Neutrophil-to-lymphocyte ratio and prognostic nutritional index in predicting composite endpoint of early safety following transcatheter aortic valve replacement

Hangyu Liu^{1,A–E}, Siyi Chen^{1,A}, Shufen Song^{2,B}, Haixia Wei^{1,B}, Yao Li^{1,B}, Yanqing Wu^{1,A,E,F}

- ¹ Department of Cardiology, The Second Affiliated Hospital of Nanchang University, China
- ² Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, China
- A research concept and design; B collection and/or assembly of data; C data analysis and interpretation;
- D writing the article; E critical revision of the article; F final approval of the article

Advances in Clinical and Experimental Medicine, ISSN 1899-5276 (print), ISSN 2451-2680 (online)

Adv Clin Exp Med. 2025;34(5):717-726

Address for correspondence

Yanqing Wu

E-mail: wuyanqing01@sina.com

Funding sources

This study was supported by the Jiangxi Provincial Key R&D Program (grant No. 20212BBG71004).

Conflict of interest

None declared

Received on February 20, 2024 Reviewed on April 13, 2024 Accepted on April 29, 2024

Published online on August 13, 2024

Abstract

Background. The incidence of composite endpoint of early safety (CEES) after transcatheter aortic valve replacement (TAVR) has been a topic of focus within the cardiovascular field due to its impact on long-term patient outcomes. Timely prophylactic interventions are crucial for patients identified as high risk for CEES through preoperative risk stratification.

Objectives. This study aimed to explore the connection between inflammatory and nutritional markers, specifically the neutrophil-to-lymphocyte ratio (NLR) and prognostic nutritional index (PNI), and CEES occurrence.

Materials and methods. A cohort of 134 patients undergoing TAVR in a single center was studied. The study endpoint was the occurrence of CEES, which was defined according to the Valve Academic Research Consortium 3.

Results. The CEES was reached in 25.4% of patients at 30 days. A high NLR was associated with a 5.55-fold increased risk of CEES (95% confidence interval (95% Cl): 1.52-20.29; p < 0.05), while a low PNI was linked to a 4.43-fold increased risk (95% Cl: 1.55-12.65; p < 0.01). Combining NLR and PNI provided additional risk stratification for high-risk patients (hazard ratio (HR), 95% Cl: 2.24-43.37; p < 0.005).

Conclusions. A high NLR and low PNI were shown to be significant predictors of CEES following TAVR. These findings underscore the significance of NLR and PNI in the risk assessment of TAVR patients, offering valuable insights for preventive measures.

Key words: prognostic nutritional index, neutrophil-to-lymphocyte ratio, transcatheter aortic valve replacement

Cite as

Liu H, Chen S, Song S, Wei H, Li Y, Wu Y. Neutrophilto-lymphocyte ratio and prognostic nutritional index in predicting composite endpoint of early safety following transcatheter aortic valve replacement. *Adv Clin Exp Med*. 2025;34(5):717–726. doi:10.17219/acem/188107

DOI

10.17219/acem/188107

Copyright

Copyright by Author(s)
This is an article distributed under the terms of the
Creative Commons Attribution 3.0 Unported (CC BY 3.0)
(https://creativecommons.org/licenses/by/3.0/)

Background

In recent years, there has been a significant focus on clinical endpoints observed in patients who undergo transcatheter aortic valve replacement (TAVR). The concept of composite endpoints was initially introduced in the Valve Academic Research Consortium (VARC) Consensus Report in 2011. With the continuous accumulation of TAVR experience and advancements in related studies, the indications for TAVR have broadened to include lowrisk patients,^{2,3} and the latest definition of composite endpoints was introduced in the VARC-3 in 2021.4 Within this definition, the composite endpoint of early safety (CEES) at 30 days serves as a measure of the procedure's early safety and effectiveness, encompassing a variety of adverse events that can have a significant impact on patient outcomes.^{5–9} Consequently, an early prediction of these adverse events and the implementation of prophylactic interventions are crucial for improving patient outcomes.

In the development and occurrence of atherosclerosis and calcific aortic valve disease, inflammation is a crucial factor. The neutrophil-to-lymphocyte ratio (NLR), an emerging inflammatory biomarker, has gained widespread attention in the past decade due to its inexpensiveness and easy accessibility. Several studies have illustrated a significant correlation between elevated preoperative NLR levels and increased postoperative mortality as well as acute kidney injury (AKI) in patients undergoing TAVR. 13,14

Furthermore, malnutrition also has an adverse impact on the prognosis following TAVR. Elderly patients comprise a considerable proportion of the population undergoing TAVR treatment, and malnutrition is particularly prevalent in this group. Previous studies have indicated that malnourished patients have higher mortality rates following TAVR procedures. The prognostic nutritional index (PNI) is a useful indicator for assessing nutritional status and has been validated for its predictive value in cardiovascular diseases such as heart failure and acute coronary syndromes. Pecent research has also suggested that PNI exhibits good predictive ability for post-TAVR survival. Coronary survival.

Neutrophil-to-lymphocyte ratio and PNI serve as predictors of post-TAVR complications by reflecting the systemic inflammatory status and nutritional level. However, there is currently a lack of research demonstrating the predictive value of these 2 indicators for composite endpoints such as CEES.

