
All tests in this study were bilateral.

Results

Tables 1-3 show the results of comparing variables
among groups.

Antiproliferative and cytotoxic effects
of UMB on glioma cells

Human U-87 GBM cell viability was assessed using
the MTT test with different concentrations (5-60 uM/mL)
of UMB. The data revealed that UMB reduced viability
through its cytotoxic and antiproliferative actions on GBM
cells in a dose-dependent way. Umbelliferone treatment
at a concentration of less than 10 uM did not expressly
alter the antiproliferation and cytotoxicity results for GBM
cells. Conversely, higher concentrations of UMB (30 and
40 uM/mL) substantially reduced (p < 0.05) the viability
of both U-87 cells compared to an untreated control. Using
MTT assay, we detected the IC50 values of the GBM cells.
Recognized based on the figure of the inhibitory concen-
tration data of 30 and 40 pM/mL, UMB was taken for
further trials (Table 1, Fig. 1).

Impact of UMB on intracellular
ROS accumulation in human GBM cells

The formation of intracellular ROS is related to numer-
ous stimuli, and it can trigger cell death and cell cycle
arrest. Intracellular ROS levels were elevated in U-87 cells
after being supplemented with 30 or 40 uM/mL UMB
in an amount-dependent way, in contrast to the con-
trol. To clearly distinguish the accumulation of ROS,
the DCFH-DA-labeled cells were examined under a BX51
fluorescence microscope (Olympus Corp.). The intensity
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Table 1. Groups compared with each other regarding MTT results

Variables Control

5uM
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MTT

89.82 7861
(81.73-
97.89)

(71.53-
85.67)

‘ 50 uM ‘ 60 uM Tes(;c—'\)/flue p-value*
70.55 61.04 5217 37.72 28.21
(64.17- (55.54— (4746~ (34.33- (25.66— 45.08 0.005
76.87) 66.52) 56.84) 41.11) 30.74)

Data were presented as median (min—-max); *p-value was generated from Kruskal-Wallis test with Dunn’s post hoc test; **degrees of freedom (df) =

MTT - 5-diphenyl tetrazolium bromide; H

150 =

100 -

US87 cells

- total test values.

of ROS was greatly augmented with 40 pM/mL of UMB
(Table 2,3, Fig. 2).

Umbelliferone-induced apoptosis
of human GBM cells revealed using
dual staining with AO/EB

..*
L
|

50 = [ . Apoptotic alterations in U-87 cells were visualized using

% of cell viabili

0

Control 5

I
10 20 30 40 50 60
UMB concentration (uM/ml)

Fig. 1. Umbelliferone inhibits human GBM cell proliferation. Human U-87
GBM cells were supplemented with various concentrations (5-60 uM/mL)

of UMB for 1 day. Cell viability was determined using an MTT assay. Results are
presented as medians (min-max) for triplicate trials. Significant differences
compared to the untreated control are denoted by *(p < 0.05). The p-value
was generated from the Kruskal-Wallis test with Dunn’s post hoc test

GBM - glioblastoma multiforme; UMB — umbelliferone;

MTT - 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.

Table 2. Groups compared with each other regarding other parameters

e dual staining with AO/EB. The GBM control cells exhib-

ited evenly stained viable green cells (Table 2,3, Fig. 3A).
The UMB-treated GBM cells presented higher apoptosis
variations compared to the controls in a dose-dependent
mode. Umbelliferone-treated (30 or 40 uM/mL) U-87
cells revealed apoptotic cells, chromatin condensation
and membrane blebbing in what seemed like light green-
ish-yellow dots. Supplementation with UMB at a dose
of 40 uM/mL exposed late apoptotic alterations in GBM
cells, which presented as an orange-red color.

Variables

ROS

AO/EB staining
DAPI staining
Bcl-2

Bcl-XL

Bad

Bim
E-cadherin
N-cadherin
3-catenin
MMP-2

Slug

TIMP-1
TIMP-2

Control (n=6)
7.03 (6.40-7.66)
1.75(1.59-1.91)
3.90 (3.55-4.25)
1.00 (0.91-1.09)
1.00 (0.91-1.09)
1.00 (0.91-1.09)
1.00 (0.91-1.09)
1.00 (0.91-1.09)
1.00 (0.91-1.09)
1.00 (0.91-1.09)
1.00 (0.91-1.09)
1.00 (0.91-1.09)
1.00 (0.91-1.09)
1.00 (0.91-1.09)

30 uM (n =6)

2340 (21.29-25.51)
34.19(31.11-37.27)
35.02 (31.87-38.17)

