Effectiveness of phentolamine mesylate, vibration and photobiomodulation in reducing pain and the reversal of local anesthesia: A systematic review

Aneta Olszewska^{1,A–D,F}, Dominika Forszt^{2,A–D}, Aleksandra Szymczak^{3,A,C,D}, Natalie Górna^{1,A,B,D}, Tomasz Gedrange^{4,E}, Agata Czajka-Jakubowska^{1,E}, Jacek Matys^{4,A,E,F}

- ¹ Department of Orthodontics and Temporomandibular Disorders, Poznan University of Medical Sciences, Poland
- ² Department of Risk Group Dentistry, Poznan University of Medical Sciences, Poland
- ³ Department of Integrated Dentistry, Community Dentistry Section, Poznań, Poland
- ⁴ Department of Dental Surgery, Wroclaw Medical University, Poland
- A- research concept and design; B- collection and/or assembly of data; C- data analysis and interpretation;
- D writing the article; E critical revision of the article; F final approval of the article

Advances in Clinical and Experimental Medicine, ISSN 1899-5276 (print), ISSN 2451-2680 (online)

Adv Clin Exp Med. 2025;34(6):987-1010

Address for correspondence

Jacek Matys E-mail: jacek.matys@umw.edu.pl

Funding sources

None declared

Conflict of interest

None declared

Received on February 28, 2024 Reviewed on May 12, 2024 Accepted on June 18, 2024

Published online on November 6, 2024

Cite as

Olszewska A, Forszt D, Szymczak A, et al. Effectiveness of phentolamine mesylate, vibration and photobiomodulation in reducing pain and the reversal of local anesthesia: A systematic review. *Adv Clin Exp Med*. 2025;34(6):987–1010. doi:10.17219/acem/190202

DOI

10.17219/acem/190202

Copyright

Copyright by Author(s)
This is an article distributed under the terms of the
Creative Commons Attribution 3.0 Unported (CC BY 3.0)
(https://creativecommons.org/licenses/by/3.0/)

Abstract

Background. Dental anesthesia administration often triggers unpleasant sensations, particularly needle injection-related pain, which can evoke fear among patients, especially in the pediatric population. Vibration and low-level laser therapy (LLLT) have been extensively studied as potential methods for alleviating pain. Additionally, phentolamine mesylate (PM) has shown promise in reducing the duration of anesthesia. From a clinical perspective, inadequate control over the persistence of the anesthetic effect may lead to complications associated with its prolonged duration, such as self-injuries or functional impairments.

Objectives. This review aimed to systematically summarize and compare methods of alleviating pain during local anesthesia and reducing its duration.

Materials and methods. In November 2023, an electronic search was systematically conducted across PubMed, Web of Science, and Scopus databases using keywords (pain) AND (anesthesia) AND ((phentolamine) or (vibration) or (LLLT) OR (PBM)). The initial pool consisted of 495 records, from which 241 duplicates were eliminated. After careful examination of the remaining articles, 40 were included. The study adhered to the PRISMA guidelines.

Results. Most studies reported beneficial effects of LLLT and vibration; however, some did not corroborate these findings. Four studies had inconclusive results. Regarding anesthesia duration involving PM and LLLT, the majority of studies exhibited notable reductions, although no significant differences were revealed in 1 study.

Conclusions. Vibration and LLLT appear to be advantageous methods in alleviating pain associated with local anesthesia administration. Phentolamine mesylate and LLLT are efficient in reversing local anesthesia.

Key words: LLLT, anesthesia, vibration, PBM, phentolamine

Background

Local anesthesia (LA) is a routine and essential aspect of dental treatment, and it plays a crucial role in ensuring a patient's comfort during various procedures. Patients may often experience fear and anxiety during dental appointments, primarily due to the discomfort or pain associated with the procedure or the needle administering LA before dental treatments. There is also an aspect of temporary numbness, which some patients find unpleasant, and because of its presence, dentists need to provide post-procedure guidelines and advise patients to avoid activities that could lead to oral injury due to the impaired sensation.

In recent years, researchers have introduced several methods designed to alleviate the pain and discomfort commonly linked to the application of LA. Concurrently, the duration and management of numbness after oral injections are also an area of interest for the researchers. There are various methods to administer LA, but the most common techniques used in research of the aforementioned subjects are; topical anesthesia, which when applied to the mucous membranes helps numb the surface before an injection^{1,3,11,12}; infiltration anesthesia, which is commonly used for procedures in the maxilla or treatments involving a single tooth or a small area of the mouth^{1,13}; and nerve block anesthesia, which is deposited in proximity to a major nerve plexus and usually used in treatment of the mandibular region.^{1,10}

Considering the pain that may be associated with the previously mentioned injection techniques, 2 notable methods that have gained attention for their potential to minimize pain and improve the overall dental anesthesia experience include vibratory stimuli and photobiomodulation (PBM). Applying vibration during the injection was investigated considering Gate Control Theory, which states that vibratory stimuli may activate large-diameter nerve fibers, which transmit signals faster than smaller pain fibers, and their activation may inhibit the transmission of pain signals, resulting in reducing the sensation of pain.^{3,4,11,14} Additionally, vibration serves as a distraction technique with the idea that the vibration sensation may reduce the perception of pain by diverting the patient's attention away from the injection.^{3,11} Photobiomodulation, also known as low-level laser therapy (LLLT) or laser therapy, involves the use of specific wavelengths of light to stimulate cellular processes. 15-19 In dentistry, it has been explored for its potential to reduce inflammation and promote tissue regeneration, and for its analgesic effects which can be useful in managing pain during and after dental treatment.²⁰⁻²³ It may include lower pain sensations when PBM is combined with injection of a local anesthetic agent. 15,16,24,25 As PBM induces vasodilation, it increases the microcirculation in the anesthetic region and may accelerate the elimination of LA.2,24

In the context of solely regulating the duration of numbness after dental anesthesia, researchers are examining the use of phentolamine mesylate (PM). It acts as a non-selective alpha-adrenergic antagonist, promoting vaso-dilation, which enhances regional blood flow at the site of injection, 6,7,10,26 thereby accelerating the clearance of the local anesthetic agent from the tissues and leading to a potential reduction in the duration of postoperative soft tissue numbness. 6-10

Objectives

There is no current published literature review that comprehensively synthesizes the existing research to evaluate the use of vibration or PBM for both pain reduction and acceleration of the elimination of anesthetic agents from the oral tissues and PM for reducing the duration of numbness after LA. This review aims to provide current insights into a multifaceted approach aimed at enhancing the patient experience during and after dental anesthesia. This involves optimizing the balance between effective pain management and minimizing the undesirable postoperative effects.

Materials and methods

Focused question

This systematic review followed the PICO framework as follows. PICO question: In dental patients undergoing LA (population), do interventions such as vibration, PBM, and PM (investigated condition) reduce pain and hasten the reversal of the LA effect (outcome) compared to conventional anesthesia administration (comparison condition)? (see Fig. 1).

Protocol

The selection process for articles in the systematic review was carefully outlined following the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) flow diagram (Fig. 2). The systematic review was registered on the Open Science Framework (OSF) under the following link: https://osf.io/k9vub.

Eligibility criteria

For studies to be considered for inclusion in this review, they needed to fulfill specific criteria. These included utilizing vibrations or LLLT to alleviate pain during anesthesia administration, incorporating PM to reverse anesthesia effects, conducting in vitro studies, examining dental anesthesia applications, featuring a control group, maintaining a sample size of 10 or more

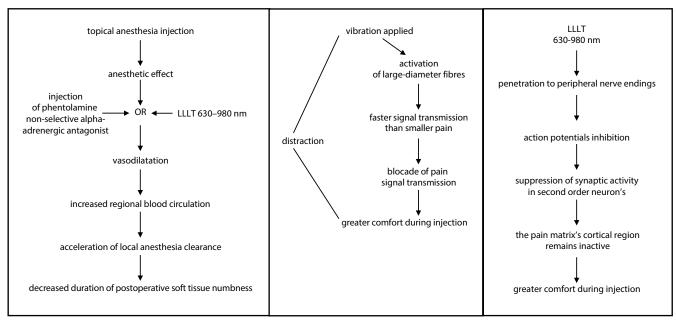


Fig. 1. The PICO framework

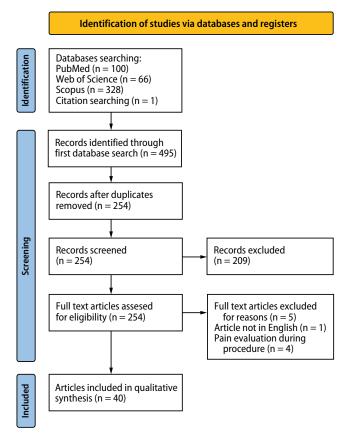


Fig. 2. The flow chart according to Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) quidelines

participants, being conducted in English, encompassing prospective case series, non-randomized controlled clinical trials (non-RCT), and randomized controlled clinical trials (RCT). On the other hand, the reviewers

collectively established exclusion criteria. The included studies lacking a control group, those with a sample size of fewer than 10 participants, investigations carried out on animals, papers not in English, clinical reports, systematic reviews, opinions, editorial papers, or review articles, publications lacking full-text accessibility, and duplicates. No restrictions were applied with regard to the year of publication.

Information sources and search strategy

In November 2023, an electronic search using PubMed, Scopus, and Web of Science (WoS) medical databases was performed. Key words were used as follows: "pain"; "anesthesia"; "phentolamine"; "vibration", "LLLT"; and "PBM". In the Scopus database, the results were refined to titles, abstracts, and key words. In PubMed and WoS, the results were narrowed down to titles and abstracts. Only articles with full-text access were included.

Data collection and selection process and data items

Data, including authors, titles and abstracts of all results, were downloaded as a PDF file. The obtained information was subsequently entered into a standardized Microsoft Excel 2013 file (Microsoft Corp., Redmond, USA).

Risk of bias assessment

During the initial stages of study selection, the title and abstract of each paper were independently reviewed by 3 authors (D.F., A.S. and N.G.) to minimize the risk of reviewer bias. The level of agreement among the researchers

was assessed using Cohen's kappa test. If unanimity was not achieved, the decision on inclusion or exclusion was made by a $4^{\rm th}$ independent reviewer.

Quality assessment

Three independent reviewers (D.F., A.S. and N.G.), meticulously evaluated the procedural quality of each study encompassed in the article. Their assessment centered around crucial facets linked to the utilization of vibrations, LLLT and phentolamine in mitigating the discomfort and pain associated with LA administration, while also exploring their impact on the duration of anesthesia. The evaluation of study design, implementation and analysis hinged on several critical criteria: The adherence of all procedures to the prescribed manufacturer guidelines for the respective intervention was mandatory. Every intervention was conducted singularly by a designated operator, ensuring consistency and minimizing potential variability. The determination of the sample size was not only clearly elucidated but also justified comprehensively. Patients incorporated into the studies were exclusively those undergoing planned treatment without any emergent conditions, thereby ensuring a controlled and consistent participant profile. Moreover, the sample sizes surpassed the threshold of 10 patients/participants, thereby ensuring statistically significant power for the findings; a detailed and comprehensive depiction of the anesthesia employed was obligatory, encompassing its type, dosage and method of administration. Efforts were undertaken to blind the patients involved, mitigating potential biases in the reporting of outcomes. The scoring of studies adhered to a scale ranging from 0 to 9 points, with a higher score indicative of superior study quality. The assessment of bias risk scores was categorically classified into 3 groups: 0-3 points, signifying a high risk; 4-6 points, indicating a moderate risk; and 7–9 points, representing a low risk. Any discrepancies in scoring were meticulously resolved through extensive discussions until a consensus was collectively reached.

Results

Study selection

After conducting an initial search across three databases and eliminating duplicate entries, a total of 254 articles were initially identified as eligible for inclusion in the literature review. Following a preliminary assessment of the article titles and abstracts, 209 articles were excluded. Among the remaining 45 articles, 1 was eliminated because it was originally not in English, and 4 articles were excluded due to their incomplete relevance to the reviewed topic. Ultimately, 40 articles met the criteria for inclusion in the systematic review, all of which were clinical trials.