Objectives

This research aimed to investigate the impact of the systemic inflammatory response and nutritional status on the CEES after TAVR, specifically looking at NLR and PNI. Additionally, the study assessed the predictive accuracy of NLR and PNI in identifying the occurrence of post-TAVR complications.

Materials and methods

Study design

The study retrospectively gathered common inflammatory and nutritional indicators for the study population. Baseline characteristics for the entire population and differences between subgroups divided according to the occurrence of CEES were analyzed. The prognostic significance of inflammatory and nutritional indicators in predicting CEES following TAVR was studied.

Study patients

This retrospective and observational study included 145 consecutive patients who underwent TAVR at the Second Affiliated Hospital of Nanchang University (Nanchang, China) between January 2018 and February 2023. Eleven individuals were excluded from the study because of a preoperative red blood cell transfusion, cancer, sick sinus syndrome, and high-degree atrioventricular block. As this was a retrospective study, the need for informed consent was not required.

Data collection

Demographic characteristics, clinical concomitant diseases, laboratory parameters, and pre-procedural imaging parameters were collected. Furthermore, the preprocedural Society of Thoracic Surgeons (STS) scores were calculated. In terms of inflammation parameters, we calculated the NLR, platelet-to-lymphocyte ratio (PLR) and monocyte-to-high-density lipoprotein ratio (MHR). Neutrophil-to-lymphocyte ratio is calculated as the ratio of neutrophils to lymphocytes, PLR as the ratio of platelets to lymphocytes, and MHR as the ratio of monocytes to high-density lipoprotein concentrations. For nutritional parameters, we calculated the body mass index (BMI) and the PNI. Prognostic nutritional index is measured as follows: $(10 \times \text{serum albumin } [g/dL]) + (0.005 \times \text{total lymphocytes } [1000/\mu L]).^{21}$

TAVR procedure

The multidisciplinary Heart Team in our center evaluated all patients and formulated operation plans after ruling out definite contraindications. Preoperative transthoracic echocardiography and multidetector computed tomography (MDCT) were performed to assess the anatomy of the aortic valve and root. Based on the anatomical parameters and clinical characteristics, a suitable valve type and size were selected. All valves in this study used self-expanding valves and included the VENUS-A (Venus MedTech, Hangzhou, China) and VitaFlow (MicroPort, Shanghai, China) valves. All patients underwent general anesthesia by endotracheal intubation in the cardiac catheterization laboratory and monitoring using transesophageal echocardiography.

The preferred access for TAVR was transfemoral with other alternative accesses, including transcarotid or transaxillary. Following the procedure, all patients were transferred to the cardiac intensive care unit for observation.

Endpoint

The endpoint of this study was the occurrence of the CEES at 30 days, which was defined with VARC-3. This comprises all-cause mortality; stroke; VARC type 2–4 bleeding; major vascular, access-related, or cardiac structural complications; acute kidney injury stage 3 or 4; moderate or severe aortic regurgitation; new permanent pacemaker placement due to procedure-related conduction abnormalities; surgery or intervention related to the device.

Statistical analyses

The data analysis was performed using IBM SPSS v. 26.0 software (IBM Corp., Armonk, USA). Medians (interquartile ranges) or means ± standard deviations (±SD) were used to represent continuous variables, while frequencies (percentages) were used for categorical variables. Statistical significance was defined as a p-value of less than 0.05. Continuous variables were compared using t-tests or Mann-Whitney U tests, while categorical variables were compared using the χ^2 test or Fisher's test. The risk factors associated with the study endpoints were identified through univariate and multivariate logistic regression analyses conducted in sequence. For multivariate analysis, we adjusted for age, gender, STS score, New York Heart Association (NYHA) classification, hypertension, diabetes mellitus, coronary heart disease (CHD), atrial fibrillation, cerebrovascular disease, chronic obstructive pulmonary disease (COPD), chronic kidney disease (CKD), hemoglobin, platelet, hematocrit, red blood cell distribution width (RDW), mean platelet volume (MPV), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), non-high-density lipoprotein cholesterol (NHDL-c), lipoprotein(a) (Lp(a)), B-type natriuretic peptide (BNP), serum creatinine, left ventricular ejection fraction (LVEF), peak aortic jet velocity, annulus diameter, left ventricular outflow tract diameter, and ascending aorta diameter. The results were presented in terms of odds ratios (ORs) along with their corresponding 95% confidence intervals (95% CIs). A receiver operating characteristic (ROC) curve was generated to assess the predictive value of the risk factor for the occurrence of CEES, and the optimal cutoff values for NLR and PNI were identified.

