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Materials and methods. We employed an experimental model of intestinal abrasion in male Wistar rats.

Published online on September 16, 2024 The rats were categorized into control and treatment groups, with the latter receiving varying doses of Mg
sulfate. Intraperitoneal adhesions were induced using a multi-abrasion model.

Results. Based on both the Evans model and histopathological evaluations, it was observed that there were
significant differences in adhesion scores between the groups. Magnesium-treated groups showed signifi-
cantly fewer adhesions than the control group. Histopathological analyses indicated variations in adhesion
characteristics and inflammatory responses among the groups.

Conclusions. Preliminary results indicated the potential role of Mg in mitigating postoperative intraperitoneal
adhesions. These findings suggest the need for further research to confirm the efficacy of Mg and to explore
its mechanisms of action in clinical settings.
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Background

Postoperative adhesions are fibrovascular bands that
form between peritoneal surfaces, usually occurring after
abdominal or pelvic surgeries, with a reported incidence
of up to 54%.12 These adhesions develop as part of the nat-
ural healing process, involving factors such as coagulation,
inflammation and fibrinolysis, and their clinical signifi-
cance varies.? Despite advances in surgical techniques,
peritoneal adhesions remain a significant clinical chal-
lenge, often necessitating further intervention. While not
classified as complications, adhesions can lead to various
issues in approx. 19% of patients, including acute/chronic
abdominal pain, bowel obstruction, infertility, and iatro-
genic intestinal injury during adhesiolysis.?*

Magnesium (Mg), the 4™ most abundant mineral in
the human body, serves as a cofactor in more than 300 en-
zymatic reactions and influences energy metabolism, pro-
tein synthesis and nucleic acid synthesis.>~” Moreover, its
anti-inflammatory,®1* antioxidant,'*!* bronchodilator,*
vasodilator,'”!8 antiaggregant,'® and neuroprotective?%2!
properties have been demonstrated. These properties are
linked to reduced anesthesia requirements during sur-
gery?? and are effective at controlling neuropathic pain.?

The inflammatory process and fibrin matrix formation fol-
lowing peritoneal injury are major factors responsible for adhe-
sion formation,® and the anti-inflammatory and coagulation-
related effects of Mg have been demonstrated in many studies.

Objectives

Given Mg’s well-known effects on the inflammatory
and coagulation cascades, this study aimed to investigate
the effect of Mg on intra-abdominal adhesions in an ex-
perimental intestinal abrasion rat model.
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Materials and methods
Study design

Twenty-six male Wistar albino rats, aged 9-10 weeks and
weighing 300—400 g, were obtained from the Experimental
Animals Research Unit of the Biilent Ecevit University,
Zonguldak, Turkey. The rats were allowed to acclimate
under standard laboratory conditions, namely, 23 +2°C,
50% humidity and a 12-h artificial light cycle, for 1 week.
Throughout this period, the animals had ad libitum access
to food and water.

Magnesium sulfate (MgSO,) (15%; Biofarma, Istanbul,
Turkey) was utilized in the experimental procedures.

This study was conducted in line with the ethical stan-
dards set by the National Institutes of Health Guidelines
for the care and use of laboratory animals. Approval for
the study was obtained from the Ethics Review Board
of the Zonguldak Bulent Ecevit University (Zonguldak,
Turkey; protocol No. 2021-20-02/09).

Multi-abrasion model

The intra-abdominal adhesion model described by On-
cel et al. was used in this study.?* A 12-mm incision was
made in the midline to reveal the cecum and small intes-
tine. The anterior wall of the cecum was gently abraded
with 20 strokes using a brush. During this procedure,
the soft motion of the brush carefully abraded the surface
of the organ wall. Additionally, 5 abrasions were induced
on the small intestine at intervals of 3 cm, starting 5 cm
from the ileocecal valve, as illustrated in Fig. 1. Following
the creation of the abrasions, the cecum and small intes-
tine were repositioned. The abdominal incision was closed
in 2 layers using 3-0 polyglactin and 3-0 polypropylene
sutures.

Fig. 1. lllustration of the intra-abdominal adhesion model as implemented by Oncel et al.**
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Surgical procedure

The rats were randomly assigned to 1 of the following
4 groups: group 1 (sham group, n = 2), group 2 (control group,
n = 8), group 3 (300 mg/kg MgSO, treatment group, n = 8),
and group 4 (500 mg/kg MgSO, treatment group, n = 8).