Effect of vibration

Investigations focused on assessing the efficacy of different vibrating devices (DentalVibe, Vibraject VAI, modified battery-powered shaver, sonic-powered toothbrush, Ho-Medics Atom massager, specialized Buzzy external tool) and dental instruments in alleviating patient discomfort associated with LA. In 13 of the included studies, a specialized wireless, rechargeable, handheld vibratory dental tool known as DentalVibe (DV) was employed. 3,12,13,27-36 In the research of Felemban et al., ³ Erdogan et al., ¹³ Raslan and Masri,³⁰ and Ramezani et al.,³⁵ a DV vibratory stimulus was used without the preceding desensitization of the mucosa with topical anesthesia. Hassanein et al.29 similarly administered vibration, but the vibration-assisted injection was preceded by topical anesthesia with 20% benzocaine gel. Felemban,³ Erdogan et al.,¹³ and Raslan and Masri³⁰ found no statistically significant differences between the study and control groups. A significant difference in pain scores between the study and control groups, regardless of the injection method, was revealed in the study conducted by Ramezani et al.³⁵ With assumptions aligning with the aforementioned researchers, Joshi et al., 31 Dak-Albab et al., 32 Ching et al.,33 and Salma et al.34 evaluated the effectiveness of vibration in comparison with topical anesthetic gel and found significantly lower rates with vibration than anesthetic gel. In a comparative split-mouth clinical study by Shaefer et al.,²⁷ Nasehi et al.²⁸ and Tung et al.,³⁶ notable distinctions were presented, with the non-vibration group revealing higher scores for pain across all nerve blocks.

Albouni et al.³⁷ showed higher visual analogue scale (VAS) scores with the conventional injection (CI) method compared to the vibraject-assisted injection (VAI) method in all groups. Moreover, Hegde et al.11 indicated significantly less pain in children using a special toy compared to conventional methods according to the Face, Leg, Activity, Cry, Consolability (FLACC) scale, Wong-Baker Pain Rating Scale and heart rate. In turn, Hutchins et al.³⁸ used a vibration stimulus produced by a modified batterypowered shaver compared to topical anesthetic in reducing pain during oral injections. The findings showed a notable difference in pain levels using 20% benzocaine across 2 categories: buccal anesthetic vs placebo and both buccal and palatal anesthetic vs placebo. In a study conducted by Bagherian and Sheikhfathollahi, 39 the authors investigated 48 children who received contralateral IANB or primary maxillary molar infiltration injections using cotton-roll vibration (topical anesthesia gel, cotton roll and vibration) and traditional methods as a control. The results showed significantly lower scores compared to the control method. A study by Gandhi et al.40 found a statistically significant difference between the mucosal vibration group and the topical gel group in terms of Sound, Eye, Motor scale (SEM) and Wong-Baker FACES Pain Rating Scale (WBFPS) rates. The pain reaction assessed by Aminabadi et al.41 in the topical anesthesia group was significantly higher than in the other 2 groups (soft tissue vibration (C) and soft tissue vibration with a distraction exercise (C + SA), with pain being significantly less exhibited in the C + SA than in the C group.

Nanitsos et al.⁴² proposed the use of a HoMedics Atom massager to apply vibration during LA. The assessment of pain using a VAS and McGill pain descriptors showed significantly lower mean rates on the vibration side during injections. The results of the study conducted by Meghana and Anjaneyulu⁴³ indicated that infiltration with topical anesthesia demonstrated the least pain perception, while infiltration without topical anesthesia and vibration resulted in higher pain scores, as supported by VAS assessments. Four studies^{4,44–46} explored the synergistic effects of combining vibration and cold to alleviate pain during dental anesthesia using a specialized Buzzy external tool. Sahithi et al.⁴⁵ reported a significant decrease in pulse rate post-intervention and a reduction in Venham's Clinical Anxiety Rating Scale (VCARS) scores, indicating reduced anxiety, as well as a more pronounced reduction in discomfort during needle insertion, according to WBFPS and VAS scores. AlHareky et al.4 demonstrated a significant decrease in pain post-injection compared to the control group, as indicated by VAS and FLACC scales, with no significant differences observed using the SEM scale. In the study by Marwah et al.,44 only FLACC presented a statistically significant difference between groups, while in the study by Bilsin et al.,46 the WBFPS demonstrated a notable contrast in favor of the vibration device.

Effect of photobiomodulation

Nowadays, researchers have been exploring PBM LLLT as a potential solution for pain reduction during anesthesia in the field of dentistry. ^{2,24,47–52} Part of these studies aim to not only illuminate its efficacy in pain management but also explore its potential to enhance microcirculation and accelerate the elimination of local anesthetics. ^{2,24}

In research by Jagtap et al.,⁴⁷ a significant statistical difference in VAS scores was found between the laser and placebo conditions in reducing pain caused by local anesthetic injections in 25 adult patients. Dehgan et al.⁴⁸ and Elbay et al.,⁴⁹ in a clinical trial involving 160 children, aimed to evaluate the impact of PBM, delivered by a 940 nm diode laser, in combination with 10% lidocaine topical anesthetic on pain experienced during LA injections. The results by Dehgan et al.⁴⁸ showed significantly lower pain scores in the groups receiving PBM compared to the placebo group. However, there was no significant difference observed among the 3 PBM groups. A study by Elbay et al.⁴⁹ showed no significant difference in injection pain among the groups.

Sharifi et al.⁵⁰ designed a triple-blind clinical trial involving 84 patients, which revealed a significant reduction in pain when LLLT was used compared to conventional injection. In a clinical trial by El Feghali et al.,⁵¹

no significant differences in VAS pain scores between groups were found, but the results in the Verbal Rating Scale (VRS) showed significantly higher ratings of taste, undesirable numbness and overall satisfaction in the study group than in the control group. The study by Tuk et al.⁵² involved 163 patients and showed significant differences in sweating rate in the extractions located in the mandibular region during maxillary or mandibular third molar anesthesia. Uçar et al.²⁴ revealed significantly lower PRS scores on the laser therapy side compared to the control side in a group of 60 children who required a bilateral pulpotomy in mandibular first primary molars. Annu et al.² demonstrated that the mean soft tissue LA reversal time duration was significantly shorter, with 660 nm wavelength therapy being more effective. Similar findings were obtained by Seraj et al.53 in patients who received 810 nm laser irradiation 45 min after anesthesia injections.

Effect of phentolamine mesylate

Since the possibility of the use of PM in dentistry was noticed, researchers have made efforts to assess how the use of this non-selective alpha-adrenergic antagonist accelerates the disappearance of numbness and discomfort after dental anesthesia.

Tavares et al.⁷ and Nourbakhsh et al.⁹ researched the impact of PM on the duration of soft tissue anesthesia and the occurrence of soft tissue trauma following mandibular block injections in children aged 4–11. Tavares et al.⁷ demonstrated a substantial reduction in recovery time (60 min in the PM group vs 135 min in the control group) and reported no differences in adverse events or vital signs. Nourbakhsh et al.⁹ not only confirmed a significant decrease in recovery time but also introduced additional outcomes showing notable differences in the incidence of soft-tissue trauma in 43 patients divided into case and control groups.

Fowler et al.⁸ and Shadmehr et al.²⁶ demonstrated the efficacy of PM in hastening soft-tissue recovery. Gago-Garcia¹⁰ et al., based on data from 90 participants, claimed that the use of PM alongside 3 different substances (lidocaine, articaine and bupivacaine), compared to the average duration for each anesthetic, exhibited a strong potential to shorten the duration of anesthesia, with a particularly notable decrease observed when paired with bupivacaine. Similarly, the study by Michaud et al.,⁶ which enrolled 40 adult participants, showed that PM injection significantly reduced the duration of soft tissue anesthesia in the lower lip and tongue, additionally hastening the recovery of function and reducing the time needed for smiling, drinking and speaking. General and detailed study characteristics are presented in Table 1 and Table 2, respectively.

Quality assessment

Out of the articles included in this review by 5 independent reviewers (D.F., A.S., N.G., and A.O.),

Table 1. General characteristics of included studies

Study	Aim of the study	Materials and methods	Results	Conclusions
Annu et al., 2023 ²	Comparison of photo- biomodulation (PBM) therapy at 660 and 810 nm wavelengths on the reversal of local anesthesia.	A group of 60 children (mean age: 73 months) was divided randomly into 3 equal groups. 45 min after IANB: The control group received no laser irradiation. The 2 nd group underwent photobiomodulation therapy at 810 nm. The 3 rd group underwent PBM at 660 nm. Reversal of local anesthesia tests: Palpation technique to check the numbness of lower lip, the pin prick test.	Reduction of the mean soft tissue local anesthesia reversal time duration by 55.5 min and 69 min with PBM at 810 nm and 610 nm wavelength, respectively. A statistically significant difference in the reversal time duration between the control group and the study group, between the 810 and the 660 nm LASER groups.	Both photobiomodulation (PBM) therapy at 660 and 810 nm wavelengths affected the mean soft tissue local anesthesia reversal time duration significantly. Photobiomodulation (PBM) therapy at 660 wavelengths was found to be more effective.
Felemban et al., 2021 ³	Assessment of vibration in reducing pain linked to LA compared to the conventional injection.	A group of 60 children was divided randomly into 2 groups. Before buccal infiltration anesthesia (BIA): The control group (31) received traditional BIA; the test group (29) received vibration with BIA. Pain assessment scales: FLACC scale by 2 external evaluators, the validated Arabic version of the Wong–Baker FACES scale, rating pain on a scale from 0 to 10 by subjects.	Regardless of age and treatment group, girls consistently maintained significantly higher average scores on both the FLACC and the Wong– Baker FACES scales than boys.	The utilization of DentalVibe did not significantly affect pain, discomfort, or time during buccal infiltration anesthesia (BIA) in pediatric patients when compared to the traditional method.
AlHareky et al., 2021 ⁴	Evaluation of the impact of device administering cold and vibrations during buccal infiltration injection.	A group of 51 children was divided randomly into 2 groups. Before anesthesia: Group 1: topical anesthesia of 20% benzocaine gel for 15 s. Group 2: cold + vibration, that remained active throughout the entire injection process. Pain assessment scales: visual analogue scale (VAS) by the child "behavioral/observational pain scale" by present parents, the Sounds, Eyes, and Motor (SEM) scale and FLACC scale by an external evaluator.	The VAS scale and the FLACC scale presented significant differences in post-injection pain in the study group than control. No significant difference observed using the SEM scale.	The use of external cold and vibrating devices is effective in diminishing the pain and anxiety among children undergoing infiltration dental anesthesia.
Michaud et al., 2018 ⁶	Evaluation of the effect of phentolamine mesylate on the duration of soft tissue anesthesia.	Forty participants were randomized into 2 groups, and in both groups, IANB was performed. Study group received phentolamine mesylate (PM) injection and the control group received an injection of sterile saline water.	Comparing to the control group, PM injection resulted in reduced duration of soft tissue anesthesia. In the lower lip: 66 min reduction In the tongue: 51 min reduction In terms of recovery of function, the reduced time was: for smiling: 55 min reduction for drinking: 66 min reduction for speaking: 68 min reduction.	Study showed that PM injection after performing IANB resulted in faster return to normal soft tissue sensation and function.
Tavares et al., 2008 ⁷	Assessing the safety and adverse effects (AEs) (primary objective) and effectiveness (secondary objective) of a phentolamine mesylate (PM) formulation as a local anesthesia reversal agent for pediatric patients.	A total of 152 pediatric patients randomized into 2 groups: 72 subjects receiving PM injection, 43 patients in control group with sham injection. The observation for safety and efficacy assessments was 4 h. Adverse events were categorized to severity (mild, moderate or severe). The duration of the LA measurement 6–11-year-olds group (4–5-year-olds were excluded) palpation technique.	A 60% and 55.6% reduction in the median time for the return of normal tongue and lip sensation, respectively. Thirty-seven AE reported, 36 mild or moderate, 1 severe.	Phentolamine mesylate injections exhibited no serious adverse effects. Phentolamine mesylate shortened the duration of soft tissue anesthesia in children in both the maxilla and mandible.