Results

Baseline characteristic

A total of 134 patients undergoing TAVR at our center were included in this study. Among this cohort, the mean

age was 71.39 ±6.92 years, with 38.8% of the population being female. The median (range) STS score was 2.36 (1.60, 3.90) and the median (range) LVEF was 56.5 (43.75, 64). Thirty-one patients (23.1%) were classified as a NYHA class IV. The occurrence of CEES at 30 days in all patients was 25.4% (34/134). We also analyzed the differences between patients who experienced CEES and those who did not. Compared to the non-CEES group, patients in the CEES group tended to have higher STS scores and BNP levels. Additionally, these patients had a higher proportion of NYHA class IV (41.2%) and intraoperative use of mechanical circulatory support devices (26.5%), but a lower baseline LVEF. In terms of inflammatory markers, the CEES group had higher NLR and MHR values compared to the non-CEES group, although PLR showed no significant differences. Regarding nutritional markers, patients in the CEES group had a lower PNI compared to the non-CEES group, but there was no significant difference in BMI between the groups. Further details are outlined in Table 1.

Comparison of baseline characteristics according to NLR/PNI binaries

Based on the ROC curve analysis for CEES incidence, the optimal NLR and PNI cutoff values were established at 2.27 and 42.9, respectively. Subsequently, patients were divided into 2 groups according to NLR and PNI binaries, and the baseline characteristics were analyzed (Table 2). Notably, the patients with high NLR values or low PNI values had a higher incidence of CEES and exhibited higher STS scores, BNP levels, PLR values, and RDW values, but had lower LVEF measurements. Additionally, higher NLR levels were associated with higher baseline creatinine levels, as well as a higher prevalence of hypertension and diabetes. On the other hand, patients with low PNI levels had lower baseline levels of hemoglobin and high-density lipoprotein cholesterol, a higher proportion of NYHA class IV, and a higher requirement rate of intraoperative mechanical circulatory support.

Prognostic significance in CEES

The levels of NLR or PNI were associated with the occurrence of CEES (Table 3). The risk of CEES in patients with a high NLR or low PNI was 5.55 (95% CI: 1.52–20.29) and 4.43 (95% CI: 1.55–12.65), respectively, compared to the patients with a low NLR or high PNI. To investigate whether the combination of NLR and PNI provides additional prognostic value, we further divided the patients into 3 groups: 1) NLR-low and PNI-high, 2) NLR-high or PNI-low and 3) NLR-high and PNI-low. We included the new categorical variables in the model for analysis. This simple and effective stratification successfully categorized patients into low-, intermediate- (OR = 4.07, (95% CI: 1.06–15.68)), and

Table 1. Demographic, clinical and procedural characteristics

		CEES				
Variable Variable	Total population	CEES group (n = 34)	Non-CEES group (n = 100)	p-value		
Age [years]	71.39 ±6.92	69.68 ±8.26	71.97 ±6.34	0.146		
Female, n (%)	52 (38.8)	11 (32.4)	41 (41)	0.371		
BSA [m²]	1.57 ±0.16	1.60 ±0.17	1.56 ±0.16	0.213		
BMI [kg/m²]	22.08 (20.29–24.06)	21.76 (19.81–25.02)	22.24 (20.31–23.90)	0.988		
STS score	2.36 (1.60–3.90)	3.13 (1.80–5.57)	2.22 (1.59–3.35)	0.028		
NYHA class IV, n (%)	31 (23.1)	14 (41.2)	17 (17)	0.004		
Hypertension, n (%)	70 (52.2)	21 (61.8)	49 (49)	0.198		
Diabetes mellitus, n (%)	17 (12.7)	5 (14.7)	12 (12)	0.682		
CHD, n (%)	35 (26.1)	9 (26.5)	26 (26.0)	0.957		
Atrial fibrillation, n (%)	19 (14.2)	7 (20.6)	12 (12)	0.215		
CVD, n (%)	16 (11.9)	2 (5.9)	14 (14)	0.207		
COPD, n (%)	14 (10.4)	3 (8.8)	11 (11.0)	0.720		
CKD, n (%)	15 (11.2)	5 (14.7)	10 (10)	0.530		
	Lab	oratory index				
RBC [×10 ⁹ /L]	4.11 ±0.55	4.02 ±0.55	4.14 ±0.55	0.307		
Hemoglobin [g/L]	124.79 ±16.05	121.91 ±17.47	125.77 ±15.50	0.227		
Platelet count [×10 ⁹ /L]	167 (132.75–198.25)	168.00 (140.75–199.25)	160.5 (131.25–197.25)	0.476		
NLR	2.96 (2.11–4.61)	3.74 (2.65–7.03)	2.71 (1.99–4.13)	0.001		
PLR	129.13 (94.41–162.65)	149.82 (94.41–193.81)	124.44 (93.01–161.06)	0.161		
MHR	0.37 (0.27–0.57)	0.48 (0.31-0.70)	0.36 (0.26–0.55)	0.027		
Hematocrit [%]	38.12 ±4.49	37.54 ±5.14	38.32 ±4.25	0.379		
RDW [%]	13.30 (12.58–14.30)	13.70 (12.60–14.65)	13.2 (12.5–14.08)	0.122		
MPV [fL]	11.05 (10.40–11.83)	11.15 (10.48–11.93)	11.0 (10.2–11.78)	0.350		
HDL-c [mmol/L]	1.18 (0.99–1.43)	1.15 (0.86–1.43)	1.18 (1.02–1.43)	0.597		
LDL-c [mmol/L]	2.27 (1.68–3.09)	1.95 (1.54–3.01)	2.34 (1.77–3.10)	0.093		
NHDL-c [mmol/L]	3.04 (2.30-3.72)	2.74 (2.15–3.56)	3.07 (2.36–3.78)	0.121		
Lp (a) [mg/L]	159.25 (78.08–355.85)	159.25 (62.13–375.65)	160.25 (83.00–315.10)	0.904		
PNI	45.87 ±5.26	43.28 ±6.25	46.74 ±4.59	0.005		
BNP [pg/mL]	679.72 (261.88–1811.09)	1203.26 (252.00-5000)	664.57 (259.96–1520.77)	0.034		
Creatinine [µmol/L]	81.70 (70.69–110.58)	87.60 (74.43–127.70)	81.10 (68.95–106.08)	0.146		
	Baseline echoc	ardiographic parameters				
Aortic regurgitation ≥moderate, n (%)	18 (13.4)	4 (11.8)	14 (14)	0.741		
LVEDD [mm]	52.00 (46.00–59.00)	54.5 (45.5–64.25)	50.5 (46.0–57.0)	0.083		
LVESD [mm]	36.0 (29.75–44.0)	42.00 (29.75-54.50)	36.00 (29.25–42.00)	0.031		
LVEF [%]	56.5 (43.75–64)	49.5 (31.25–61.00)	58.00 (45.25-64.00)	0.018		
Peak aortic jet velocity [m/s]	4.43 (3.98–5.01)	4.33 (3.90-4.82)	4.49 (4.02–5.08)	0.390		
	Baseline	MDCT parameters				
Annulus diameter [mm]	24.93 ±2.65	25.56 ±2.90	24.71 ±2.55	0.108		
Annulus area [mm²]	477.97 ±102.25	25.56 ±2.90	24.71 ±2.55	0.153		
LVOT diameter [mm]	25.65 (23.68, 28.9)	26.75 (23.25, 30.13)	25.55 (23.70, 28.60)	0.284		
Ascending aorta diameter [mm]	37.85 ±4.56	38.70 ±5.63	37.56 ±4.13	0.209		
	Proc	edural details				
Circulatory support, n (%)	9 (6.7)	9 (26.5)	0 (0)	<0.001		
Valve size >26 mm, n (%)	50 (37.3)	14 (41.2)	36 (36)	0.590		
2 nd valve needed, n (%)	34 (25.4)	10 (29.4)	24 (24)	0.531		