0.62 (0.56-0.68)
0.68 (0.62-0.74)
1.36 (1.24-1.48)
140 (1.27-1.53)
1.37 (1.25-149)
0.80(0.73-0.87)
0.62 (0.56-0.68)
0.80(0.73-0.87)
0.65 (0.59-0.71)
1.58 (1.44-1.72)
1.20 (1.09-1.31)

40 uM (n = 6) Test value (H)** p-value*
34.90 (31.76-38.04) 15.15 <0.001
50.49 (45.95-55.03) 15.17 <0.001
51.07 (46.47-55.67) 15.17 <0.001

047 (043-0.51) 1523 <0.001
0.50 (0.46-0.55) 15.22 <0.001
2.25(2.05-2.45) 15.20 <0.001

1.96 (1.78-2.14) 15.20 <0.001

5(1.96-2.34) 15.20 <0.001
0.65 (0.59-0.71) 15.20 <0.001
045 (0.41-0.49) 1523 <0.001
0.53 (0.48-0.58) 15.20 <0.001
0.37 (0.34-0.40) 15.23 <0.001
230(2.09-2.51) 15.20 <0.001
2.01(1.83-2.19) 15.01 <0.001

Data were presented as median (min—-max); *p-value was calculated using Kruskal-Wallis test with Dunn'’s post hoc test; **degrees of freedom (df) = 2;

ROS - reactive oxygen species; AO/EB — acridine orange/ethidium bromide; DAPI -

4'6-diamidino-2-phenylindole; Bcl-2 — B-cell leukemia/lymphoma 2

proteins; Bcl-XL — B-cell lymphoma-extra-large; Bad — BCL2-associated death promoter; Bim — BCL-2-interacting mediator of cell death; MMP-2 — matrix
metalloproteinases 2; Slug — SNAIL family of transcriptional repressors; TIMP-1 — tissue inhibitor of metalloproteinase-1; TIMP-2 - tissue inhibitor

of metalloproteinase-2.
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Table 3. The results of the Dunn'’s post hoc test

Bolained | o soum | cusoum ‘ D
ROS p <0.155 p <0.001 p <0.155
AO/EB staining p <0.154 p < 0.001 p <0.154
DAPI staining p <0.154 p < 0.001 p <0.154
Bcl-2 p <0.154 p < 0.001 p <0.154
Bcl-XL p<0.153 p < 0.001 p<0.153
Bad p<0.154 p < 0.001 p<0.154
Bim p<0.154 p < 0.001 p<0.154
E-cadherin p <0.154 p < 0.001 p <0.154
N-cadherin p <0.154 p < 0.001 p <0.154
f-catenin p <0.153 p < 0.001 p<0.153
MMP-2 p<0.154 p < 0.001 p<0.154
Slug p<0.153 p < 0.001 p<0.153
TIMP-1 p<0.154 p < 0.001 p<0.154
TIMP-2 p<0.174 p < 0.001 p<0.174

ROS - reactive oxygen species; AO/EB — acridine orange/ethidium
bromide; DAPI - 4'6-diamidino-2-phenylindole; Bcl-2 — B-cell
leukemia/lymphoma 2 proteins; Bcl-XL — B-cell lymphoma-extra-

large; Bad — BCL2-associated death promoter; Bim — BCL-2-interacting
mediator of cell death; MMP-2 — matrix metalloproteinases 2;

Slug — SNAIL family of transcriptional repressors; TIMP-1 — tissue inhibitor
of metalloproteinase-1, TIMP-2 - tissue inhibitor of metalloproteinase-2.

Umbelliferone-triggered apoptosis
of human GBM cells displayed using
DAPI staining
Human U-87 GBM cells stained with DAPI revealed

typical viable cells with normal nuclei (Table 2,3, Fig. 3B).
Treatment of the glioma cells with UMB stimulated
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Fig. 2. Umbelliferone enhances the accumulation

of ROS in glioma cells. Scale bar = 50 pm. U-87 cells
with untreated control (green florescence) showing
weak background florescence; arrow mark represents
clearly visible DCF fluorescence. Cells treated with

UMB (30 or 40 pM/mL) for 1 day showing bright DCF
florescence. Results are presented as medians (min—-max)
for triplicate trials. Significant differences compared

to the untreated control are denoted by *(p < 0.05).

The p-value was calculated using the Kruskal-Wallis test
with Dunn’s post hoc test

ROS - reactive oxygen species; DCFH — DA — 2'-7"-dichloro-
dihydrofluorescein diacetate; UMB — umbelliferone.

apoptosis that intensified the nuclear morphology and
fragmentation of the nuclear bodies compared to the con-
trol cells. When UMB (30 or 40 pM/mL) was added
to the glioma cells, they exhibited chromatin reduction,
membrane blebbing, destruction of the nuclear envelope,
and cellular collapse. These effects underlined that UMB-
triggered apoptosis occurs in a quantity-dependent way.