18 studies were considered of high quality (with a score of 7–9 points). $^{2,3,6,8-10,13,24,26,27,30,33,46-49,51,53}$ Three studies 35,36,40 were classified as low-quality (0–3 points). Additionally, 19 studies were considered to have a moderate risk of bias, scoring between 4 and 6 points $^{4,7,11,12,28,29,31,32,34,37-39,41-45,50,52}$ (Table 3).

Discussion

Pain management is a crucial element in building positive attitudes and cooperation between patients of different ages and dentists. ^{3,4,11,14} Although LA is commonly used

Table 1. General characteristics of included studies – cont.

Study	Aim of the study	Materials and methods	Results	Conclusions
Fowler et al., 2011 ⁸	Exploring the efficacy of phentolamine in reversing soft-tissue anesthesia.	Eighty-five adults with asymptomatic teeth in need of endodontic therapy were randomly assigned to receive either phentolamine or a sham treatment after the treatment with LA. Pain levels assessment at the injection site and in the tooth every half-hour during the initial 2 h, then every hour for the subsequent 3 h: VAS. Anesthesia reversal: Palpation technique at 15-min intervals for 5 h.	Phentolamine effect compared to the sham group: Maxillary, lip/cheek Disappearance of numbness: 35 min faster Return-to-normal sensation: 88 min faster Mandibular lip Numbness: 24 min faster Sensation: 47 min faster Tongue Numbness: 24 min faster Sensation: Not significantly reduced	Phentolamine presented quicker return of normal soft-tissue function and sensation following local anesthesia.
Babaei et al., 2011 ⁹	Evaluation of the LA duration after phentol-amine mesylate (PM) distribution and the occurrence of soft-tissue trauma following this type of injections.	Split-mouth study including a group of 60 children was divided randomly into 2 equal groups. 30 min after LA: First group received PM. The 2 nd group received sham injection. On the next visit the contralateral side was treated conversely. Palpation technique to check anesthesia duration. Monitoring of the safety, efficacy, and soft-tissue trauma every 15 min for 3–5 h. Vital signs were recorded 30 min after anesthesia and every 1 h.	Group 1: Sensation of soft tissue with PM injection was 29.47 min, and without – 135.52 min. Group 2: sensation of soft tissue with PM injection was 33.12 min, and without – 106.04 min. Statistically significant difference in time of return of a normal lip sensation between case and control groups. 19% of patients (8) without PM injection and 2% – 1 patient after PM injection (statistically significant) traumatized their lips a few hours after treatment. No trauma to tongue and cheek was found.	Use of PM can be beneficial to reduce the duration of LA in children needing dental procedures and can lower the incidence of soft-tissue trauma connected to dental anesthesia.
Gago-García et al., 2021 ¹⁰	Evaluation of the phentolamine mesylate (PM) distribution on anesthesia duration within 3 distinct local anesthetics, comparing it to the average duration for each individual anesthetic, and between all 3 types of anesthetics.	A group of 90 individuals was divided randomly into 3 equal groups: Group 1: lidocaine 2% 1/80000; Group 2: articaine 4% 1/200000 Group 3: bupivacaine 0.5% 1/200000. The untreated side served as the control. IANB was performed. After treatment PM was administered with a 1:1 ratio of anesthesia to reversal agent. Patients marked boxes for 15-min intervals after the reversal agent injection to note sensations: numbed, tingling or normal. Postoperative pain evaluation: The Heft-Parker visual analogue scale.	The average duration of anesthesia after injection of phentolamine mesylate: Group 1: Lip – 59.6 min, tongue – 52.5 min, normative value – 180 min. Group 2: lip – 88.5 min, tongue – 84.5 min, determined normative value – 258 min. Group 3: lip – 249 min, tongue – 214 min, normative value – 460 min.	Phentolamine mesylate has the potential to decrease the duration of anesthe- sia when used alongside various local anesthetics, especially bupivacaine.
Hegde et al., 2019 ¹¹	Comparison of pain, anxiety and behav- ioral perception when administering local anesthesia with and without a vibrating and distracting toy.	A split-mouth study including a group of 30 children separated randomly into 2 equal groups 1: 6–8-year-olds, 2: 9–11-year-olds. Before injection of anesthesia the 1 st group received vibration and at the 2 nd appointment – conventional topical anesthesia. Group 2 inversely. Pain assessment scales: The Face, Legs, Activity, Cry, Consolability (FLACC) scale, pulse rate, the Wong–Baker faces pain rating scale (WBFPRS).	Statistically significant differences between conventional and device methods in pulse rate during treat- ment, FLACC and WBFPRS scores in both age groups.	These results suggest the device's effectiveness in decreasing pain across different age groups, lead- ing to improved clinical outcomes.
Shilpapriya et al., 2015 ¹²	Comparison between the effectiveness of Dental Vibe® and topical local anesthetic in pain reduction	Split-mouth study including 30 children. Before anesthesia they were split into: Control group using topical anesthetic study group using DentalVibe during the 1 st appointments. The other method was used at the 2 nd appointment. Pain assessment scale: Universal pain rating scale.	Statistically lower mean pain scores were exhibited in the study group compared to the control group.	DentalVibe serves as a beneficial tool before dental injections, relieving pain and stress.

Table 1. General characteristics of included studies – cont.

Study	Aim of the study	Materials and methods	Results	Conclusions
Erdogan et al., 2018 ¹³	Assessing the efficacy of a Vibratory Stimula- tion Device for intraoral local anesthesia admin- istration.	Thirty-one participants received local anesthesia infiltration at the right maxillary incisors' apical region. They were randomly assigned to either conventional infiltration or conventional infiltration with DentalVibe. A 2-week interval between procedures. Pain assessment scales: VAS and WBFPRS.	No significant differences between groups.	The use of the vibration did not show any significant decrease in the perceived pain level linked to the administration of local anesthetic via maxillary anterior infiltration.
Uçar et al., 2022 ²⁴	Evaluation of LLLT on pain during anes- thesia administration, anesthesia efficacy and duration time of anes- thesia.	Split-mouth study including a group of 60 children (mean age 7.11 ±1.12 years). Before injection: One side with topical anesthesia application and LLLT (810 nm diode laser). Opposite, control side with topical anesthesia application and placebo laser use. A 4–7 days interval between procedures. Pain assessment scales: WBFPRS – pain during injection of a needle and deposition of anesthetic solution; FLACC scale – anesthesia efficacy.	Injection pain significantly lower on the LLLT side than on the placebo side according to the WBFPRS scale but not the FLACC scale. Anesthesia efficacy and duration time not modified by LLLT. No pain response rate in relation to anesthesia efficacy higher on the LLLT side than on the control side.	Low-level laser therapy has an impact on alleviating in- jection pain; however, it did not affect anesthesia efficacy and duration time.
Shadmehr et al., 2019 ²⁶	Evaluation of the LA duration after phentol- amine mesylate (PM) distribution.	A group of 100 patients diagnosed with symptomatic irreversible pulpitis in their first or second mandibular molars were assigned to receive either OraVerse or a placebo following a treatment. Pain assessment scales: The Heft–Parker visual analogue scale – before and at 6, 12, 24, 36, 48, and 72 h after treatment. Soft-tissue anesthesia was monitored every 15 min for 5 h.	PM group: Lip sensation in about 120 min and tongue sensation in about 103 min. The control group: Lip sensation after around 152 min and tongue sensation after around 174 min. Patients administered phentolamine exhibited notably increased pain scores at 6- and 12-h intervals. The use of analgesics notably higher in the OraVerse group compared to the control group.	Despite phentolamine expediting the return of regular soft tissue sensation, it heightened postoperative pain in patients with symptomatic irreversible pulpitis, potentially restricting its administration within this patient group.
Shaefer et al., 2017 ²⁷	Evaluate DV3 device mediation of injection discomfort during LB block and IANB without topical anesthetic, compared to the routine operator manipulation. Measure DV3's impact on the time required for complete anesthesia during an IANB.	Sixty volunteers. Bilateral intraoral LB block on one side using the DV3 device, while control injections involved routine operator manipulation. Subjects randomly divided into equal groups for IANB: One group with vibration and control without. Pain assessment scale: VAS, modified symptom severity index (SSI). Complete mandibular anesthesia duration post-IANB: A cold test on specific teeth.	Subjects receiving DV3 during the injection exhibited notably lower VAS scores. The mean numb time did not significantly differ be- tween DV3 and non-DV3 groups.	The DV3 notably decreased discomfort during dental injections. However, its usage did not impact the duration for achieving complete mandibular anesthesia.
Nasehi et al., 2015 ²⁸	To assess the pain experienced during LA using a vibrating intra-oral device (DentalVibe).	Ninety-nine subjects (mean age 39.18 ±17.45 years) underwent local anesthetic injections on each side of the oral cavity, randomly either with or without a vibration device. Anticipated and actual pain assessment: VAS scale.	The mean VAS scores for anticipated and actual pain significantly differed between study and control group with higher scores in the non-vibration group across all nerve blocks. Control group: No significant difference between anticipated and actual pain. Study group: Significantly lower actual pain scores than for anticipated pain in specific nerve blocks, no significant difference for palatal injections.	The vibration proved to be an effective method for relieving the clinical pain experienced during local anesthetic injections.
Hassanein et al., 2020 ²⁹	Evaluation of vibration effectiveness in mini- mizing pain during local anesthesia comparing it to traditional injection methods.	Split-mouth study including 60 patients randomized into 2 equal groups. Group I: Injection with vibra- tion. Group II: Traditional injection with topical anesthetic. A 2-week interval between procedures. Pain assessment scales: FACES Pain Rating scale, FLACC scale.	FACES Pain Rating Scale, FLACC Scale: There is a significant differ- ence between study and control groups in self-reported pain.	Vibration during local anesthetic injections is more effective in reducing pain than traditional methods (with topical gel) in pediatric dental patients.

Table 1. General characteristics of included studies – cont.

Study	Aim of the study	Materials and methods	Results	Conclusions
Raslan and Masri, 2018 ³⁰	Comparison of perceived pain level during 3 types of anesthesia with and without vibration.	A group of 40 children (mean age 8.2 ±1.8 years) was enrolled into the study. Pain assessment during buccal and palatal infiltration on the maxilla and IANB on the mandible was performed. Each anesthesia on both sides of the arches with and without vibration. 6 injections during 4 visits. Pain assessment scales: WBFPRS, FLACC scale.	Pain scores did not differ significantly in all 3 methods according to both pain scales.	Pain perceived by children during 3 types of anesthesia did not differ regardless if vibration technique was used or not.
Joshi et al., 2021 ³¹	Evaluation of the effectiveness of vibration on decreasing the pain during anesthesia in comparison with topical gel.	Split-mouth study including a group of 50 adults (mean age 25.06 ±7.32 years). Before IANB: One side received a vibration. Opposite, the control side received topical anesthesia. Pain assessment scale: VAS.	Mean pain rate significantly lower on the vibration side than on the control side.	Application of vibration reduces the pain perceived by patients during local anesthesia more effectively than topical anesthesia.
Dak-Albab et al., 2016 ³²	Evaluation of the effectiveness of vibration on decreasing the pain during anesthesia compared with topical gel.	Split-mouth study including a group of 30 children. Before injection: One side received a vibration. Opposite, the control side received topical anesthesia. A 1- or 2-week interval between procedures. Pain assessment scale: FLACC scale.	Mean pain rate significantly lower on the vibration side than on the control side. Significant differences in F, L and C components between vibration and topical gel sides.	Application of vibration reduces the pain perceived by patients during local anesthesia better than topical anesthesia.
Ching et al., 2014 ³³	Comparison of per- ceived pain during anesthesia between vibration and traditional techniques.	Split-mouth study including a group of 36 children (mean age 14 years). Before injection: One side received a vibration. Opposite, the control side received just local anesthesia. Pain assessment scales: WBFPRS.	Mean pain rate significantly lower in the vibration group than in the control group.	Vibration reduces pain perceived during anesthesia more effectively than tradi- tional method.
Salma et al., 2021 ³⁴	Evaluation of vibration on reducing pain during anesthesia application.	Split-mouth study including a group of 166 adults (mean age 28.4 ±7.1 years). Before injection: One side received a vibration. Opposite, the control side received topical anesthesia. A 3-week interval between procedures. Pain assessment scale: VAS scale, during needle insertion (PP), midinjection pain (MIP). Heart rate: Baseline heart rate (BHR), penetration heart rate (PHR), and midinjection heart rate (IHR).	VAS scale: Median pain rates were lower in the study group than in the control: 43% less at penetration; 67% less during injection. Significantly lower pain during injection and anesthetic deposition in study group than control group. Heart rate: A. Per side Pain rates significantly higher during penetration than mid injection in both groups. Significantly higher increase in heart rate at penetration than during injection in both group vs control group. B. Study group vs control group Significantly lower pain during injection in study group than control group. Significantly lower increase in heart rate in study group than control group. In control group pain rates at penetration and during injection were significantly different according to the: LA technique – values higher for IANB; gender – values higher in women.	Vibration has a pain-reduc- ing effect during anesthesia administration compared to conventional methods.
Ramezani et al., 2017 ³⁵	Effect of vibration on pain perceived dur- ing local anesthesia.	Split-mouth study including a group of 36 children (mean age 5.7 years). Before injection: One side received a vibration. Opposite, the control side received a placebo. Pain assessment scales: WBFPRS.	Significant difference in pain scores between study and control group. No difference in pain scores in terms of age, gender or injection type.	Vibration is an effective method of decreasing pain during anesthesia.