Values are presented as counts (percentages) or median (IQR). CEES – composite endpoints of early safety; BSA – body surface area; STS – Society of Thoracic Surgery Risk Score; NYHA – New York Heart Association; CHD – coronary heart disease; CVD – cerebrovascular disease; COPD – chronic obstructive pulmonary disease; CKD – chronic kidney disease; NLR – neutrophil-to-lymphocyte ratio; PLR – platelet-to-lymphocyte ratio; MHR – monocyte-to-high density lipoprotein cholesterol ratio; RDW – red blood cell distribution width; MPV – mean platelet volume; HDL-c – high-density lipoprotein cholesterol; LDL-c – low-density lipoprotein cholesterol; NHDL-c – non-high-density lipoprotein cholesterol; LP(a) – lipoprotein(a); PNI – prognostic nutritional index; BNP – B-type natriuretic peptide; LVEDD – left ventricular end-diastolic dimension; LVESD – left ventricular end-systolic dimension; LVEF – left ventricular ejection fraction; MDCT – multidetector computed tomography; LVOT – left ventricular outflow tract.

Table 2. Demographic, clinical and procedural characteristics and outcomes in patients according to NLR and PNI

	NLR			PNI			
Variable	NLR-low group (n = 42)	NLR-high group (n = 92)	p-value	PNI-high group (n = 102)	PNI-low group (n = 32)	p-value	
Age [years]	71.31 ±5.57	71.42 ±7.48	0.930	71.32 ±6.43	71.59 ±8.41	0.848	
Female, n (%)	21 (50)	31 (33.7)	0.072	43 (42.2)	9 (28.1)	0.155	
BSA [m ²]	1.54 ±0.18	1.59 ±0.15	0.153	1.57 ±0.17	1.57 ±0.14	0.991	
BMI [kg/m²]	22.28 (20.23, 23.38)	22.04 (20.27, 24.15)	0.694	22.35 (20.31, 24.22)	21.73 (18.82, 23.13)	0.186	
STS score	1.90 (1.52, 3.23)	2.50 (1.70, 4.03)	0.032	2.12 (1.53, 3.25)	3.57 (2.25, 5.65)	< 0.001	
NYHA IV, n (%)	6 (14.3,)	25 (27.2,)	0.101	16 (15.7,)	15 (46.9,)	<0.001	
Hypertension, n (%)	14 (33.3,)	56 (60.9,)	0.003	54 (52.9,)	16 (50,)	0.771	
Diabetes mellitus, n (%)	1 (2.4,)	16 (17.4,)	0.015	13 (12.7,)	4 (12.5,)	0.971	
CHD, n (%)	8 (19,)	27 (29.3,)	0.208	25 (24.5,)	10 (31.3,)	0.449	
Atrial fibrillation, n (%)	4 (9.5,)	15 (16.3,)	0.297	14 (13.7,)	5 (15.6,)	0.788	
CVD, n (%)	7 (16.7,)	9 (9.8,)	0.254	13 (12.7,)	3 (9.4,)	0.761	
COPD, n (%)	1 (2.4,)	13 (14.1,)	0.064	8 (7.8,)	6 (18.8,)	0.099	
CKD, n (%)	2 (4.8,)	13 (14.1,)	0.145	10 (9.8,)	5 (15.6,)	0.351	
		Laboratory index					
RBC [×10 ⁹ /L]	4.07 ±0.55	4.12 ±0.55	0.621	4.17 ±0.54	3.92 ±0.53	0.027	
Hemoglobin [g/L]	123.95 ±13.87	125.17 ±17.00	0.684	126.47 ±15.14	119.44 ±17.87	0.030	
Platelet count [×10 ⁹ /L]	162.0 (135.5, 192.0)	168.0 (131.3, 200.0)	0.631	167.5 (135.5, 198)	161 (118.25, 203)	0.395	
