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Abstract

(ancer remains a health problem worldwide; therefore, developing new therapies to increase the effectiveness
of anticancer treatments is necessary. Two such methods are photodynamic therapy (PDT) and chemodynamic
therapy (CDT). The intensive growth and increased metabolism of tumors lead to elevated levels of reactive
oxygen species (ROS) within cancer cells. These cells develop several antioxidant mechanisms to protect them
from this oxidative stress. Antioxidants also make tumors more resistant to chemotherapy and radiation. Gluta-
thione (GSH) is an important and the most abundant endogenous cellular antioxidant. Photodynamic therapy
and CDT are new methods that are based on the production of ROS,- therefore increasing oxidative stress
in cancer cells. A significant problem with these therapies is the increased GSH levels, which is an adaptation
of cancer cells to augmented metabolic processes. This paper presents various GSH depletion strategies that
are used to improve PDT and CDT. While the main goal of GSH depletion in both PDT and (DT is to prevent
its interaction with the ROS generated by these therapies, it should be remembered that the reduction of its
level itself may initiate pathways leading to cancer cell death.
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Introduction

The production of reactive oxygen species (ROS)
is a natural consequence of oxygen metabolism and cel-
lular biochemical reactions. As signaling molecules, ROS
play an essential role in the activation of pathways that
lead to cell proliferation and survival. However, in higher
concentrations, they promote mutagenesis by damaging
DNA, and in sufficiently high concentrations, they lead
to oxidative stress, causing cell death. To prevent the ad-
verse effects of high ROS levels, cells employ several an-
tioxidant protective mechanisms to maintain cellular
redox homeostasis and ensure normal functioning and
survival.l

Contrary to normal cells, cancer cells are characterized
by significantly increased levels of ROS owing to their un-
restrained growth and increased metabolism.2 Moreover,
higher levels of ROS increase the proliferation of cancer
cells and tumor aggressiveness, promoting their ability
to invade and metastasize.? Increased ROS content forces
cancer cells to intensify the antioxidant mechanisms that
protect them from the negative effects of these oxidative
stresses.? It has also been postulated that cancer cells
maintain the concentration of ROS at a level that facilitates
their progression.* The increased amount of antioxidants
and constantly elevated levels of ROS found in cancer cells
make them resistant to chemotherapeutic agents and ra-
diation. It has also been shown that cancer cells are highly
dependent on their antioxidant systems to maintain an ap-
propriate redox level and are, therefore, sensitive to exter-
nal factors disrupting these systems.!

Among the various endogenous cellular antioxidants,
glutathione (GSH) is the most abundant. It is a major scav-
enger of ROS and plays an essential role in maintaining
cell redox homeostasis. Although GSH plays an important
role in the detoxification of carcinogens, its elevated con-
centration can be observed in many cancer types, which
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increases the resistance of such cells to the toxic effects
of many chemotherapeutic agents and radiation.!

Due to the different amounts of ROS in cancer cells
compared to normal cells, various tumor treatment strat-
egies exacerbating oxidative stress have been developed.?
Since GSH is a common cellular antioxidant whose main
function is to remove free radicals and maintain cellu-
lar redox balance, it appears to be the optimal target for
such anticancer therapies. There are many studies show-
ing that GSH depletion increases oxidative stress, which
leads to cancer cell death. Moreover, it has been shown that
the reduction of GSH content in cancer cells makes them
more susceptible to factors that increase ROS.!

Objectives

Here, we describe GSH depletion strategies that could
improve the effectiveness of 2 promising ROS-based treat-
ments for cancer: photodynamic therapy (PDT) and che-
modynamic (CDT) therapy.