Table 1. General characteristics of included studies – cont.

Study	Aim of the study	Materials and methods	Results	Conclusions
Tung et al., 2018 ³⁶	Comparison between the effectiveness of vibration, manual stimulation and conventional anesthesia on decreasing the pain during administration of LA.	A group of 150 children (age 5–7 years). Control group: 11.1 ±2.4. Manual stimulation group 10.7 ±2.2 vibration group 11.1 ±2.3 years) was divided randomly into 3 equal groups. Before injection: The control group received just local anesthesia, the 1st study group – manual stimulation, the 2nd study group – vibration. Pain assessment scales: WBFPRS. Heart rate	No significant differences regardless of injection type. Mean pain rate significantly lower in the vibration group than control and manual stimulation group. No significant difference in pain scores between control and manual group. Significant difference in pain scores between vibration group and manual group. No significant differences in heart rate between groups.	Vibration is significantly more effective in decreasing pain during anesthesia than manual stimulation and con- ventional methods.
Albouni et al., 2022 ³⁷	Comparing the pain levels between tradi- tional syringe injections (CI) and those assisted by Vibraject technology (VAI – vibraject assisted injections).	A group of 75 children was divided randomly into 3 equal groups. I: Upper buccal infiltrations (UBI), II: Posterior palatal infiltrations (PPI) III: IANB All received both conventional and vibration-assisted injections in separate dental visits 2 weeks apart. Pain assessment scales: The VAS and FLACC scales.	Significant differences in VAS score between conventional CI and VAI syringe in Groups I, II, and III with higher VAS scores associated with the CI. In the FLACC scale, "mild" and "moderate" pain responses were significantly higher with VAI, while "severe pain" responses were significantly higher with CI.	VibraJect-assisted injection was more effective in minimizing pain during all 3 methods of local anesthetic administration in clinical dental procedures for children.
Hutchins et al., 1997 ³⁸	Comparison of the effectiveness of vibration and topical anesthetic in reducing the pain felt during oral injections of local anesthesia.	A double-blind study consisted of 61 patients receiving a combination of topical anesthetic or placebo with or without 1-min vibration. The location of the injection was the palatal and buccal side of both maxillary 1st premolars. Pain assessment scale: A 5-point scale where 0 described no pain, 1 – mild pain, 2 – moderate pain, 3 – distressing pain, 4 – horrible pain, 5 – unbearable pain.	The use of topical anesthesia leads to a reduction in pain values across 2 categories: Buccal anesthetic vs placebo and both buccal and palatal anesthetic vs placebo. The presence of vibration alone or in the combination with anesthetic, the placebo alone and placebo plus vibration did not exhibit a statistically significant correlation with the pain level.	The topical anesthetic demonstrates a reduction in pain values, although the clinical relevance remains uncertain. The application of vibration appears to have limited effectiveness; however, exploring its other variations, using vibration during, not before the injection process or the use of a more effective vibration transfer could enhance its efficacy.
Bagherian and Sheikhfathollahi, 2016 ³⁹	Children's behavioral responses to local anesthetic injections with the cotton-roll vibration method in comparison to the conventional topical anesthesia.	Forty-eight children (mean age 5.94 ±1.88 years) received contralateral IANB or primary maxillary molar infiltration injections randomly using cotton-roll vibration (topical anesthesia gel, cotton roll, and vibration) and control (routine topical anesthesia) methods. Each child received the alternate method on the other side in the next session. Pain assessment scales: FHFHTC scale, producing total scores from 0 to 18.	Regardless of gender, age and area of local anesthesia, the cotton-roll method showed significantly lower mean FHFHTC pain reaction scores compared to the control method.	The cotton-roll technique proves to be more effective than standard topical anesthesia in reducing children's behavioral pain responses. Topical anesthesia may provide greater psychological impact than pharmacological effects in reducing children's behavioral pain reactions.
Gandhi et al., 2008 ⁴⁰	Effectiveness of vibration in minimizing pain during local anesthetic injections comparing to lignocaine jelly.	A group of 30 children.1-visit procedure: Application of topical anesthesia, traditional injection. 2-appointment procedure after 4–5 days on the contralateral side of the arch: Application of the mucosal vibrator before, during local anesthetic administration to the injection site and continued after needle removal. Pain assessment scales: The SEM scale, WBFPRS.	WBFPRS and SME scales. There is a statistically significant difference between the mucosal vibration and the topical gel group.	Using a vibration method during local anesthetic injections is more effective in reducing pain than traditional methods (with topical lignocaine gel) in pediatric dental patients.
Aminabadi et al., 2008 ⁴¹	Evaluate the efficacy of counterstimulation and distraction on pain during intraoral injection in pediatric patients.	A group of 78 children (mean age: 4.72 years) was divided randomly into 3 equal groups. Before IANB: Soft tissue vibration (C + SA), soft tissue vibration with distraction exercise (CD + SA), topical anesthesia (SA). Pain assessment scales: SEM scale.	Pain reaction in SA group signifi- cantly higher than in C + SA and CD + SA groups. Pain significantly less exhibited in CD + SA group than in C + SA group.	Both counter stimulation and distraction may effec- tively reduce pain.

Table 1. General characteristics of included studies – cont.

Study	Aim of the study	Materials and methods	Results	Conclusions
Nanitsos et al., 2009 ⁴²	Evaluation of the effectiveness of vibration on decreasing the pain during anesthesia.	Split-mouth study including a group of 62 adults (mean age 45 years). Before IANB, mandibular or buccal infiltration: One side received vibration. Opposite, the control side received no vibration. Pain assessment scales: VAS, McGill pain descriptors.	Statistically significant difference between anticipated and actual pain for block and infiltration injections. VAS: Mean pain rate significantly lower on the vibration side than on the control side during infiltration and IANB injections, as well as for each of these injections separately. McGill pain descriptors: Mean pain rate during injections significantly lower on the vibration side than on control side.	Application of vibration reduces the pain perceived by patients during local anesthesia.
Meghana Reddy, 2020 ⁴³	Comparison between vibration and topical gel on decreasing the pain during anesthesia.	A group of 10 patients who required dental treatment in the 3 quadrants was enrolled into the study. Before infiltration: One quadrant received vibration; one quadrant received topical anesthesia with benzocaine 20% gel; the control side received just local anesthesia. Pain assessment scale: VAS.	Mild pain for topical gel application + anesthesia. Moderate pain for vibration + anesthesia. Severe pain for the anesthesia alone.	Topical anesthesia is better than vibration in decreasing pain during anesthesia.
Marwah et al., 2020 ⁴⁴	Assessing patients' pain perception and comfort during the administration of local anesthesia by comparing the Buzzy system to the conventional syringe.	Fifty children were randomly separated into 2 groups: 1st group had LA administered using conventional syringe; 2 nd group had Buzzy (vibration + cold) followed by administration of LA. Pain assessment scale: WBFPRS, pulse oximeter, FLACC scale.	The pulse rate, oxygen saturation levels and WBFPRS exhibited statistically insignificant results. The FLACC scale: Significantly higher score in the conventional than Buzzy group.	The combination of external cold and vibration can alleviate pain and anxiety experienced during the administration of local anesthesia.
Sahithi et al., 2021 ⁴⁵	Evaluation of the external vibrating tools and counterstimulation effectiveness in reducing a child's dental anxiety and pain perception when receiving local anesthetic.	A group of 100 children was divided randomly into 2 equal groups: Group BD received vibration; Group CS received counterstimulation. Anxiety levels evaluation: Venham's Clinical Anxiety Rating Scale (VCARS), Venham Picture Test (VPT), and a Pulse oximeter. Pain assessment scales: WBFPS, VAS before, during, and after the administration of local anesthesia.	Post-intervention pulse rate measurements significantly decreased, indicating reduced anxiety, particularly notable in the BD group. The BD group exhibited a more pronounced reduction in pulse rate and subjective discomfort (WBFPS, VAS) during LA needle insertion compared to the CS group. VCARS scores showed a reduction only in the BD group.	Vibrating external stimula- tion demonstrated superior efficacy compared to coun- terstimulation in reducing needle-related anxiety among pediatric patients.
Bilsin et al., 2020 ⁴⁶	Evaluation of the effectiveness of external cooling and vibration on decreasing the pain during anesthesia.	A group of 40 children (mean age 9.36 ±1.12 and 9.20 ±0.92 years for the control and study group, respectively) was divided randomly into 2 equal groups. In the study group external cold and vibrating device were used 2 min prior and during injection. In the control group anesthesia was performed without any additional application. Pain assessment scales: WBFPRS.	Mean pain score presented statistically significant difference between both groups. The mean age of the subjects negatively correlated with the mean scores of pain in both groups. A significant difference in pain rates between positive and definitely positive behaviors in control group.	Application of external cooling and vibration reduces the pain perceived by patients during anesthesia.
Jagtap et al., 2019 ⁴⁷	Assessment of LLLT impact on the reduction of pain caused by local anesthetic injections.	Twenty-five patients (18–60-year-olds). Bilateral anesthesia was administered. The sites were divided into Condition A – LLLT 660-nm side and Condition B – Placebo side (without LLLT). Pain assessment scale: VAS scale.	Statistically significant difference in pain perception between the laser and placebo groups.	This study indicated a reduced perception of pain in the laser condition compared to the placebo condition.

Table 1. General characteristics of included studies – cont.