Studies on the effects of UMB
on Bcl-2 family protein expression

In human GBM cells supplemented with UMB
(30 or 40 uM/mL), pro-apoptotic Bad and Bim levels
were elevated, whereas anti-apoptotic Bcl-2 and Bcl-XL
mitigated their protein levels. These results established
the apoptotic action of UMB in a quantity-dependent way
(Table 2,3, Fig. 4).

Influence of UMB on metastatic
protein expression

For U-87 human GBM cells supplemented with UMB
(30 or 40 pM/mL), E-cadherin protein expression was el-
evated, whereas N-cadherin, 3-catenin, MMP-2, and Slug
showed attenuated protein expression. These results con-
firmed the apoptotic action of UMB in a concentration-
dependent way (Table 2,3, Fig. 5).

Protein expression analysis of TIMP-1
and TIMP-2

TIMP-1 and TIMP-2 expressions were downregulated
in untreated glioma cells. The GBM cells supplemented
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Fig. 3. Umbelliferone triggered apoptosis in glioma cells. U-87 cells were either untreated controls or U-87 cells treated with 30 or 40 pM/mL UMB for 24 h.
Scale bar = 50 um. The evaluation of apoptosis was performed using the dual staining of: (A) AO/EB staining; white arrow indicates green florescence,

the orange arrow indicates apoptotic bodies, the blue arrow indicates apoptotic cells, and the yellow arrow indicates necrotic cells; (B) DAPI staining
examined under a fluorescence microscope. The control cells showed a dark background as normal cells, but for the UMB-treated cells, the white arrow
indicates bright fluorescence. Results are presented as medians (min-max) for triplicate trials. Significant differences compared to the untreated control are
denoted by *(p < 0.05). The p-value was calculated using the Kruskal-Wallis test with Dunn’s post hoc test

ROS - reactive oxygen species; DCFH DA — 2'-7"- dichlorodihydrofluorescein diacetate; UMB — umbelliferone.

Fig. 4. Influence of UMB on the Bcl-2 family protein expression in human GBM cells. Umbelliferone (30 or 40 uM/mL) was added to the U-87 cells for 24 h,
and protein levels were studied using western blot. Results are presented as medians (min—max) for triplicate trials. Significant differences compared
to the untreated control are denoted by *(p < 0.05). The p-value was calculated using the Kruskal-Wallis test with Dunn’s post hoc test

GBM - glioblastoma multiforme; UMB — umbelliferone.
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Fig. 5. Influence of UMB on metastatic protein expression in human GBM cells. Umbelliferone (30 or 40 uM/mL) was added to glioma cells for 1 day. Results
are presented as medians (min-max) for triplicate trials. Significant differences compared to the untreated control are denoted by *(p < 0.05). The p-value
was calculated using the Kruskal-Wallis test with Dunn'’s post hoc test

GBM - glioblastoma multiforme; UMB — umbelliferone.

Fig. 6. Influence of UMB on TIMP-1 and TIMP-2 protein levels in human GBM cells. Umbelliferone (30 or 40 uM/mL) was added to U-87 cells for 24 h. Results
are presented as medians (min-max) for triplicate trials. Significant differences compared to the untreated control are denoted by *(p < 0.05). The p-value
was calculated using the Kruskal-Wallis test with Dunn'’s post hoc test

GBM - glioblastoma multiforme; UMB — umbelliferone; TIMP-1 — tissue inhibitor of metalloproteinase-1; TIMP-2 — tissue inhibitor of metalloproteinase-2.

with 30 or 40 pM/mL UMB upregulated TIMP-1 and Discussion

TIMP-2 protein expression in a quantity-dependent way

(Table 2,3, Fig. 6). Malignant carcinomas are a growing problem in
the medical community due to delayed diagnosis, ele-
vated metastasis, augmented resistance, and the massive
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complexity of currently existing medications. The GBM
is the most common glioma, with the highest grade of ma-
lignancy among brain tumors, the least-favorable prognosis
and the greatest likelihood of metastasis and recurrence.>
Temozolomide is the most beneficial medication accepted
for GBM treatment, but its drawback is drug resistance,
which frequently happens in medical use, eventually caus-
ing treatment failure.” At present, several treatments are
available for GBM; however, their effectiveness is partly
owing to their broad ramifications. As such, researchers
are mainly focused on the development of innovative medi-
cations with reduced complications. Over 50% of cancer
medicines are produced from natural ingredients.