Glutathione depletion strategies

Increased concentrations of GSH in tumor tissues com-
pared to normal tissues have been observed in many neo-
plastic diseases.” This increases the resistance of cancer
cells to therapies based on potentiated oxidative stress.®
Depletion of GSH in cancer cells makes them more sen-
sitive to therapeutic agents. Therefore, it should come
as no surprise that various strategies are being developed
to lower intracellular GSH levels to inhibit tumor growth
and increase the effectiveness of therapy. These approaches
include a reduction in the availability of substrates for
GSH biosynthesis, inhibition of GSH synthesis, GSH con-
jugation, or increases in its oxidized form (GSSG), as well
as promotion of GSH cellular efflux (Fig. 1).7-°

Fig. 1. Glutathione depletion strategies
in cancer cells
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Glutathione depletion
in photodynamic therapy

Photodynamic therapy (Fig. 2) is a new, developing an-
ticancer therapy that is of great interest. The reasons for
this are its undoubted advantages, such as low invasive-
ness, low toxicity, high effectiveness of therapy, and lack
of drug resistance.!%1* Reactive oxygen species play a key
role in PDT. They oxidize biological macromolecules, such
as nucleic acids, proteins and lipids, altering cell signal-
ing pathways and gene expression, as well as destroying
membrane structures.’® This leads to apoptosis of can-
cer cells. Moreover, ROS within tumor tissues can also
damage the microcirculation and cause immunogenic cell
death.'®-18 In this therapy, a photosensitizer (PS) is admin-
istered to the patient and activated with an appropriate
wavelength of light. Photodynamic reactions can be clas-
sified into 2 types. In type I, light energy is transferred
from excited molecules to biomolecules through a direct
contact reaction. The radicalization mechanism involves
the transfer of an electron or hydrogen, and the resulting
radicals can initiate a radical chain reaction. This also
produces superoxide radicals (O,™) and hydroxyl radicals
("OH).Y Type II PDT is based on an indirect reaction,
in which the excited PS reacts with molecular oxygen.
As a result, singlet oxygen (10,) is generated, which is ex-
tremely electrophilic, causing damage to biomolecules
and, consequently, destroying neoplastic cells.??! Most
PDT in clinical applications are based on the second type
of reaction.?

Due to some limitations, PDT is not currently used
as a first-line therapy in cancer treatment.?2* To func-
tion effectively, it requires large amounts of oxygen
in the tumor microenvironment (TME), which is unfor-
tunately hypoxic.?® In addition, cells trigger several de-
fense mechanisms in response to PDT, e.g., cancer cells

1215

Fig. 2. The principles of photodynamic
therapy

Type | PDT

increase the synthesis of various cytoprotective molecules.
Redox-sensitive transcription factors are activated, which
increases the amount of detoxification and antioxidant
enzymes. Activation of anti-apoptotic pathways and over-
expression of heat shock proteins prevent the formation
of active apoptosomes.2¢

New strategies to increase the effectiveness of PDT are
constantly being developed. These include an increase
in ROS production by reducing hypoxia in the TME,"%
as well as reducing the efficiency of cancer cell antioxidant
systems, with particular emphasis on GSH.1*28

Hu et al. used docosahexaenoic acid (DHA) and 2,2-di-
methoxy-2-phenylacetophenone (DMPA) placed in a ROS-
sensitive dendrimer nanocarrier (RSV) to reduce intracel-
lular GSH concentrations and increase the effectiveness
of PDT.?° Zinc phthalocyanate (ZnPc) was used as the PS.
Irradiated by 665 nm light in the presence of endogenous
H,0,; or ROS resulting from PDT, RSV is decomposed,
and DHA and DMPA are released. Under light irradiation,
DMPA becomes the initiator of the thiol-ene click reac-
tion, which consists of GSH conjugation to double bonds
within the DHA molecule. This directly reduces the cel-
lular concentration of GSH. Moreover, Hu et al. showed
that their therapeutic system significantly decreased
intracellular concentrations of ATP, which is a cofactor
for y-glutamylcysteine synthetase, resulting in inhibition
of GSH synthesis.

Cao et al. synthesized nanoparticles from an amphiphi-
lic branched copolymer (PEG) with pendant vinyl groups
containing chlorine e6 (Ce6) as a PS.3° The vinyl groups
form a hydrophobic core as the nanoparticle reacts with
GSH in the thiol-ene click reaction, lowering its intracel-
lular concentration while Ce6 is released.