Study	Aim of the study	Materials and methods	Results	Conclusions
Dehgan et al., 2022 ⁴⁸	Evaluation of photobio- modulation used with different laser doses on reducing pain during anesthesia.	A group of 160 children (mean age 7 ±1.12 years) was divided randomly into 4 equal groups. Before anesthesia: 1st, 2nd and 3rd group received photobiomodulation at wavelength of 940 nm for 20 s with a power of 0.3 W, 0.4 W and 0.5 W, respectively. The control group with placebo application of laser. Pain assessment scales: WBFPRS, FLACC scale.	WBFPRS, FLACC scale scores. Significantly lower pain scores in the allstudy groups than in the placebo group. No significant difference in the pain scores according to WBFPRS scale between the study groups.	Pain perceived during injection is reduced with the application of the photobiomodulation therapy prior to the injection regardless of the used dose in comparison to traditional method.
Elbay et al., 2022 ⁴⁹	Evaluation of photobio- modulation used with different laser doses on reducing pain during supraperiosteal anes- thesia and comparison of pain reduction during injection with and without photobio- modulation.	A group of 160 children (mean age 8.56 ±1.68 years) was divided randomly into 4 equal groups. Before anesthesia: 1 st, 2 nd and 3 rd group received photobiomodulation at wavelength of 940 nm and a power of 0.3 W for 20, 30 and 40 s, respectively. The 4 th group (control group) received a placebo application of laser. Pain assessment scales: WBFPRS, FLACC scale.	No significant differences between groups.	Pain perceived during injection did not differ between control group and photobiomodulation groups.
Sharifi et al., 2022 ⁵⁰	Evaluation of LLLT with 810–980 nm wave- lengths on pain during injection.	Split-mouth study including a group of 84 adults (mean age 24.76 ±2.63 years). Prior to the in- jection: One side received LLLT. Opposite, the control side received a placebo. A 14-day interval between procedures. Pain assessment scale: VAS.	Mean injection pain significantly lower on the LLLT side than on the placebo side. Injection pain significantly lower on the LLLT side than on the placebo side in women. No significant differences in men in terms of laser or placebo therapy and injection pain. No significant differences between overall pain scores in women and men with or without LLLT. No significant differences between women and men in terms of pain scores with LLLT therapy. Injection pain significantly lower in men without LLLT therapy. Significant differences between pain scores in women and men without LLLT.	Low-level laser therapy successfully reduced perceived pain during infiltration in the anterior region of the maxilla.
El Feghali et al., 2022 ⁵¹	Evaluation of the effectiveness of PBM on decreasing the pain during anesthesia in comparison with topical gel.	A group of 60 adults (mean age: Topical anesthesia group 42.27 ± 14.83 years, Laser group: 45.4 ± 15.84 years) was divided randomly into 2 equal groups. Before buccal infiltration: T group received topical anesthesia; L group received PBM. Pain assessment scales: VAS, Verbal Rating Scale (VRS).	VAS scale: No significant differences in pain scores between groups. VRS scale: Significantly higher ratings of taste, undesirable numbness, and overall satisfaction in L group than T group.	Photobiomodulation has a similar effect on de- creasing pain as topical anesthesia; however, it ex- hibits better effects in terms of undesirable effects such as unpleasant taste and numbness.
Tuk et al., 2017 ⁵²	Evaluation of LLLT therapy on pain perceived during local anesthesia.	A group of 163 adults (mean age 25.06 ±7.32 years) was divided randomly into 2 groups. Before IANB/local infiltration: Study group received LLLT therapy, the control group received placebo irradiation. Pain assessment scale: 11-point numerical rating scale (pain and anxiety), a blood volume pulse, a sweat conductance or galvanic skin response sensor.	Mandibular region: Heart rate a bit higher in control group than in LLLT group. Sweating slightly higher in LLLT group than in control group. Pain scores presented slight differences. Statistically significant difference between LLLT and control groups only in sweating rate. Maxillary region: Heart rate a little bit higher in control than LLLT group. Pain scores were lower for the LLLT group compared with control group. No significant differences between groups.	Low-level laser therapy is not effective in decreasing pain during LA.

Table 1. General characteristics of included studies – cont.

Study	Aim of the study	Materials and methods	Results	Conclusions
Seraj et al., 2020 ⁵³	Assessing the effect of PBM at 810 nm wave- length on the reversal of local anesthesia.	Split-mouth study including a group of 34 children. Subjects were divided into 2 groups: In the laser side patients received 810-nm laser irradiation, 45 min after anesthesia injection, and the other side received placebo. A 7–10 days interval between procedures. Reversal of local anesthesia tests: Palpation technique every 15 min after the procedure.	Significant difference in the duration of anesthesia for both laser and sham laser groups. The time of anesthesia in the study – laser group was reduced by 43 ±24.03 min.	810-nm diode laser signifi- cantly reduced the duration of anesthesia time.

in dentistry, ongoing efforts are being made to improve techniques, methods and devices to alleviate injection anxiety. 11,14 The analysis of 40 studies investigating vibrationbased and PBM methods alongside LA reveals promising outcomes in reducing pain during injection procedures across pediatric and adult populations. As pain is subjective in nature, the core indicators of the clinical effect of the presented methods were based on patient-reported sensations measured by different scales. The most frequently used were the VAS, FLACC scale, WBFPS, Wong-Baker Pain Rating Scale, and others, alongside more objective methods such as pulse and heart rate at baseline and after injection, pulse oximeter, blood volume pulse, sweat conductance, or galvanic skin response sensor. The analysis of the studies indicated a high degree of certainty for evidence and quality.

The impact on the level of pain perception during LA was analyzed in 32 scientific studies, 7 included PBM, ^{24,47–52} and 25 focused on the use of vibration. 2,4,11-13,27-46 Overall, 21 (65.5%) studies revealed significant pain reduction during injection, 7 (22%) found no significant differences, and 4 (12.5%) presented inconsistent results. In the area of vibration-based methodology, 17 research studies focused on the pediatric population, 3,4,11,12,29,30,32,33,35-37,39-41,44-46 7 studies on adults, ^{13,27,28,31,34,38,42} and in 1 case, detailed characterization of the participants was not provided.³⁶ In the analysis of children and adolescents, a significant reduction in the incidence of pain was observed in 12 cases (70.5%). 11,12,29,32,33,35,37,39-41,45,46 No significant differences were observed in 2 (12%) publications^{3,30} and inconsistent results were reported in 3 (17.5%) other studies. 4,36,44 In the analysis of the adult groups, a significant difference in decreasing pain during anesthesia was observed in 5 (72%) studies 27,28,31,34,42 and no significant difference in 2 (28%) studies.13,38

As a part of the research on PBM, 4 experiments were conducted on adults^{47,50–52} and 3 on children and adolescents.^{24,48,49} Children and adolescents were assessed with the WBFPS and FLACC scales in 3 studies.^{24,48,49} Results indicated that in both scales, significant differences between groups were found in 1 study⁴⁸ and no significant differences in 1 paper.⁴⁹ Additionally, in 1 study,²⁴ significant differences between groups were presented in relation

to WBFPS; however, regarding the FLACC scale, no significant differences were noted. In 4 studies conducted on adults, the VAS, numerical rating scale of pain, heart rate, and sweating were used to assess pain linked with injection. Among them, PBM measured with the VAS presented a statistically significant decrease in pain during injections in 2 studies, ^{47,50} while no significant differences were found in the remaining paper. ⁵¹ A significant difference in sweating was reported during mandible injections in 1 study. ⁵² However, in the same study, the numerical rating scale of pain, heart rate and sweating during maxillary anesthesia showed no significant differences. ⁵²

Reversal of the LA duration was evaluated in 9 studies. $^{2,6-10,24,26,53}$ For this purpose, 6 studies used PM $^{6-10,26}$ and 3 PBM.^{2,24,53} Classifying papers according to the age of the respondents, 5 studies concerned children and adolescents^{2,7,9,24,53} and 4 evaluated adults.^{6,8,10,26} Significant differences in the duration of anesthesia were revealed in 8 studies. Only 1 study,²⁴ evaluating the use of PBM, in children did not observe any significant changes in anesthesia duration. In terms of adverse effects, no significant differences between the study and control groups were noted in 5 studies. 6-10 In 1 study,9 which concerned children as an investigated group, nausea and elevated body temperature were reported. Postoperative pain was assessed in 2 studies, 8,26 both using a VAS. In the study by Shadmehr et al., ²⁶ pain 6 and 12 h after the procedure was significantly higher in the study group, whereas no significant differences were found in the other group.8

Limitations

Although all the selected studies were clinical studies, the samples were relatively small, and study participants were of different ages, which influenced the assessment methods/scales used. More studies are needed to verify the effects of PM, PBM and vibration. Since PM use is not permitted in all countries, the effect of the medication on patients of other nationalities could not be assessed. Moreover, significant heterogeneity among the included studies does not allow us to perform a meta-analysis. However, further research should be conducted to enable proceeding with a meta-analysis.

 Table 2. Detailed characteristics of included studies

Duration of anesthesia study group vs control group	mean soft tissue local anes- thesia reversal time duration	study groups: 660 nm – 130.5 min 810 nm – 144 min control group: 199.5 min	N/A		N/A		Study group	lip – 120 min tongue – 105 min smiling – 96 min drinking – 104 min speaking – 72 min Control group lip – 170 min tongue – 134 min smiling – 151 min drinking – 170 min speaking – 140 min	75 min	(55.6%) decrease in the median time for the return of normal lip sensation 67.5 min (60%) reduction in the median time for the return of normal tongue sensation.
Significant differ- ences between study and control group		yes	O E	yes	no	yes	yes	<u>0</u>	yes	O _C
Assessment method	palpation technique (anesthesia duration)	the pin prick test	FLACC scale, the validated Arabic version of the Wong–Baker FACES scale	FLACC scale	SEM scale	VAS	anesthesia duration	adverse effects	anesthesia duration	adverse reactions
Age cat- egory		children: 4–8 years	children: 6–12 years		children: 5–12 vears			adults: over 18 years		children: 4–11 years
Procedure type		pulp therapy of mandibular molars	dental treatment		dental treatment			study		dental treat- ment (restorative or periodontal, crowns)
Method of LA		IANB	buccal infiltration anesthesia (BIA)		BIA			IA N B	sunraneri-	optopor osteal injection; IANB; Gow-Gates nerve blocks
Type of anesthetic + concentration + dose	lianoania with	adrenaline LIGNOX 2% A 1.5 mL	mepivacaine 2% with 1:100,000 epinephrine	2% lidocaine with	1:100,000 adrenaline,	1.8 mL		2% lidocaine with 1:100,000 adrenaline 1.8 mL		2% lidocaine with 1:100,000 adrenaline 15–30 kg: ½ cartridge over 30 kg: ½ or whole cartridge
Exposure time	45 min after	irradiation for 12 s, 6 places, continuous mode	5 s prior, during injection and 5 s after		just before and during injection			after treatment		after treatment (20–49 min after injection)
Parameters of PBM/PM/ vibration ap- pliance	Jue (1999)	810 nm wave- lengths 100 mW	DentalVibe Injection Com- fort System		The Buzzy)		PM: 1.7 mL; 0.4 mg		PM: if $\%$ cartridge of anesthetic = 0.2 mg; 1 cartridge = 0.4 mg
Addi- tional pain reducing method		N/A	Z/Z		cold			₹ Z		N/A
Meth- od		PBM	>		>			Ā		M
Study		Annu et al., 2023²	Felemban et al., 2021³		AlHareky et al., 2021 ⁴	: 		Michaud et al., 2018 ⁶		Tavares et al., 2008 ⁷

 Table 2. Detailed characteristics of included studies – cont.

Duration of anesthesia study group vs control group	Study vs control	Maxillary Lin/Cheek:	Disappearance of numb-	min vs 134 min Return-to-normal sensation: 136 min vs 224 min Mandibular Lip: Numbness: 121 min vs 145 min Sensation: 170 min vs 217 min Tongue: Numbness: 106 min vs 121 min Sensation: 142 min vs	On average	Group I Iip – 59.6 min tongue – 52.5 min normative value – 180 min Group II Iip – 88.5 min tongue – 84.5 min normative value – 258 min Group III Iip – 249 min tongue – 214 min normative value – 460 min
Significant differ- ences between study and control group	yes	no	Ou		yes	Q C
Assessment method	anesthesia duration	VAS postop pain	adverse reactions		anesthesia duration	adverse reaction
Age cat- egory				adults: 18–81 years		adults: over 18 years
Procedure type				endodontic treat- ment		tooth filling, tooth extrac- tion, full mouth disinfection, implant place- ment, and root canal treatment
Method of LA			IANB,	long buccal nerve block addition- ally: buccal infiltration, an intraos- seous injection or infiltra- tion		B N A
Type of anesthetic + concentration + dose				2% lidocaine with 1:100,000 adrenaline additionally 4% articaine with 1:100,000 or 2% lido- caine with 1:100,000 adrenaline 1.8 mL/3.6 mL		Group I lidocaine 2% 1/80,000 Group II articaine 4% 1/200,000, Group III bupivacaine 0.5% 1/200,000
Exposure time				after treatment PM group: 71 min in maxilla 84 min in man- dible Control group: 67 min in maxilla, 85 min in man-		after treatment
Parameters of PBM/PM/ vibration ap- pliance				PM: the same amount (1.8 mL/3.6 mL) as the cartridge of anesthetics		PM the same amount (1.8 mL, 1.7 mL) as the cartridge of anesthetics
Addi- tional pain reducing method				Α/Λ		ĕ Z
Meth- od				Ā		A
Study				Fowler et al., 2011 ⁸		Gago-García et al., 2021 ¹⁰

 Table 2. Detailed characteristics of included studies – cont.