NLR	1.87 (1.53, 2.07)	3.73 (2.83, 6.12)	<0.001	2.65 (1.96, 3.66)	5.62 (3.2, 8.78)	<0.001	
PLR	104.02 (71.09, 132.03)	145.02 (109.07, 188.57)	<0.001	115.6 (88.87, 159.04)	159.04 (126.53, 210.86)	0.000	
MHR	0.31 (0.24, 0.45)	0.40 (0.29, 0.63)	0.016	0.36 (0.27, 0.54)	0.45 (0.32, 0.72)	0.052	
Hematocrit [%]	37.76 ±3.74	38.28 ±4.80	0.527	38.59 ±4.17	36.63 ±5.18	0.030	
RDW [%]	12.95 (12.30, 13.63)	13.70 (12.80, 14.48)	0.002	13.2 (12.48, 13.93)	14.05 (13.63, 15.53)	<0.001	
MPV [fL]	10.95 (10.43, 11.60)	11.10 (10.40, 11.90)	0.494	11.05 (10.35, 11.83)	11.05 (10.4, 11.85)	0.909	
HDL-c [mmol/L]	1.22 (1.03, 1.52)	1.13 (0.95, 1.38)	0.152	1.2 (1.04, 1.49)	1.05 (0.84, 1.22)	0.003	
LDL-c [mmol/L]	2.46 (1.62, 3.05)	2.23 (1.73, 3.10)	0.842	2.37 (1.7, 3.1)	2.18 (1.58, 2.94)	0.149	
NHDL-c [mmol/L]	3.07 (2.20, 3.77)	2.97 (2.43, 3.10)	0.558	3.04 (2.29, 3.94)	3.01 (2.33, 3.49)	0.357	
Lp (a) [mg/L]	140.45 (69.90, 262.87)	180.60 (79.83, 385.53)	0.415	177.05 (78.08, 351.78)	142.95 (67.08, 312.45)	0.661	
PNI	48.68 ±3.72	44.58 ±5.37	<0.001	48.04 ±3.61	38.93 ±3.3	< 0.001	
BNP [pg/mL]	387.57 (203.50, 789.01)	806.73 (311.00, 2611.49)	0.003	634.54 (240.25, 1428.84)	2215.46 (360.41, 5000)	0.002	
Creatinine [µmol/L]	75.00 (66.49, 92.30)	86.70 (74.29, 113.16)	0.006	80.47 (69.25, 106.43)	86.7 (72.11, 128.3)	0.098	
	Bas	eline echocardiographic p	arameter:	Ŝ			
Aortic regurgitation ≥moderate, n (%)	12 (28.6)	24 (26.1)	0.763	28 (27.5)	8 (25)	0.785	
LVEDD [mm]	51.00 (42.75, 58.25)	52.00 (46.00, 59.00)	0.226	52 (45.75, 57.25)	52.5 (46, 63.75)	0.255	
LVESD [mm]	34.50 (27.00, 42.25)	37.00 (31.00, 45.75)	0.053	36 (29, 42)	39 (30.25, 49.5)	0.098	
LVEF [%]	59.0 (51.0, 66.0)	54.0 (42.0, 62.0)	0.017	58 (45, 64)	49 (30.25, 63.75)	0.044	
Peak aortic jet velocity [m/s]	4.74 (4.13, 5.36)	4.33 (3.95, 4.88)	0.081	4.44 (4.01, 5.14)	4.32 (3.95, 4.72)	0.287	
		Baseline MDCT parame	eters				
Annulus diameter [mm]	24.60 ±2.83	25.08 ±2.57	0.335	24.75 ±2.62	25.48 ±2.74	0.175	
Annulus area [mm²]	465.98 ±110.26	483.44 ±98.52	0.361	473.39 ±101.42	492.56 ±105.13	0.357	
LVOT diameter [mm]	24.95 (22.95, 28.30)	26.30 (23.80, 29.20)	0.131	25.65 (23.55, 28.73)	25.85 (23.73, 29.2)	0.699	
Ascending aorta diameter [mm]	37.77 ±4.57	37.89 ±4.58	0.886	37.51 ±4.35	38.95±5.1	0.119	
		Procedural details					
Circulatory support, n (%)	0 (0,)	9 (9.8,)	0.057	1 (1,)	8 (25,)	<0.001	
Valve size >26 mm, n (%)	13 (31.0,)	37 (40.2,)	0.304	39 (38.2,)	11 (34.4,)	0.694	
2 nd valve needed, n (%)	9 (21.4,)	25 (27.2,)	0.478	25 (24.5,)	9 (28.1,)	0.682	
CEES, n (%)	3 (7.1,)	31 (33.7,)	0.001	18 (17.6,)	16 (50,)	<0.001	