The rats were weighed and then anesthetized using
an intramuscular injection of 100 mg/kg ketamine (Keta-
lar; Parke Davis Eczacibagi, Istanbul, Turkey). The lower
abdomen was shaved and cleaned with alcohol and po-
vidone-iodine. All surgical procedures were performed
in a semi-sterile environment by the same surgeon.

Rats in group 1 did not undergo surgery. Rats in groups 2,
3 and 4 were subjected to the multi-abrasion model,
as detailed by Oncel et al.?* For groups 3 and 4, before
the abdominal cavity was closed, MgSO, in proportion
to their body weight was intraperitoneally administered.
After the surgery, each animal was placed in an individual
cage. Rats were provided standard food and had adequate
access to water; they were euthanized on post-operative
day 7. Laparotomy was conducted to evaluate adhesion
formation using a validated adhesion scoring system. Ad-
hesions were assessed and graded according to the Evans
model?® (Table 1). An observer blinded to the study de-
sign performed the scoring process, as shown in Fig. 2,3.

Table 1. Adhesion severity score (Evans model)

Definition

Adhesion grade

0 no adhesions
1 filmy adhesions separate spontaneously
2 firm adhesions separated by traction

3 dense adhesions requiring sharp dissection

Fig. 2. Adhesion formations observed in rats following laparotomy
on the 7™ postoperative day. Adhesion scoring using the Evans model
(grade 0: no adhesions)
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The terminal ileum and cecum were dissected for histo-
logical analysis without separating the adhesions.

Histology

Tissue specimens from the terminal ileum and cecum
were fixed in 10% neutral formalin and embedded in par-
affin. Sections were cut from the paraffin blocks of each
tissue sample using a microtome at a thickness of 4—5 pm.
The specimens were then deparaffinized and stained with
hematoxylin and eosin (H&E) or with Perls Prussian blue,
a histochemical method for detecting hemosiderin pig-
ments. A light microscope (Leica DM3000 LED; Leica Cam-
era AG, Jena, Germany) was used for evaluation. The pres-
ence of adhesions and the intensity of inflammation around
the terminal ileum and cecum were evaluated histopath-
ologically (Fig. 4). These findings were observed during
the microscopic evaluation of the H&E-stained sections and
graded on a scale of 0 (absence of the characteristic) to 3
(intensive presence of the characteristic). Sections stained
with Perls Prussian blue were evaluated for the presence
of hemosiderin. The same pathologist examined all tissue
sections collected for light microscopy examinations with-
out any knowledge of the group assignments.

Statistical analyses

The data were analyzed using IBM SPSS v. 23 software
(IBM Corp., Armonk, USA). The Fisher—Freeman—Halton

Fig. 3. Adhesion formations observed in rats following laparotomy
on the 7" postoperative day. Adhesion scoring using the Evans model
(grade 3: dense adhesions requiring sharp dissection)
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Fig. 4. Histopathological examination of adhesions and inflammation intensity around the terminal ileum-cecum. A. Photomicrograph of the control
group. Serosal thickening, edema, dense inflammatory cell reaction, micro abscess focus (arrow), and granulation tissue formation in the serosal surfaces
(hematoxylin & eosin (H&E) staining, x100 magnification); B. Photomicrograph of the magnesium-treated (300 mg) group. Edema, moderate inflammatory
cell reactions and granulation tissue formation on serosal surfaces (H&E, X100 magnification); C. Photomicrograph of the magnesium-treated (500 mg)
group. Edema, mild inflammatory cell reactions and granulation tissue formation on serosal surfaces (H&E, X100 magnification)

test was used to compare categorical variables between
groups since the minimum expected value was less than
5, and the data were not arranged in a 2x2 contingency
table format. Additionally, multiple comparisons of pro-
portions were examined using the Bonferroni-adjusted
Z test. Categorical variables were expressed as a frequency
(percentage). A p-value < 0.05 was considered statistically
significant.

Results

Analysis of adhesion scores using
the Evans model

Evaluation of adhesion scores according to the Evans
model revealed distinct variations among the groups.
In group 1, no adhesions were observed, whereas in group 2,
12.5% of cases showed filmy adhesions that separated spon-
taneously, and a significant majority (87.5%) of cases ex-
hibited dense adhesions necessitating sharp dissection.
In group 3, filmy adhesions that separated spontaneously
and firm adhesions separable by traction were observed
in 37.5% of the cases, and dense adhesions requiring sharp
dissection were observed in 25% of the cases. In group 4,
50% of the cases had filmy adhesions that separated spon-
taneously, 37.5% had firm adhesions separable by traction,

Fig. 5. Comparative analysis of adhesion severity scores across different
groups using the Evans model

and 12.5% had dense adhesions necessitating sharp dissec-
tion. Upon evaluation, a statistically significant difference
in adhesion scores across the groups was noted (p = 0.001).
These results underscore the variability in adhesion char-
acteristics and the effectiveness of the interventions
in the different groups. The adhesion scores determined
using the Evans model are detailed in Table 2 and illus-
trated in Fig. 5.