Li et al. proposed the use of S-nitrosated human serum
albumin (HSA-SNO) to lower GSH concentrations and
increase the effectiveness of PDT therapy.? HSA-SNO
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binds GSH molecules, releasing nitric oxide (NO), which
additionally occupies oxygen binding sites within the mi-
tochondria, thus reducing cellular respiration of cancer
cells and indirectly increasing the oxygen concentration
needed for PDT.1

The use of 5-aminolevulinic acid (ALA) as a clinically
approved PS has been attempted. Although it does not
have the ability to photosensitize itself, it undergoes me-
tabolism inside the cell, resulting in the formation of pro-
toporphyrin IX (PpIX), which already possesses such
properties.?*3® Compared to other PSs, ALA has low
toxicity and is quickly removed from the body. However,
at physiological pH, it is largely hydrophilic and, therefore,
hardly penetrates biological barriers.3*3* The use of ester
derivatives alleviates this drawback, but due to the pres-
ence of a nucleophilic amino group, these compounds are
still not very stable under physiological conditions. Li et al.
synthesized a number of ALA methyl ester derivatives
in which the substituents were linked to the amino group
via 2-hydroxyethyl disulfide.?® After entering the cell, these
derivatives react with GSH, which releases ALA and simul-
taneously lowers the intracellular GSH pool. Next, ALA
was transformed into protoporphyrin IX.

An interesting solution was proposed by Meng et al., who
created a metal-organic framework (MOF)-based nanocar-
rier using a disulfide-containing imidazole as an organic
ligand and zinc (Zn?**) as a coordination metal.?” The nano-
carrier was loaded with a PS (Ce6). To stabilize the MOF
in an aqueous environment, its surface was covered with
an amphiphilic polymer (pluronic F127). Glutathione
depletion was accomplished through a disulfide-thiol ex-
change reaction and the decomposition of the MOF releases
the PS. Meng et al. also demonstrated that the nanocarriers
they used had a double therapeutic effect. The PS induces
a typical PDT increase in ROS levels, leading to apoptosis.
Glutathione depletion not only supports this process but
also causes ferroptosis.>®

Ferroptosis is a cell death pathway that includes an iron-
dependent Fenton reaction and lipid peroxidation.?® This
process is characterized by the accumulation of Lipids-OOH
due to the disruption of their scavenging systems. The scav-
enging of toxic Lipids-OOH is carried out by their reduction
to Lipids-OH by GSH peroxidase 4 (GPX4).%° Glutathione
is the reducing co-substrate of GPX4; therefore, GSH deple-
tion or GSH synthesis disorders can trigger ferroptosis.*!
There are many studies that have observed ferroptosis initi-
ated by GSH depletion in both PDT and CDT.3742-46

Curcumin, isolated from Curcuma longa, is a natural che-
mopreventive drug for cancer.*” Many studies have shown
that this compound significantly decreases the level of hy-
poxia-inducible factor 1a (HIF-1a), which is overexpressed
in several neoplastic diseases. Moreover, curcumin depletes
GSH.*% Zhang et al. used a curcumin derivative (Cur-S-
OA) to create a nanoparticle (ZnPc@Cur-S-OA), which
decomposes in cancer cells in a ROS-responsive manner
with the release of the PS (zinc phthalocyanate, ZnPC) and
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free curcumin.* The curcumin derivative serves 2 distinct
purposes. First, it acts as a PS stabilizer. Second, following
nanoparticle decomposition, it acts as a chemotherapeutic
agent, thereby improving PDT efficiency.

Liu et al. designed an oxidative stress amplifier (OSA), that
is activated in cancer cells by its interaction with H,O,.>!
It is a micelle (DPL@CC) consisting of cinnamaldehyde
(Cin), a GSH scavenger, and Ce6, a PS, coated with a ROS-
reactive amphiphilic polymer (DPL). Cinnamaldehyde con-
jugates with GSH and blocks its thiol group, which is re-
quired to react with ROS. After OSA application, the level
of GSH decreased to 18.9% compared to control cells.