Values are presented as counts (percentages) or median (IQR). CEES – composite endpoints of early safety; BSA – body surface area; STS – Society of Thoracic Surgery Risk Score; NYHA – New York Heart Association; CHD – coronary heart disease; CVD – cerebrovascular disease; COPD – chronic obstructive pulmonary disease; CKD – chronic kidney disease; NLR – neutrophil-to-lymphocyte ratio; PLR – platelet-to-lymphocyte ratio; MHR – monocyte-to-high density lipoprotein cholesterol ratio; RDW – red blood cell distribution width; MPV – mean platelet volume; HDL-c – high-density lipoprotein cholesterol; LDL-c – low-density lipoprotein cholesterol; NHDL-c – non-high-density lipoprotein cholesterol; LP(a) – lipoprotein(a); PNI – prognostic nutritional index; BNP – B-type natriuretic peptide; LVEDD – left ventricular end-diastolic dimension; LVESD – left ventricular end- systolic dimension; LVEF – left ventricular ejection fraction; MDCT – multidetector computed tomography; LVOT – left ventricular outflow tract.

Variable -		Unadjusted		Adjusted			
		OR (95% CI)	p-value	OR (95% CI)	p-value		
NLR	low (<2.27)	1 (reference)	=	1 (reference)	=		
	high (≥2.27)	6.61 (1.89–23.09)	0.003	5.55 (1.52–20.29)	0.010		
PNI	high (>42.9)	1 (reference)	-	1 (reference)	-		
	low (≤42.9)	4.67 (1.98–11.23)	< 0.001	4.43 (1.55–12.65)	0.005		
Combined NLR + PNI	NLR-low + PNI-high	1 (reference)	_	1 (reference)	-		
	NLR-high or PNI-low	4.04 (1.09–15.00)	0.037	4.07 (1.06–15.68)	0.041		
	NLR-high + PNI-low	13.51 (3.43–53.19)	< 0.001	9.85 (2.24–43.37)	0.003		

Table 3. Univariate and multivariate logistic regression analysis of NLR and PNI to predict CEES

NLR – neutrophil-to-lymphocyte ratio; PNI – prognostic nutritional index; CEES – composite endpoints of early safety; OR – odds ratio; 95% CI – 95% confidence interval.

high-risk (OR = 9.85 (95% CI: 2.24-43.37)) groups. These results also indicated that the combination of a high NLR and low PNI significantly heightened the risk of CEES occurrence compared to the presence of either variable alone.

Ability to predict CEES

We further evaluated the prognostic abilities of NLR and PNI in predicting CEES using a ROC curve. The area under the ROC curve (AUC) for the NLR in predicting the occurrence of CEES was 0.691 (95% CI: 0.593–0.790), and the optimal cutoff value was 2.27, with 91% sensitivity and 39% specificity (Fig. 1A). The optimal cutoff value of PNI to predict freedom from CEES was 42.9, with a sensitivity of 84%, a specificity of 47% and an AUC of 0.660 (95% CI: 0.593–0.790, Fig. 1B). Furthermore, Kaplan–Meier survival curves were plotted based on the optimal cutoff values for NLR and PNI, indicating significant differences

in the occurrence of outcome events within 30 days between the 2 groups divided by the optimal cutoff values of NLR and PNI (Fig. 2).

Discussion

The impact of NLR and PNI on CEES following TAVR was retrospectively analyzed in this study. The primary study findings were as follows: 1) A high NLR or low PNI at baseline is associated with an increased incidence of CEES at 30 days following TAVR; 2) The presence of a high NLR or low PNI at baseline could serve as an independent risk factor for CEES; 3) Combining high NLR and low PNI may offer additional prognosis information for predicting the risk of CEES.

In previous studies, inflammatory biomarkers such as C-reactive protein (CRP) and interleukin 6 (IL-6) have

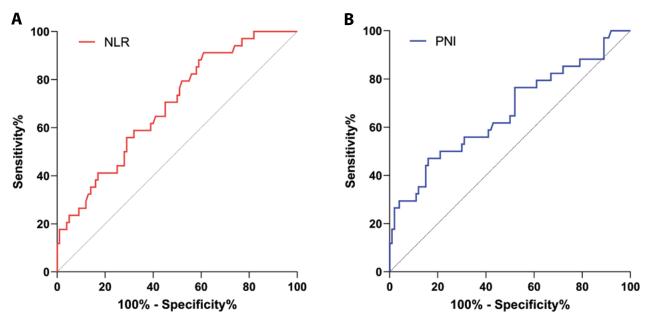
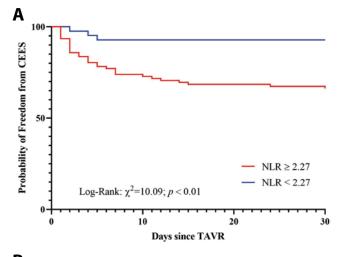
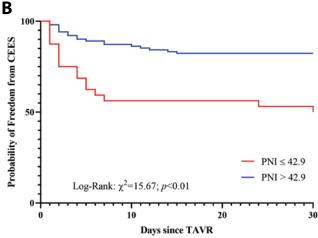
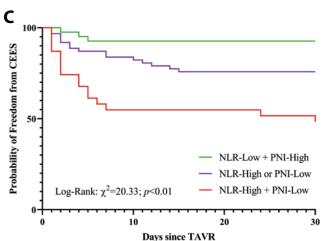