Histopathological analysis of adhesions
An analysis of adhesion scores evaluated histopathologi-

cally revealed significant differences among the groups. His-
topathological findings were categorized as “none” (0), “weak”

Table 2. Comparative analysis of adhesion scores among groups based on the Evans model

Adhesion score

Test statistic

p-value*

Group 1 (sham) 2 (100) 0(0)

Group 2 (control) 0(0) 1(12.5)
Group 3 (300 mg/kg MgSO,) 0(0) 3(37.5)
Group 4 (500 mg/kg MgSO,) 0(0) 4(50)

0(0) 0(0)
0(0) 7(87.5)
19412 0.001
3(37.5) 2(25)
3(37.5) 1(125)

*Fisher—Freeman—Halton test. Adhesion severity score according to the Evans model: 0 = no adhesions, 1 = filmy adhesions separating spontaneously,
2 =firm adhesions separated by traction, 3 = dense adhesions requiring sharp dissection.
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Table 3. Analysis of histopathological characteristics in tissue samples from the terminal ileum and cecum

Group 2
(control,n =8)

Mucosal 1 1 7 1
inflammation | 50 | 50| © | O @75 25 O | ©
Submucosal 2 5 3
inflammation (100) 0 0190 (62.5) (37.5) 0 0
Serosal 2 1 3 4
inflammation 00y ° % % O (25 @75 (0
Fat necrosis 2 0 0 0 8 0 0 0
(100) (100)

Hemosiderin- 5 s
laden (100) 0 0 0 (100) 0 0 0
macrophages

) 2 8
Adhesion (100) 0 0 0 0 (100) 0 0

(300 mg/kg MgSOy, n = 8)

3
(37.5)

2
(25)
2
(25)

4
(50)

1
(12.5)

Group 3 Group 4
(500 mg/kg MgSOy,, n = 8)
Test

statistic

p-value*

3 2 2 2 1 3
a5 O | o5 | @) | @5 |25 | @rs | 10915 | 0215
23 2 1 3 2

(25) (375 (125) @5 (25) (375 (5 01°7 0288
1| 3| 2 | 1| 3| 2|2

(125 678 @5 (29 @75 @5 @5 o202 0380
2 2 4 3 1

) @5 0 o @75 a5 O 7378 0192
3 2 2 2 2 4

375 05 05 O @5 @s) (o 24012 <0001
4 5 3

s © O s @75 © O 10216 0016

*Fisher-Freeman—-Halton test. Histopathologic findings are scored as 0 = none, 1 = weak, 2 = moderate, and 3 = intense. Adhesion is classified as 0 = absent

and 1 = present.

Fig. 6. Histopathological evaluation of adhesion scores in different groups. Comparison of mucosal inflammation, submucosal inflammation, fatty necrosis,

macrophage infiltration, and adhesion presence

(1), “moderate” (2), or “intense” (3). Adhesions were classified
as “absent” (0) or “present” (1). These histopathological find-
ings are detailed in Table 3 and illustrated in Fig. 6.

Distribution of hemosiderin-laden
macrophage scores across groups
In groups 1 and 2, hemosiderin-laden macrophages were

categorized as “none” in all cases (100%), and no weak,
moderate or intense instances were observed. In group 3,

the distribution was found to be 12.5% “none”, 37.5% “weak”,
25% “moderate”, and 25% “intense”. In group 4, the distri-
bution was 0% “none”, 25% “weak”, 25% “moderate”, and
50% “intense”. Based on the scores from the different
groups, there were no statistically significant differences
in mucosal inflammation, submucosal inflammation, se-
rosal inflammation, or fat necrosis between the groups
(p > 0.05). However, a statistically significant difference
was noted in the scoring of hemosiderin-laden macro-
phages between the groups (p < 0.001).
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Adhesion scores across groups

Significant variation was observed in the distribution
of adhesion scores among the groups (p < 0.05). In group 1,
adhesions were absent in all cases (100%). In group 2, ad-
hesions were present in all cases (100%). In group 3, adhe-
sions were absent in 50% of the cases and present in the re-
maining 50%. In group 4, adhesions were absent in 62.5%
of the cases and present in 37.5% of cases.