Duration of anesthesia study group vs control group		∢ Ž		N/A		∢ Ż	Group I Study vs control sensation of soft tissue 29.47 min vs 135.52 min. Group II Study vs control sensation of soft tissue 33.12 min vs 106.04 min.	Mean soft tissue anesthesia	duration	control group: 161.83 min		Study group	ip – 120 min tongue – 105 min Control group lip – 152 min tongue – 174 min
Significant differ- ences between study and control group	yes	yes	yes, after injection no, at the baseline	yes	Ö	<u>0</u>	yes	yes	no	no	no	yes	preoperative no postoperative adverse effect
Assessment method	FLACC scale	Wong–Bakers Pain Rating Scale	pulses rate at the baseline and after injection	universal pain assess- ment tool	Wong-Baker FACES Pain Rating Scale	\AS	anesthesia duration	Wong-Baker FACES Pain Rating Scale	FLACC scale	anesthesia duration	adverse effects	anesthesia duration	Heft-Parker visual analogue scale pre and postoperative
Age cat- egory		children:	6–11 years	children: 6–12 years		adults: 18–26 years	children: 4–11 years		children:	טרש ארמו א			adults: over 18 years
Procedure type		bilateral dental	treatment	bilateral dental treatment		study	bilateral dental treatment (except for extraction)	bilateral pulp-	otomy in first	in the mandible			single-session endodontic treat- ment
Method of LA		infe- rior alveolar	nerve block (IANB)	A/A	infiltration technique	at the api- cal region of the right maxillary incisors	IANB		local infil-	וומווסוו			IANB
Type of anesthetic + concentration + dose		Ϋ́Z		N/A 2 mL	2% menivacaine	with 1:100,000 adrenaline	lidocaine 2% 1/80,000 adrenaline max. 1 cartridge	4% articaine	1/100 000	adrenaline] - -		2% lidocaine with 1:100,000 adrenaline 1.8 ml
Exposure time		2 min prior injec-	tion	1 minute before, during and 10 second after injeciton		5 s prior, during and 5 s after injection	30 min after injection	C	continuous	mode			after treatment
Parameters of PBM/PM/ vibration ap- pliance		Vibration	device	DentalVibe		DentalVibe	PM: 15–30 kg: 0.2 mg; above 30 kg: 0.4 mg	810 nm wave-	length	400-µm fiber			PM: 1.7 mL; 0.4 mg
Addi- tional pain reducing method		≪ ≥		N/A		N/A	N/A		∀ N				N/A
Meth- od		>		>		>	M		PBM				₩ W
Study		Hegde et al.,	2019''	Shilpapriya et al., 2015 ¹²		Erdogan et al., 2018 ¹³	Babaei et al., 2011 ¹⁹		Uçar et al., موردرور	7777			Shadmehr et al., 2019 ²⁶

 Table 2. Detailed characteristics of included studies – cont.

Meth- od	Addi- tional pain reducing method	Parameters of PBM/PM/ vibration ap- pliance	Exposure time	Type of anesthetic + concentration + dose	Method of LA	Procedure type	Age cat- egory	Assessment method	Significant differences between study and control group	Duration of anesthesia study group vs control group
N/A counter- stimulation in control group	er- tion trol	DentalVibe Injection Com- fort System	10 s before, during and 5 s after injection	3% mepivicaine 0.5 mL for LB; 1.8 mL for IANB	intraoral long buccal (LB), IANB	study	adults: 21–32 years	VAS symptom severity index (SSI)	yes	∢ Z
N/A	⋖	DentalVibe Injection Com- fort System	DentalVibe used as per manufac- turer's recom- mendations	Lignocaine hy- drochloride with 1:200,000 adrenaline	IANB Long Buccal Infraorbital Palatal	bilateral dental treatment	adults: over 18 years	VAS	yes	N/A
Ż	¥ X	DentalVibe	5 s prior and dur-	mepivacaine HCl 2%, 1:20,000 levonor-	IANB	bilateral mandib-	children:	Wong–Baker FACES Pain Rating Scale	yes	₹/Z
				defrin			5 30 00	FLACC scale	yes	
			buccal infiltration + IANB:					Wong–Baker Faces Pain Rating Scale	OU	
Ż	∀ Z	Dentalvibe	5 s prior, 60 s of anesthesia deposition and 5 safter injection palatal infiltra- tion: 5 s prior and dur- ing anesthesia deposition	4% articaine hydrochloride with 1/100,000 adrenaline	buccal and palatal infiltration IANB	dental treat- ments in maxilla and mandible on both sides of the arches	children: 6–9 years	FLACC scale	O _C	Y.V.
	A/A	DentalVibe	1 min prior, dur- ing and 10 s after injection	2% lidocaine with 1:200,000 adrenaline	IANB	bilateral dental extractions in the mandible	adults: 18–50 years	VAS	yes	Z/A
2	N/A	DentalVibe	30 s before injection	N/A	IANB	bilateral dental treatment	children: 8–12 years	FLACC scale	yes	N/A
2	∀	DentalVibe	5 s before, during anesthesia ap- plication, imme- diately stopped after needle	2% lidocaine with 1:100,000 adrenaline 0.85 mL	infiltration anesthesia	bilateral dental treatment	adolescents: 10–17 years	Wong–Baker FACES Pain Rating Scale	yes	Z/A

 Table 2. Detailed characteristics of included studies – cont.

Duration of anesthesia study group vs control group		N/A	N/A		N/A		N/A	N/A	N/A		
Significant differ- ences between study and control group	Yes	Yes		yes	0	yes yes		no, for vibration; yes, for topical anesthesia	yes	yes	yes
Assessment method	VAS during needle inser- tion mid-injection pain	heart rate baseline heart rate (BHR), penetration heart rate (PHR), and midin- jection heart rate (IHR)	Wong–Baker FACES Pain Rating Scale	Wong-Baker FACES Pain Rating Scale	pulse rate	VAS	FLACC scale	5-point VAS	the author developed face, head, foot, hand, trunk, and cry (FHFHTC) scale	SEM scale	Wong-Baker FPR scale
Age cat- egory	adults: 18–55 years		children: 5–7 years	children: 7–14 years		children: 6–9 years		adults: over 18 years	children	children: 6–11 years	
Procedure type	bilateral maxillary or mandibular extractions		bilateral maxillary or mandibular treatment	operative dental treatment		bilateral dental treatment		Υ/Z	bilateral dental treatment	bilateral mandib- ular restoration, pulpotomy, pulpectomy or extraction	
Method of LA	IANB, buc- cal, palatal infiltration		IANB, infiltration block	IANB/long buccal injections, maxillary infiltration injection		upper buccal infiltrations (UBI), posterior palatal infiltrations, IANB		palatal and BIA of both maxillary first premo- lars	IANB, maxillary infiltration		IANB
Type of anesthetic + concentration + dose	2% lidocaine with 1:100,000 adrenaline 1.8 mL		2% lidocaine with 1:80,000 adrenaline	2% lidocaine with 1:100,000 adrenaline			2% lidocaine with 1:100,000 adrenaline	2% lidocaine with 1:100,000 adrenaline 0.2 mL	lidocaine 2% 1/80,000		N/A 1 mL
Exposure time	10 s before, during and 5 s after anesthesia		5 s before, during and 5 s after injection	10 s prior, during and 2 s after injection		No specific data		1 min before treatment	before, during and few seconds after injection		before, 1min dur- ing and 15 s after injection
Parameters of PBM/PM/ vibration ap- pliance	DentalVibe		DentalVibe	DentalVibe			VibraJect	VibraJect A modified battery-pow- ered shaver		Rajasthan	University of Health; Science (RUHS) mucosal vibrator
Addi- tional pain reducing method	e Z		A/A	manual stimula-	tion with thumb (another group)		A/A	20% ben- zocaine	verbal distraction		∀ Z
Meth- od		>	>		>		>	>	>		>
Study	Salma et al., 2021 ³⁴		Ramezani et al., 2017 ³⁵		Tung et al., 2018³ ⁶		Albouni et al., 2022 ³⁷	Hutchins et al., 1997 ³⁸	Bagherian and Sheikhfat- hollahi, 2016 ³⁹		Gandhi et al., 2018 ⁴⁰

Table 2. Detailed characteristics of included studies – cont.

esia trol													
Duration of anesthesia study group vs control group	V/Z	N/A		Y/Z	Ą Z		X X					Y/Z	Z/A
Significant differences between study and control group	yes	yes	yes	yes, but in favor of the topical anesthesia	0	yes	pre and postop Yes	pre no post yes	yes	yes	yes	yes	yes
Assessment method	SEM scale	VAS	McGill pain descriptors	VAS scale	Wong–Baker FACES Pain Rating Scale (WBFPRS)	FLACC scale	Venham's Clinical Anxiety Rating Scale (VCARS)	Venham Picture Test (VPT)	pulse oximeter	Wong–Baker FACES Pain Rating Scale (WBFPS)	VAS	Wong–Baker Faces Pain Rating Scale	VAS
Age cat- egory	children: 4–5 years		adults: 18–72 years	Z/A	children: 5–10 years		children: 4–11 years					children: 7–12 years	adults: 18–60 years
Procedure type	mandibular restoration		bilateral dental treatment	dental treatment in 3 quadrants	dental treatment			extraction and	treatment	in mandible		extraction of mandibular primary molars	bilateral extrac- tion
Method of LA	IANB	buccal	or man- dibular infiltration IANB	infiltration injection N/A			Z Z					local mandibular anesthesia	N/A
Type of anesthetic + concentration + dose	2% lidocaine with 1/100000 epineph- rine, 1 mL		N/A	N/A	IV.A lidocaine 2% with 0.005 mg adrenaline			lidocaine 2%	1/80,000			2% lidocaine 2 mL	N/A
Exposure time	N/A		A/N	N/A	A/A		¥					2 min prior and during injection	3 minutes before injection
Parameters of PBM/PM/ vibration ap- pliance	thumb and forefinger		HoMedics Atom massager	Waterpik Vibrator	The Buzzy device		BuzzyR device					The Buzzy device	660-nm wave- length; 60 wM power
Addi- tional pain reducing method	verbal distraction		N/A	N/A	ploo			cold; counter stimulation in control group				cold	N A
Meth- od	>		>	>	>				>			>	PBM
Study	Aminabadi et al., 2008 ⁴¹		Nanitsos et al., 2009 ⁴²	Meghana et al., 2020 ⁴³	Marwah et al., 2020 ⁴⁴			Sahithi et al., 2021 ⁴⁵ Bilsin et al.,		Bilsin et al., 2018 ⁴⁶	Jagtap et al. ⁴⁷		

Table 2. Detailed characteristics of included studies – cont.