Cysteine is an essential substrate in GSH biosynthe-
sis, and its deficiency significantly affects the formation
rate and cellular concentration. Cystine, the oxidized
form of cysteine, is present in the extracellular matrix
(ECM) and is taken up by the cell through the X. sys-
tem. It is an anti-port glutamate/cystine transporter found
in the cell membrane.>? The light chain of the X~ system
(xCT) is overexpressed in many types of neoplastic dis-
eases, which correlates with resistance to treatment and
a poor prognosis in patients.”>~¢ A reduction in extracel-
lular cystine uptake directly reduces the cellular concen-
tration of GSH; thus, inhibiting the X.~ system is another
possible strategy for its depletion.®” One of the compounds
with the ability to inhibit the X~ system is erastin.?® Zhul
et al. designed a nanodrug containing erastin and Ce6
as the PS.% After entering cancer cells, erastin inhibited
GSH biosynthesis, lowering the intracellular pool, enhanc-
ing Fe-induced lipid peroxidation, and inducing cell death
via ferroptosis.?>8-62

Wang et al. synthesized nanoparticles consisting of py-
ropheophorbide (PPa) as a PS and clopidogrel, which was
responsible for increasing the effectiveness of PDT by GSH
depletion.®® Clopidogrel is a classic antiplatelet drug that
is metabolized by cytochrome P450 (CYP2C19) to form
a thiol metabolite.®* This metabolite conjugates with GSH,
lowering its intracellular pool and increasing the effective-
ness of PDT. The disadvantage of this approach is that
it is limited to cancer cells that overexpress CYP2C19.

Depletion of glutathione
in chemodynamic therapy

Chemodynamic therapy (Fig. 3) is highly selective to-
wards cancer cells with minimal side effects.®® It is based
on Fenton or Fenton-like reactions in which transition
metal ions (e.g., Fe, Co, Ni, Cu, and Mn) react with hydro-
gen peroxide to form highly cytotoxic hydroxyl radicals
(Fe** + Hy,O, — Fe3* + *OH + OH"). This reaction is ini-
tiated in the TME, characterized by the overproduction
of H,O,, low catalase activity and a weakly acidic pH.%¢”
Chemodynamic therapy is specific to cancer cells because
the Fenton reaction is significantly limited in a weakly al-
kaline environment, and the limited amount of hydrogen
peroxide is observed in normal cells.®® The Fenton reaction
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leads to oxidative stress, and the reactive hydroxyl radical
reacts with proteins, lipids, and DNA, disrupting their
function and leading to cancer cell death.®

Compared to PDT, CDT is more selective and is initiated
by internal factors; therefore, it does not require external
energy in the form of light and does not depend on local ox-
ygen concentrations.®®”? Nevertheless, some factors limit
the effectiveness of CDT. The first is the limited amount
of endogenous H,O, in cancer cells and the low catalytic
efficiency of chemodynamic agents.®> Another limitation
is the reaction environment. Most chemodynamic agents,
such as iron-based nanomaterials, transition metal ions,
and metal-organic frameworks, catalyze Fenton and Fen-
ton-like reactions better in a more acidic environment
(pH 3.0-5.0) than in the TME (pH 6.0-7.0).°>7! Finally,
overexpression of GSH in the TME significantly reduces
the production of hydroxyl radicals, reducing the effec-
tiveness of CDT.% Therefore, researchers have focused
on designing new nanomaterials that increase the effi-
ciency of CDT by modifying the TME, by lowering its
pH, increasing H,O, concentrations, and depleting GSH.

Lin et al. created nanoparticles consisting of mesopo-
rous silica coated with manganese dioxide (MnO,).”? After
internalization into cancer cells, the MnO, envelope un-
dergoes a redox reaction with GSH, resulting in the forma-
tion of the oxidized form of GSH (GSSG) and Mn?* ions.
Manganese ions in the presence of carbonate ions (HCO3")
react with H,O,, forming hydroxyl radicals through a Fen-
ton-like reaction. Therefore, MnO, plays a dual role. Its
reaction with GSH lowers the intracellular pool, result-
ing in increased susceptibility of cancer cells to oxidative
stress. The same reaction leads to the formation of Mn
ions, which are responsible for ROS generation. The use
of a mesoporous silica core, on the other hand, ensures
the controlled release of the drug. It should be noted that
a similar strategy has been used by many researchers.”
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Fig. 3. Chemodynamic therapy basis
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Compared with the classic Fenton reaction catalyzed
by Fe?* ions, a Fenton-like reaction is catalyzed by Cu* ions
and can be carried out with greater efficiency in a weakly
acidic environment. However, because of the low redox po-
tential of Cu*/Cu?, Cu* ions are easily oxidized to Cu?*.7+7>
Ma et al. proposed the use of copper-amino acid mercap-
tide nanoparticles (Cu-Cys NPs).” After endocytosis into
cancer cells, these nanoparticles oxidize GSH and the cop-
per is reduced to Cu* ions. These ions react with hydrogen
peroxide to form hydroxyl radicals. The use of Cu?* ions not
only increases the efficiency of ROS production but is also
an effective way to reduce the ratio of GSH to oxidized GSH
(GSS@G). The GSH depletion strategy using transition metal
ions, which are reduced by GSH to substrates for the Fen-
ton-like reaction, has been used in many studies.”’~%°