Discussion

Our study revealed significant differences in adhe-
sion formation among the groups (p < 0.05). Specifically,
the Mg-treated groups (groups 3 and 4) showed signifi-
cantly fewer adhesions than the control group (group 2).
Our histopathological analysis revealed the detailed char-
acteristics of these adhesions. We observed variations
in the number of hemosiderin-laden macrophages among
the groups. This, coupled with the differences in serosal
inflammation, suggests a potential role for Mg in manag-
ing inflammation and reducing adhesion formation.

Adhesions account for 3% of all laparotomy cases and
approx. 1% of general surgery admissions.?® Various fac-
tors are implicated in adhesion formation, including rough
surgical techniques, tissue drying, infections, peritoneal
endometriosis, suture materials, foreign bodies, and
the presence of blood or clots in the peritoneal cavity.?”
The following strategies aim to prevent adhesions by in-
tervening in their pathophysiological mechanisms: surgical
techniques, drugs, materials (such as barrier methods),
and advanced technologies (such as nanoparticle and gene
therapy).?® Despite advances in modern medicine, post-
operative adhesions remain an unsolved problem.?® Adhe-
sions can develop in response to nonsurgical or surgical
injuries and are typically associated with the disruption
of the balance between inflammation, fibrin formation
and fibrinolysis.??30:3!

Local inflammation activates fibrin coagulation path-
ways, resulting in infiltration of inflammatory cells and
fibrinogen deposition.3!:32 Fibrinogen is converted into fi-
brin, and if there is an imbalance between fibrin formation
and fibrinolysis, adhesive bonds form.33 As a result, abnor-
mal intraperitoneal fibrous bands connected to the surface
form abdominal adhesions.3*

It has been observed that the levels of pro-inflammatory
cytokines, such as interleukin (IL)-1, IL-6, IL-8, and tumor
necrosis factor alpha (TNF-a) increase in the peritoneal
fluid during acute inflammation.3>3¢ Cytokines may con-
tribute to the remodeling of the extracellular matrix (ECM)
by interacting with the fibrinolytic pathway,3”3® promot-
ing inflammation and coagulation, reducing fibrinolytic
capacity by stimulating the release of plasminogen activa-
tor inhibitors, and suppressing the production of tissue
plasminogen activators.*** These mechanisms suggest
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that the interruption of processes during the early stages
of the inflammatory cascade may reduce adhesion forma-
tion.*? The anti-inflammatory and antioxidant properties
of vitamin C and vitamin E have shown potential in signifi-
cantly reducing postoperative adhesions. These treatments
modulate inflammatory responses and reduce oxidative
stress in the affected tissues.*® Similarly, the administra-
tion of intraperitoneal surfactant has been demonstrated
to be effective in mitigating the formation of postopera-
tive intra-abdominal adhesions, primarily by decreasing
inflammation and fibrosis at the surgical site.*

The inhibitory effect of Mg on thrombus formation
is dose-dependent and may also delay the formation of ar-
terial blood clots by inhibiting platelet activity.*> Calcium
(Ca) ions, known as clotting factor IV, are involved in all
3 routes of clot formation,*® and the antagonism between
Ca and Mg is well known.” The effect of Mg on coagula-
tion involves the displacement of Ca from the structure
of procoagulant proteins. These procoagulant proteins
(prothrombin, FII; blood coagulation factors FXIII, FX,
FXI, FVII, FVIIL, and FIX; and protein C) are Ca-depen-
dent. However, their activity levels may decline because
of excessive Mg.*> In addition, Mg can affect coagulation
through proteolysis of von Willebrand factor; thus, Mg
is a natural disaggregant and anticoagulant.