Duration of anesthesia study group vs control group		N/A	N/A		¥ Z		N/A		N/A	N/A	N/A	Study laser group: 145.15 ±23.27 min. Sham group: 188.82 ±12.31 min.		
Significant differ- ences between study and control group	Yes	Yes	0 N	O Z	Yes		Yes		No significant dif- ferences Yes		O Z	N _O	Yes, in mandible	Yes
Assessment method	Wong–Baker FACES Pain Rating Scale	FLACC scale	FLACC scale	Wong–Baker FACES Pain Rating Scale	VAS		VAS	VRS scale (taste, undesirable numbness, overall satisfaction)	11-point numerical rating scale (pain and anxiety)	blood volume pulse	sweat conductance or galvanic skin response sensor	palpation technique		
Age cat- egory	children:	6–12 years	children: 6–12 years		adults: over	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	adults		adults: 18–75 years			children: 4–8 years		
Procedure type	nrimary first mo-	primary first molar treatment		bilateral restora- tion of cen- tral incisors in the maxilla		dental treatment in anterior maxil- lary region from canine to canine		maxillary or man- dibular third molar extractions		molar extractions	treatment of mandibular first molars			
Method of LA	buccal LA in maxilla	buccal LA in maxilla or mandi- ble supra- periosteal anesthesia		buccal infiltration in anterior maxilla		buccal infiltration injection		IANB+ buc-	cal infiltra- tion/nalatal	and buccal	infiltration			
Type of anesthetic + concentration + dose	4% articaine hydrochloride with 1/100,000 adrenaline 1ml 4% articaine hydrochloride with 1/100,000 epinephrine 1 mL		2% lidocaine hydrochloride with 1:100,000 adrenaline 1.8 mL		7.0	4% articaine with 1:100,000 adrenaline 2.2 mL	articaine/hydro-	chloride 40 mg with	epinephrine 0.01 mg 1.7 mL	lidocaine 2% and 1: 100,000 epinephrine				
Exposure time	20 s continuous mode 20 s, 30 s, 40 s continuous		90 s prior the injection, dual continuous mode		60 s before injection		Two times protocol: 30 s irradiation, 30 s interval, 30 s irradiation; 2 min of irradiation in total before injection continuous		diation in total before injection continuous mode	45 min after injection, irradiation for 12 s in 6 spots				
Parameters of PBM/PM/ vibration ap- pliance	980 nm wavelength	980 nm wavelength 0.3 W, 0.4 W and 0.5 W a 400-um fiber length 0.3 W a 400 um fiber		810–980 nm wavelengths; 50 mW, 810 nm, 100 mW, 810–980 nm or +50 mW, 980 nm		1,064 nm wavelength; 0.5 W; 10 Hz, 100 µs pulse width		810 nm wavelength; 200 mW		200 mW	810 nm diode Iaser			
Addi- tional pain reducing method		A/N		A/N	∢ Z			A/A	e Z			Ŋ Ġ		
Meth- od		PBM		PBM	PBM			PBM		PBM		PBM		
Study	Dehgan et al	2022 ⁴⁸		Elbay et al., 2022 ⁴⁹	Sharifi et al.,	777		El Feghali et al., 2022 ⁵¹		Tuk et al.,	2017>-2	Seraj et al., 2020 ⁵³		

 $N/A-no\ data; PBM-photobiomodulation; V-vibration.$

Table 3. Quality assessment of included studies

Analyzed study	All pro- cedures followed manu- facturer's guidelines	Infor- mation about the anes- thetic	Single opera- tor	Clearly explained and justified sample size	No acute situa- tions	Mini- mum 10 partici- pants	Control group (split mouth included)	Use of sin- gle method	Single- or dou- ble- blinded	Sum	Risk of bias
Annu et al., 2023 ²	1	1	0	1	1	1	1	1	0	7	low
Felemban et al., 2021 ³	1	1	0	1	1	1	1	1	0	7	low
AlHareky et al., 2021 ⁴	1	1	0	1	1	1	1	0	0	6	moderate
Michaud et al., 2018 ⁶	1	1	1	1	1	1	1	1	1	9	low
Tavares et al., 2008 ⁷	1	0	0	0	1	1	1	1	1	6	moderate
Fowler et al., 2011 ⁸	1	1	1	0	1	1	1	1	1	8	low
Babaei et al., 2011 ⁹	1	1	1	0	1	1	1	1	1	8	low
Gago-García et al., 2021 10	1	1	0	1	1	1	1	1	1	8	low
Hegde et al., 2019 ¹¹	0	0	1	1	1	1	0	1	0	5	moderate
Erdogan et al., 2018 ¹³	1	1	1	0	1	1	1	1	0	7	low
Shaefer et al., 2017 ²⁷	1	1	0	1	1	1	1	1	0	7	low
Uçar et al., 2022 ²⁴	1	1	0	1	1	1	1	0	1	7	low
Shadmehr et al., 2019 ²⁶	1	1	1	0	1	1	1	1	1	8	low
Shilpapriya et al., 2017 ²⁷	1	0	0	0	1	1	1	0	0	4	moderate
Nasehi et al., 2015 ²⁸	1	Ī	0	0	1	1	1	1	0	6	moderate
Hassanein et al., 2020 ²⁹	1	1	1	0	1	1	1	0	0	6	moderate
Raslan and Masri, 2018 ³⁰	1	0	1	1	1	1	1	1	0	7	low
Joshi et al., 2021 ³¹	1	0	0	1	1	1	0	1	0	5	moderate
Dak-Albab et al., 2016 ³²	1	0	0	1	1	1	0	1	0	5	moderate
Ching et al., 2014 ³³	1	1	0	1	1	1	1	1	0	7	low
Salma et al., 2021 ³⁴	1	1	1	0	1	1	0	1	0	6	moderate
Ramezani et al., 2017 ³⁵	0	1	0	0	1	1	0	0	0	3	high
Tung et al., 2018 ³⁶	0	1	0	0	1	1	0	0	0	3	high high
Albouni et al., 2022 ³⁷	1	0	1	0	1	1	1	0	0	5	moderate
Hutchins et al., 1997 ³⁸	1	1	0	0	1	1	1	0	0	5	moderate
Bagherian and Sheikhfathollahi, 2016 ³⁹	0	1	0	1	1	1	1	0	0	5	moderate

Table 3. Quality assessment of included studies – cont.

Analyzed study	All pro- cedures followed manu- facturer's guidelines	Infor- mation about the anes- thetic	Single opera- tor	Clearly explained and justified sample size	No acute situa- tions	Mini- mum 10 partici- pants	Control group (split mouth included)	Use of sin- gle method	Single- or dou- ble- blinded	Sum	Risk of bias
Gandhi et al., 2018 ⁴⁰	0	0	0	0	1	1	1	0	0	3	high
Aminabadi et al., 2008 ⁴¹	0	1	1	0	1	1	1	0	0	5	moderate
Nanitsos et al., 2009 ⁴²	1	0	0	0	1	1	1	1	0	5	moderate
Meghana Reddy, 2020 ⁴³	1	0	0	1	1	1	0	1	0	5	moderate
Marwah et al., 2020 ⁴⁴	1	1	0	1	1	1	1	0	0	6	moderate
Sahithi et al., 2021 ⁴⁵	1	1	0	1	1	1	0	0	0	5	moderate
Bilsin et al., 2020 ⁴⁶	1	1	1	1	1	1	1	0	0	7	low
Jagtap et al., 2019 ⁴⁷	1	0	0	1	1	1	1	1	1	7	low
Dehgan et al., 2022 ⁴⁸	1	1	1	1	1	1	1	0	1	8	low
Elbay et al., 2022 ⁴⁹	1	1	1	0	1	1	1	1	1	8	low
Sharifi et al., 2022 ⁵⁰	1	0	0	1	1	1	1	0	0	5	moderate
El Feghali et al., 2022 ⁵¹	1	1	0	0	1	1	1	1	1	7	low
Tuk et al., 2017 ⁵²	1	1	0	0	1	1	1	1	1	7	low
Seraj et al., 2020 ⁵³	1	1	0	0	1	1	1	1	1	7	low low

Conclusions

Significant reductions in pain perception, assessed using diverse pain scales, were observed in most cases evaluating the vibration-based and PBM methods. Furthermore, notable differences in anesthesia reversal using PM or PBM were documented with minimal adverse effects, underscoring the safety of these techniques.

Further research is warranted to explore the long-term efficacy, adverse event profiles and broader applications, particularly in the case of PBM, which has the least number of clinical trials regarding the subject evaluated in this review.

ORCID iDs

Aneta Olszewska https://orcid.org/0000-0003-1286-6779
Dominika Forszt https://orcid.org/0000-0001-8411-2461
Aleksandra Szymczak https://orcid.org/0009-0005-4952-5187
Natalie Górna https://orcid.org/0000-0001-8588-3241
Tomasz Gedrange https://orcid.org/0000-0002-3551-6467
Agata Czajka-Jakubowska https://orcid.org/0000-0002-1692-2910
Jacek Matys https://orcid.org/0000-0002-3801-0218

References

- Ogle OE, Mahjoubi G. Local anesthesia: Agents, techniques, and complications. *Dent Clin North Am*. 2012;56(1):133–148. doi:10.1016/j.cden. 2011.08.003
- Annu A, Paranna S, Patil AT, Sandhyarani B, Prakash A, Bhurke RR. Comparative evaluation of photobiomodulation therapy at 660 and 810 nm wavelengths on the soft tissue local anesthesia reversal in pediatric dentistry: An in-vivo study. J Dent Anesth Pain Med. 2023;23(4):229. doi:10.17245/jdapm.2023.23.4.229
- Felemban O, Oghli AR, Alsaati I, Alattas LK, Olwi AM, Bagher SM. The effect of DentalVibe on pain and discomfort during local anesthesia in children: A randomized clinical trial. Quintessence Int. 2021; 52(5):434–443. doi:10.3290/j.qi.b912695
- 4. AlHareky M, AlHumaid J, Bedi S, El Tantawi M, AlGahtani M, AlYousef Y. Effect of a vibration system on pain reduction during injection of dental anesthesia in children: A randomized clinical trial. *Int J Dent*. 2021;2021:8896408. doi:10.1155/2021/8896408
- Rahman MM, Abduljalil SMA, Ahmed NTH, Marouf AA, Farghal NS, Gismalla BG. Effect of photobiomodulation on the depth of local anesthesia during endodontic treatment of teeth with symptomatic irreversible pulpitis. *J Contemp Dent Pract*. 2023;24(7):437–441. doi:10.5005/jp-journals-10024-3519
- Michaud PL, Flood B, Brillant MS. Reversing the effects of 2% lidocaine: A randomized controlled clinical trial. *J Dent*. 2018;72:76–79. doi:10.1016/j.jdent.2018.03.009
- Tavares M, Goodson JM, Studen-Pavlovich D, et al. Reversal of soft-tissue local anesthesia with phentolamine mesylate in pediatric patients. *J Am Dent Assoc*. 2008;139(8):1095–1104. doi:10.14219/jada.archive. 2008.0312