Chen et al. designed nanoparticles containing Fe;O,
and B-lapachone (Lapa).®! The first of these compounds
is the source of Fe?* ions, which participate in the Fen-
ton reactions. Lapa undergoes a transition from qui-
none to hydroquinone in the futile cycle catalyzed
by NADPH:quinone oxidoreductase-1 (NQO1). The over-
expression of NQOL in cancer cells, which occurs at a ra-
tio of 2—-100 times, results in greater selectivity for these
cells when Lapa is used.”? The futile cycle of Lapa not only
generates H,O,, increasing the efficiency of CDT, but also
significantly reduces the cellular concentration of NADPH
(60 mol/Lapa mol/5 min).”® Since NADPH is a coenzyme
of GSH reductase, reduction in its amount interferes with
the function of this GSSG-reducing enzyme. This leads
to increased oxidative stress in cancer cells.

Limitations
Article selection bias is a possible limitation of this study.

Due to the abundance of works on this review topic, despite
every effort, some works that should have been cited may
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Table 1. Glutathione depletion strategies during PDT and CDT

Type of therapy | Mode of action |

conjugation with GSH

PDT

GSH oxidation

inhibition of GSH biosynthesis

conjugation with GSH

GSH oxidation
cDT

decrease of GSH reductase activity

inhibition of GSH biosynthesis

S-nitrosated human serum albumin

thiol metabolite of clopidogrel

ALA derivative with disulfide bond 3697

disulfide-containing imidazole

2-nitroimidazole and 1H-imidazole-4-carbonitrile

D. Wolny, M. Stojko, A. Zajdel GSH depletion in PDT and CDT

Agent | References

docohexaenoic acid 2

pendant vinyl groups 30

31

curcumin 50

cinnamaldehyde s

63
phenethyl isothiocyanate o

mesoporous polydopamine %

quinone methide %

37
hemin 98,99
Cu2+ 87,88,100,101
Mn*+ 89,102,103
e 84
NO 104
erastin i

buthionine sulfoximine 105

106
Cu®* 7680,81,90,107,108
Mn#+ 72,86,109

Fe3+ 82,110

No 1m
B-lapachone o1

triptolide L2

PDT - photodynamic therapy; CDT — chemodynamic therapy; GSH - glutathione; ALA — 5-aminolevulinic acid; Cu2* - cupric ion; Mn4* — tetravalent

manganese ion; Fe3* - ferric ion; NO — nitric oxide.

have been omitted. In addition, many of the papers used
the same GSH depletion strategies, so the authors decided
not to cite some of them.

Conclusions

Cancer remains a global health problem despite the con-
stant development of new medicines. Numerous studies
focused on developing new therapeutic strategies to in-
crease the effectiveness of anticancer treatment. Methods,
such as PDT or CDT, are characterized by an increased
specificity and selectivity for cancer cells and reduced
side effects compared to traditional chemo- and radio-
therapy. Despite the undoubted advantages of these oxi-
dative stress-increasing therapies, they face certain prob-
lems in clinical applications. One of the most important
obstacles is the adaptation of cancer cells to an increased
concentration of ROS by increasing the production of GSH.
This requires the development of effective strategies to re-
duce the concentration of this thiol compound in cancer

cells (Table 1). A simple and direct way to deplete GSH
is to use compounds that react with GSH to form stable
derivatives or transform it into an oxidized form (GSSG).
This is also the most common strategy used by scientists
to develop new PDTs and CDTs, as presented in this paper.
Although the main goal of GSH depletion in both PDT
and CDT is to prevent its interaction with ROS generated
by these therapies, it should be remembered that reduc-
tions in GSH levels by itself may initiate pathways leading
to cancer cell death.
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