The most likely mechanism of action of the anti-in-
flammatory effects of Mg on the arachidonic acid cas-
cade is the direct inhibition of phospholipase.*® Accord-
ing to Liu et al., hypomagnesemia induces inflammation
via various signaling pathways, including the induction
of cellular oxidative stress, the opening of the Ca chan-
nel, activation of the renin—angiotensin—aldosterone
system and phagocytic cells, nuclear factor-kB signaling,
a reduction in the levels of anti-inflammatory mediators,
and the release of overactive N-methyl-D-aspartate re-
ceptors and substance P.” Magnesium plays a significant
role in regulating intracellular pH and osmotic balance.*
The influence of Mg on intracellular signaling pathways
can modulate intracellular pH levels. This interaction has
critical implications, considering the effects of intracel-
lular pH on cellular metabolism and function. Specifi-
cally, the role of Mg in the regulation of intracellular pH
is crucial for determining cellular energy metabolism and
vulnerability to stress, as evidenced in mitochondrial Mg
homeostasis studies.* The potential of Mg to reduce cell
adhesion can be linked to its role in modulating the in-
tracellular pH and relevant signaling pathways. Changes
in pH can influence the conformation and function of cell
adhesion molecules. Additionally, Mg may affect the sig-
naling pathways that regulate the expression and activation
of these molecules, leading to reduced adhesions.>® This
reported theoretical basis suggests a significant area for
future research to fully elucidate this effect. In contrast,
the effects of Mg on integrin binding affinity may affect
the migration of inflammatory cells to the abraded site and
their subsequent adhesion-forming function. Integrins are
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cell surface receptors that play significant roles in the in-
teraction of cells with the ECM. The activity of these re-
ceptors is crucial for processes such as cell migration and
adhesion. Magnesium modulates intracellular signaling
pathways and influences the binding affinity of integrins.
This suggests that Mg plays a direct role in cell behavior.
In particular, increases in Mg concentrations have been
shown to affect the activation state of integrins, thereby
altering cell migration and adhesion capacities. This inter-
action is supported by detailed nuclear magnetic resonance
spectroscopy studies on the integrin al I domain, dem-
onstrating that Mg regulates integrin-collagen recogni-
tion and binding through microsecond dynamics.*! These
interactions may have significant implications for the mi-
gration of inflammatory cells. By influencing the activity
of integrins, Mg can modulate the ability of inflammatory
cells to migrate to damaged tissues and form adhesions.
This concept is further supported by studies on synovial
stem cells, wherein Mg has been shown to enhance adhe-
sions to collagen. This effect was inhibited by neutralizing
antibodies against integrin a3 and B1, indicating the role
of Mg in promoting integrin-mediated adhesion and early-
phase cartilage matrix synthesis.

We hypothesized that Mg would reduce adhesion devel-
opment by altering thromboxane and prostaglandin syn-
thesis via arachidonic acid metabolism, lowering vascular
permeability, plasmin inhibitors, platelet aggregation, and
coagulation, and modulating intracellular pH and signal-
ing pathways. Magnesium is readily available, cost-effec-
tive and safe. Notably, this is the first study to examine
the effects of Mg on intra-abdominal adhesions. To clini-
cally evaluate adhesions, we utilized the Evans grading
model and found that adhesions were noticeably reduced
in the Mg groups compared to controls. Hemosiderin-
laden macrophages are commonly associated with tissue
repair and inflammation.> We found that Mg potentially
accelerated the inflammation resolution phase, which
may explain the observed increase in hemosiderin-laden
macrophages.>*® Specifically, the Mg-treated groups
demonstrated a significantly higher number of these
macrophages than the control group (p < 0.001). Addi-
tionally, although not statistically significant, we noted
a discernible reduction in serosal inflammation rates
in the Mg-treated groups relative to the control group
based on histopathological analyses. Brochhausen et al.
pointed out that initial localized ischemia, followed by in-
flammation in the injured tissues, plays a role in the de-
velopment of peritoneal adhesions.>® There is a robust
link between adhesions and serosal surface inflammation.
Given the anti-inflammatory properties of Mg, the re-
duced inflammation observed in the Mg groups com-
pared to the controls in the histological assessments may
underscore one of the mechanisms by which Mg curbs
adhesion growth. Further studies are warranted to elu-
cidate the cellular and molecular mechanisms by which
Mg inhibits adhesion development.
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Limitations

This study has some limitations. First, we were uncertain
about the effective intraperitoneal dose of the adminis-
tered substance. Another limitation arises from the scoring
of the adhesions. Although a blinded researcher performed
the adhesion scoring process, the potential subjectivity and
insensitivity of the observer’s scoring technique may have
compromised its repeatability and consistency.

Conclusions

Our findings show that Mg may be an effective
agent in preventing intra-abdominal adhesions, laying
the groundwork for future studies involving more detailed
cellular analyses and various dosages and administration
methods. Clarifying the effects of Mg on the formation
of abdominal adhesions will enrich our knowledge in this
area and may lead to significant changes in clinical practice.

Data availability

The datasets generated and/or analyzed during the cur-
rent study are available from the corresponding author
on reasonable request.
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