- 8. Fowler S, Nusstein J, Drum M, Reader A, Beck M. Reversal of soft-tissue anesthesia in asymptomatic endodontic patients: A preliminary, prospective, randomized, single-blind study. *J Endod*. 2011;37(10): 1353–1358. doi:10.1016/j.joen.2011.06.019
- Babaei M, Nourbakhsh N, Shirani F. Effect of phentolamine mesylate on duration of soft tissue local anesthesia in children. J Res Pharm Pract. 2012;1(2):55. doi:10.4103/2279-042X.108371
- Gago-García A, Barrilero-Martin C, Alobera-Gracia MÁ, Del Canto-Pingarrón M, Seco-Calvo J. Efficacy of phentolamine mesylate in reducing the duration of various local anesthetics. *J Dent Anesth Pain Med*. 2021;21(1):49. doi:10.17245/jdapm.2021.21.1.49
- Hegde KM, Neeraja R, Srinivasan I, Murali Krishna DR, Melwani A, Radhakrishna S. Effect of vibration during local anesthesia administration on pain, anxiety, and behavior of pediatric patients aged 6–11 years: A crossover split-mouth study. J Dent Anesth Pain Med. 2019;19(3):143. doi:10.17245/jdapm.2019.19.3.143
- Shilpapriya M, Jayanthi M, Reddy V, Sakthivel R, Selvaraju G, Vijayakumar P. Effectiveness of new vibration delivery system on pain associated with injection of local anesthesia in children. J Indian Soc Pedod Prev Dent. 2015;33(3):173. doi:10.4103/0970-4388. 160343
- Erdogan O, Sinsawat A, Pawa S, Rintanalert D, Vuddhakanok S. Utility of vibratory stimulation for reducing intraoral injection pain. *Anesth Prog.* 2018;65(2):95–99. doi:10.2344/anpr-65-02-01
- Davoudi A, Rismanchian M, Akhavan A, et al. A brief review on the efficacy of different possible and nonpharmacological techniques in eliminating discomfort of local anesthesia injection during dental procedures. *Anesth Essays Res.* 2016;10(1):13. doi:10.4103/0259-1162.167846
- Vahdatinia F, Gholami L, Karkehabadi H, Fekrazad R. Photobiomodulation in endodontic, restorative, and prosthetic dentistry: A review of the literature. *Photobiomodul Photomed Laser Surg.* 2019;37(12): 869–886. doi:10.1089/photob.2019.4707
- Carroll JD, Milward MR, Cooper PR, Hadis M, Palin WM. Developments in low level light therapy (LLLT) for dentistry. *Dent Mater.* 2014; 30(5):465–475. doi:10.1016/j.dental.2014.02.006
- Matys J, Flieger R, Dominiak M. Effect of diode lasers with wavelength of 445 and 980 nm on a temperature rise when uncovering implants for second stage surgery: An ex-vivo study in pigs. Adv Clin Exp Med. 2017;26(4):687–693. doi:10.17219/acem/68943
- Matys J, Świder K, Grzech-Leśniak K, Dominiak M, Romeo U. Photobiomodulation by a 635 nm diode laser on peri-implant bone: Primary and secondary stability and bone density analysis. A randomized clinical trial. Biomed Res Int. 2019;2019:2785302. doi:10.1155/2019/2785302
- Flieger R, Gedrange T, Grzech-Leśniak K, Dominiak M, Matys J. Lowlevel laser therapy with a 635 nm diode laser affects orthodontic miniimplants stability: A randomized clinical split-mouth trial. *J Clin Med*. 2019;9(1):112. doi:10.3390/jcm9010112
- 20. Dominiak M, Matys J. Assessment of pain when uncovering implants with Er:YAG laser or scalpel for second stage surgery. *Adv Clin Exp Med*. 2016;25(6):1179–1184. doi:10.17219/acem/62456
- Matys J, Flieger R, Tenore G, Grzech-Leśniak K, Romeo U, Dominiak M. Er:YAG laser, piezosurgery, and surgical drill for bone decortication during orthodontic mini-implant insertion: Primary stability analysis. An animal study. *Lasers Med Sci.* 2018;33(3):489–495. doi:10.1007/s10103-017-2381-9
- 22. Matys J, Flieger R, Gedrange T, et al. Effect of 808 nm semiconductor laser on the stability of orthodontic micro-implants: A split-mouth study. *Materials (Basel)*. 2020;13(10):2265. doi:10.3390/ma13102265
- Matys J, Flieger R, Świder K, et al. A clinical trial of photobiomodulation effect on orthodontic microscrews stability using a 635 nm red laser light. *Photobiomodul Photomed Laser Surg.* 2020;38(10):607–613. doi:10.1089/photob.2020.4863
- Uçar G, Şermet Elbay Ü, Elbay M. Effects of low level laser therapy on injection pain and anesthesia efficacy during local anesthesia in children: A randomized clinical trial. *Int J Paediatr Dentistry*. 2022; 32(4):576–584. doi:10.1111/ipd.12936
- Ghabraei S, Chiniforush N, Bolhari B, Aminsobhani M, Khosarvi A. The effect of photobiomodulation on the depth of anesthesia during endodontic treatment of teeth with symptomatic irreversible pulpitis (double blind randomized clinical trial). *J Lasers Med Sci.* 2017;9 (1):11–14. doi:10.15171/jlms.2018.03

- Shadmehr E, Saatchi M, Damoon Sarmast N, Bagherieh S, Davoudi A. Effect of phentolamine as reversal of soft-tissue anesthesia on postendodontic pain in patients with symptomatic irreversible pulpitis: A randomized clinical trial. *Iran Endod J.* 2019;14(4):247–252. doi:10.22037/iej.v14i2.22452. PMID:36794110
- Shaefer JR, Lee SJ, Anderson NK. A vibration device to control injection discomfort. Compend Contin Educ Dent. 2017;38(6):e5–e8. PMID:28586233.
- Nasehi A, Bhardwaj S, Kamath AT, Gadicherla S, Pentapati KC. Clinical pain evaluation with intraoral vibration device during local anesthetic injections. J Clin Exp Dent. 2015;7(1):e23–e27. doi:10.4317/jced.51643
- 29. Hassanein PH, Khalil A, Talaat DM. Pain assessment during mandibular nerve block injection with the aid of dental vibe tool in pediatric dental patients: A randomized clinical trial. *Quintessence Int.* 2020;51(4):310–317. doi:10.3290/j.qi.a44145
- 30. Raslan N, Masri R. A randomized clinical trial to compare pain levels during three types of oral anesthetic injections and the effect of DentalVibe® on injection pain in children. *Int J Paediatr Dentistry*. 2018;28(1):102–110. doi:10.1111/jpd.12313
- Joshi S, Bhate K, Kshirsagar K, Pawar V, Kakodkar P. DentalVibe reduces pain during the administration of local anesthetic injection in comparison to 2% lignocaine gel: Results from a clinical study. J Dent Anesth Pain Med. 2021;21(1):41. doi:10.17245/jdapm.2021.21.1.41
- 32. Dak-Albab R, Al-Monaqel MB, Koshha R, Shakhashero H, Soudan R. A comparison between the effectiveness of vibration with Dental-Vibe and benzocaine gel in relieving pain associated with mandibular injection: A randomized clinical trial. *Anaesth Pain Crit Care*. 2016;20(1):43–49. https://www.apicareonline.com/index.php/APIC/article/view/225/220. Accessed August 21, 2023.
- 33. Ching D, Finkelman M, Loo CY. Effect of the DentalVibe injection system on pain during local anesthesia injections in adolescent patients. *Pediatr Dent.* 2014;36(1):51–55. PMID:24717710.
- Salma RG, Alsayeh A, Maneea AB, Alrassan F, Almarshad A. The effectiveness of electronic pulsed soft tissue vibration compared with topical anaesthesia in reducing the pain of injection of local anaesthetics in adults: A randomized controlled split-mouth clinical trial. *Int J Oral Maxillofac Surg.* 2021;50(3):407–415. doi:10.1016/j.ijom. 2020.07.010
- 35. Ramezani GH, Tajjedin M, Valaee N, Ebrahimi H. Effect of vibration on pain during injection of local anesthesia: A split-mouth randomized clinical trial. *Biosci Biotech Res Commun.* 2017;10(4):728–731. doi:10.21786/bbrc/10.4/18
- Tung J, Carillo C, Udin R, Wilson M, Tanbonliong T. Clinical performance of the DentalVibe® injection system on pain perception during local anesthesia in children. *J Dent Child (Chic)*. 2018;85(2):51–57. PMID:30345954.
- Albouni MA, Kouchaji C, Al-Akkad M, Voborna I, Mounajjed R. Evaluation
 of the injection pain with the use of Vibraject during local anesthesia
 injection for children: A randomized clinical trial. *J Contemp Dent Pract*.
 2022;23(7):749–754. doi:10.5005/jp-journals-10024-3383
- Hutchins HS, Young FA, Lackland DT, Fishburne CP. The effectiveness of topical anesthesia and vibration in alleviating the pain of oral injections. *Anesth Prog.* 1997;44(3):87–89. PMID:9481967. PMCID:PMC2148927.
- Bagherian A, Sheikhfathollahi M. Children's behavioral pain reactions during local anesthetic injection using cotton-roll vibration method compared with routine topical anesthesia: A randomized controlled trial. *Dent Res J.* 2016;13(3):272. doi:10.4103/1735-3327.182189
- Gandhi M, Kalia G, Rathore K. Comparative evaluation of mucosal vibrator with topical anesthetic gel to reduce pain during administration of local anesthesia in pediatric patients: An in vivo study. *Int J Clin Pediatr Dent*. 2018;11(4):261–265. doi:10.5005/jp-journals-10005-1523
- Aminabadi NA, Farahani RMZ, Gajan EB. The efficacy of distraction and counterstimulation in the reduction of pain reaction to intraoral injection by pediatric patients. J Contemp Dent Pract. 2008;9(6):33–40. doi:10.5005/jcdp-9-6-33
- Nanitsos E, Vartuli R, Forte A, Dennison P, Peck C. The effect of vibration on pain during local anaesthesia injections. *Aust Dent J.* 2009; 54(2):94–100. doi:10.1111/j.1834-7819.2009.01100.x

- 43. Meghana Reddy J. A preliminary study on application of vibrating device instead of topical anaesthetic gel during injection of local anaesthesia. *Biosci Biotech Res Commun*. 2020;13(7):432–436. doi:10.21786/bbrc/13.7/72
- 44. Marwah N, Mishra P, Suohu T, Sharma S. A comparative evaluation of pain perception and comfort of a patient using conventional syringe and buzzy system. *Int J Clin Pediatr Dent*. 2020;13(1):27–30. doi:10.5005/jp-journals-10005-1731
- Sahithi V, Saikiran KV, Nunna M, Elicherla SR, Challa RR, Nuvvula S. Comparative evaluation of efficacy of external vibrating device and counterstimulation on child's dental anxiety and pain perception during local anesthetic administration: A clinical trial. *J Dent Anesth Pain Med*. 2021;21(4):345. doi:10.17245/jdapm.2021.21.4.345
- 46. Bilsin E, Güngörmüş Z, Güngörmüş M. The efficacy of external cooling and vibration on decreasing the pain of local anesthesia injections during dental treatment in children: A randomized controlled study. J Perianesth Nurs. 2020;35(1):44–47. doi:10.1016/j.jopan.2019.06.007
- Jagtap B, Bhate K, Magoo S, Santhoshkumar SN, Gajendragadkar KS, Joshi S. Painless injections: A possibility with low level laser therapy. J Dent Anesth Pain Med. 2019;19(3):159. doi:10.17245/jdapm.2019. 19.3.159
- Dehgan D, Şermet Elbay Ü, Elbay M. Evaluation of the effects of photobiomodulation with different laser application doses on injection pain in children: A randomized clinical trial. *Lasers Med Sci.* 2022; 38(1):6. doi:10.1007/s10103-022-03674-1

- Elbay M, Elbay ÜŞ, Kaya E, Kalkan ÖP. Effects of photobiomodulation with different application parameters on injection pain in children: A randomized clinical trial. *J Clin Pediatr Dent*. 2023;47(4):54–62. doi:10.22514/jocpd.2023.035
- 50. Sharifi R, Bahrami H, Safaei M, et al. A randomized triple-blind clinical trial of the effect of low-level laser therapy on infiltration injection pain in the anterior maxilla. *Pesqui Bras Odontopediatr Clín Integr.* 2022;22:e210001. doi:10.1590/pboci.2022.040
- El Feghali R, Tatarian K, Zogheib C, Benedicenti S, Pasquale C, Amaroli A. The 1064-nm Nd:YAG photobiomodulation vs. 20% benzocaine topical gel in inducing mucosal anesthetic effect: A double-blind randomized clinical trial. *Photonics*. 2022;9(8):519. doi:10.3390/photonics.000519
- Tuk JGC, Van Wijk AJ, Mertens IC, Keleş Z, Lindeboom JAH, Milstein DMJ. Analgesic effects of preinjection low-level laser/light therapy (LLLT) before third molar surgery: A double-blind randomized controlled trial. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;124(3):240–247. doi:10.1016/j.0000.2017.04.017
- 53. Seraj B, Ghadimi S, Hakimiha N, Kharazifard MJ, Hosseini Z. Assessment of photobiomodulation therapy by an 8l0-nm diode laser on the reversal of soft tissue local anesthesia in pediatric dentistry: A preliminary randomized clinical trial. *Lasers Med Sci.* 2020;35(2): 465–471. doi:10.1007/s10103-019-02850-0