Umbelliferone, also known as 7-hydroxycoumarin,
is an extensive natural component of the coumarin fam-
ily. It has been documented to have analgesic, anti-inflam-
matory, antinociceptive, and bronchodilatory actions.?”28
Umbelliferone has been demonstrated to display antican-
cer and immunomodulatory actions by constraining tu-
mor progression of sarcoma 180 in mice models.?’ Kielbus
et al.”! stated that UMB repressed laryngeal cancer cell
proliferation and migration. They reported that UMB
mitigated the proliferation and migration of laryngeal
RK33 malignant cells in a quantity-dependent way.?! Um-
belliferone has also been tested for anticancer activities
against 7,12-dimethylbenz(a)anthracene-prompted mam-
mary carcinomas in rats.>? To the best of our knowledge,
the current study is the first report to exhibit the cyto-
toxic, apoptotic and antimetastatic prompting actions
of UMB in human U-87 GBM cells in vitro. The MTT
assay showed that treatment with UMB mitigated cell pro-
liferation in a dose-dependent way in glioma cells, which
indicates that UMB might be an active antitumor candi-
date, as shown in this research.

It has been stated that stable levels of ROS are vital for
preserving typical physiological roles.”® The generation
of intracellular ROS accompanies oxidative stress, which
ultimately leads to the process of apoptosis. Additional
ROS production in a biological system is harmful to pro-
teins and DNA, which may eventually cause cell death.
When there are upsurges in ROS generation, morphological
variations occur and cause late apoptotic modifications,
as evidenced by the dual staining of AO/EB in the current
research. Next, to confirm that UMB triggered apoptosis,
DAPI staining was performed. The fluorescent dye DAPI at-
taches to the A-T-rich DNA section. U-87-stained cells were
examined under a fluorescent microscope, and the images
presented fragmented DNA after treatment with UMB. Our
findings revealed that elevated ROS generation occurred
following UMB administration at different concentrations
(30 or 40 uM/mL), in contrast to the control GBM cells,
in a quantity-dependent manner. This finding also con-
firmed the ROS-stimulating action of UMB on U-87 cells.

To clarify the outcomes, we assessed the level of apoptotic
protein expression following supplementation of glioma
cells with UMB. The proportion of pro-apoptotic and
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anti-apoptotic proteins is vital during cell destiny deter-
mination. Our findings revealed that UMB attenuated
the level of anti-apoptotic (Bcl-XL and Bcl-2) proteins and
elevated the level of pro-apoptotic (Bad and Bim) proteins
in a dose-dependent way. Anti-apoptotic and pro-apoptotic
proteins also offer the creation of discrete channels for
the permeabilization of the mitochondrial membrane.3! Fi-
nally, we showed that the mediator molecules for cell death
by UMB are Bim and Bad, which are involved in the crucial
mechanisms of cell apoptosis in the mitochondrial pathway.

The current study revealed that UMB-treated glioma cells
enhanced E-cadherin and TIMPs while mitigating the pro-
tein levels of N-cadherin, B-catenin, MMP-2, and Slug, com-
pared to untreated GBM control cells. Numerous research-
ers have assessed the arrays of classical cadherin expression
in GBM. The expression of N-cadherin in GBM has been
examined in different patient cohorts, with nearly 60—80%
of cases.?? E-cadherin levels have been further showed as rare
or lacking in gliomas.® Slug protein is a well-considered tran-
scriptional repressor, which can directly attach to and curb
the E-cadherin promoter and other cell-cell adhesion within
epithelial cells.3* The cytoplasmic domain of cadherin also
contributes to cell-cell adhesion by alleviating the cadherin/
catenin complex and binding this complex to the actin cy-
toskeleton at the membrane. It controls an extensive variety
of typical physiological developments, comprising embryo
enlargement, cell propagation, differentiation, gene expres-
sion, and apoptosis.?> Preceding reports have established that
the TIMP gene family members are differentially expressed
in numerous tumors.?¢” As MMP:s are greatly associated
with the prognosis of multiple cancers, TIMPs, at least the-
oretically, may affect diagnosis in a few malignancy cases
as precise inhibitors. In brain tumors, including GBM, sev-
eral reports have explored the disparity in the expression
of TIMPs.3® In the current study, UMB enhanced the pro-
tein expression levels of TIMP-1 and TIMP-2 in GBM cells
in a dosage-dependent way.

Limitations

As alimitation, microRNA interference level molecular
studies were not performed.

Conclusions

This report showed that UMB subdues the proliferation
of human U-87 GBM cells through the stimulation of ROS-
mediated apoptosis and its cytotoxic effects. Additionally,
it could also suppress metastasis of the GBM cells by modu-
lating the cadherin/B-catenin complex-mediated cell—cell
adhesion in human glioblastoma cells. These outcomes sug-
gest that UMB may prove to be a key component of antitumor
agents or antitumor lead molecules. However, further research
endeavors involving the precise molecular mechanisms of its
antimetastatic effects are urgently required.
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