Fig. 1. ROC analysis of NLR and PNI in predicting CEES. A. ROC curve of NLR in predicting the occurrence of CEES; B. ROC curve of PNI in predicting freedom from CEES

 $ROC-receiver \ operating \ characteristic; NLR-neutrophil-to-lymphocyte\ ratio; PNI-prognostic\ nutritional\ index; CEES-composite\ endpoint\ of\ early\ safety.$

Fig. 2. Kaplan–Meier curves for CEES. A. Kaplan–Meier curves for CEES according to the cutoff value of NLR; B. Kaplan–Meier curves for CEES according to the cutoff value of PNI; C. Kaplan–Meier curves for CEES according to the combination of NLR and PNI

NLR – neutrophil-to-lymphocyte ratio; PNI – prognostic nutritional index; CEES – composite endpoint of early safety.

been utilized to predict the prognosis of patients who underwent TAVR and have shown promising results. ^{22–24} Although we recognize the importance of inflammation biomarkers in determining prognosis, these biomarkers are not routinely included in preoperative laboratory

examinations for TAVR. Therefore, exploring inflammatory indicators in routine blood tests for risk stratification is of paramount importance. It should be noted that NLR, PLR, MHR, and RDW are a class of inflammation biomarkers that can be easily obtained from routine blood tests and have demonstrated their predictive value for the long-term prognosis and complications following TAVR. 13,14,25 Previous studies have also confirmed significant correlations between inflammatory indicators, such as NLR and PLR, and early safety composite outcomes after TAVR.²⁶ However, thus far, the existing research on the risk factors associated with composite endpoints of early safety following TAVR has relied on the definition of composite endpoints outlined in VARC-2.27 With the introduction of the latest VARC-3 definition for CEES, which includes new permanent pacemaker implantation due to procedure-related conduction abnormalities and moderate or severe aortic regurgitation, there is a lack of studies that investigate the risk factors for these updated composite endpoints. In this study, in addition to inflammatory markers, we also included the PNI, an indicator reflecting nutritional status. Similar to NLR and PLR, PNI can also be indirectly inferred from routine blood tests and offers similar advantages.

In our study, we observed significant differences in NLR and PNI between the CEES group and the non-CEES group. Therefore, we further analyzed these 2 indicators by dividing them into high- and low-level groups and comparing their baseline characteristics. We found that a high NLR was associated with an increased rate of CEES, which is consistent with prior studies that reported the correlation between NLR and CEES defined by VARC-2. Similarly, we obtained the same result for low PNI. In the multivariate analysis, we confirmed that a high NLR and low PNI were independent risk factors for an increased rate of CEES following TAVR. After adjusting for multiple potential confounders, patients with a NLR ≥ 2.27 had a 5.55 times higher risk of CEES following TAVR compared to patients with low NLR, while patients with a PNI ≤42.9 had a 4.43 times higher risk compared to patients with high PNIs. These results prove that NLR and PNI, which are routine blood parameters representing inflammation and nutritional levels, respectively, can provide valuable prognostic information for predicting the risk of CEES following TAVR. To further investigate whether their combination increases the risk of CEES, we stratified patients into low-, intermediate- and high-risk groups based on the NLR and PNI. The high-risk group (i.e., high NLR combined with low PNI) had a higher risk of CEES compared to patients with a high NLR or low PNI alone. This indicates a promising potential of combining NLR and PNI for the risk stratification of CEES following TAVR.

Neutrophil-to-lymphocyte ratio, as an inflammation marker, has previously been shown to be linked to various cardiovascular diseases.²⁸ A high NLR may reflect a systemic inflammatory state, which may be attributed

to a significant elevation of neutrophils as a marker of ongoing inflammation and relatively diminished lymphocytes, which play an essential role in immune regulation and inhibition of inflammation.²⁹

Recent studies have revealed a correlation between NLR and negative outcomes in patients undergoing TAVR. Our study provides additional evidence supporting a notable link between high NLR and early adverse clinical outcomes after TAVR. A previous study by Condado et al. demonstrated the correlation between high NLR and PLR with the occurrence of CEES 30 days after TAVR.²⁶ However, as TAVR experience advanced and large-scale clinical studies were conducted worldwide, the VARC-3 had updated the definitions of CEES, including additional specifications and improvements in the definition of postoperative bleeding and vascular complications. Notably, the VARC-3 also included new permanent pacemaker implantation due to procedure-related conduction abnormalities in the definition of CEES, necessitating further investigation into the correlation between NLR and this updated definition. In our study, we found a significant correlation between NLR and the latest definition, providing further support for the importance of NLR in predicting adverse prognosis after TAVR. However, other biomarkers such as PLR, MHR and RDW did not show a similar predictive ability compared to NLR in our study.

Another indicator studied in our research is PNI, which serves as an important marker reflecting nutritional status. Given the TAVR patient population is predominantly comprised of the elderly, where malnutrition is common in this population, it is crucial to evaluate the potential risks of malnourished patients undergoing TAVR. Recent studies reported that comorbidities such as weakness and malnutrition increase the risk of an adverse prognosis after TAVR. ^{15,30,31} Therefore, assessing the nutritional status of patients in a reasonable and appropriate way before the procedure is beneficial for early risk stratification of TAVR patients. However, there is currently no research demonstrating the correlation between nutritional status and the occurrence of early safety composite outcomes after TAVR.

Prognostic nutritional index combines albumin levels, reflecting nutritional status, and lymphocyte count, reflecting immune function, both having an adverse impact on mortality. ^{26,32} Previous research has demonstrated a notable association between low PNI and increased mortality following TAVR. ^{20,33} In our study, we confirmed that a low PNI increases the risk of CEES after TAVR, although the specific mechanism has yet to be determined. Magri et al. found that the logistic EuroSCORE was an important predictor of CEES, which is a useful tool in assessing comorbidities and weakness. ³⁴ This may explain the association between PNI, an indicator reflecting weakness, and the occurrence of CEES. Additionally, a low PNI may

itself be a potential intermediate factor for CEES. However, further research is needed to identify potential confounders and the detailed relationship between PNI and CEES.

Recently, Conners et al.35 used the metabolic vulnerability index (MVX), a novel biomarker that reflects both systemic inflammation and metabolic malnutrition, to explore its prognostic value in patients with heart failure. The results showed that in the heart failure population, a higher MVX was associated with mortality independently of existing chronic heart failure scores and other biomarkers, and MVX had additional value in the stratification of death risk in patients with heart failure. These results suggest such indicators that reflect both inflammation and malnutrition may have special value in evaluating the prognosis of patients with cardiovascular disease. However, the complexity of obtaining MVX may impede its widespread adoption in clinical applications. Thus, the combination of NLR and PNI has certain advantages because of the easily accessible and inexpensive characteristics. This study has preliminarily confirmed the prognostic value of the combination of NLR and PNI in the occurrence of adverse events following TAVR. Future research can further explore its value in other cardiovascular diseases.

Limitations

There are several limitations in our study. Firstly, this is a single-center, retrospective study, which restricts the generalizability of the findings to the entire TAVR patient population. Although we have proposed preliminary cutoff values for NLR and PNI in the TAVR population, these values need to be validated in larger cohorts due to the small sample size of this study. Secondly, certain potential confounding factors, such as some special inflammatory cytokines or other markers of nutritional status, were not included in this study. Moreover, the study population overall consisted primarily of low/moderaterisk individuals based on STS scores. However, 7% of patients required mechanical circulatory support, and 25% underwent 2nd valve implantation. It may be due to the prophylactic use of mechanical circulatory support in some high-risk patients to ensure procedural safety. Regarding the 2nd valve, besides the early lack of experience in our center, it may also be attributed to the enrollment of patients with pure aortic regurgitation in our study cohort. These patients typically have a higher risk of 2nd valve requirement due to anatomical factors. This also implies that caution should be exercised when extrapolating the results of this study to other populations. Lastly, due to the limited sample size of this study, subgroup analyses of various endpoints within the CEES were not performed, and larger patient populations will be required in the future to refine this study.

Conclusions

This study investigated the impact of inflammation status and nutritional level on CEES at 30 days following TAVR. The results demonstrated that baseline high NLR and low PNI are important independent predictors of CEES. These routine and inexpensive indicators may provide valuable references in the early risk stratification of TAVR patients.

Ethical approval

This study was approved by the Institutional Review Board of the Second Affiliated Hospital of Nanchang University (approval 2022.No.07).

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Consent for publication

Not applicable.

ORCID IDs

Hangyu Liu ¹⁰ https://orcid.org/0009-0007-9325-0517 Siyi Chen ¹⁰ https://orcid.org/0009-0004-3878-7790 Shufen Song ¹⁰ https://orcid.org/0009-0007-1289-1356 Haixia Wei ¹⁰ https://orcid.org/0009-0009-3108-479X Yao Li ¹⁰ https://orcid.org/0009-0005-5410-7772 Yanqing Wu ¹⁰ https://orcid.org/0000-0002-3042-271X

References

- Leon MB, Piazza N, Nikolsky E, et al. Standardized endpoint definitions for transcatheter aortic valve implantation clinical trials. J Am Coll Cardiol. 2011;57(3):253–269. doi:10.1016/j.jacc.2010.12.005
- Popma JJ, Deeb GM, Yakubov SJ, et al. Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. N Engl J Med. 2019;380(18):1706–1715. doi:10.1056/NEJMoa1816885
- Mack MJ, Leon MB, Thourani VH, et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med. 2019;380(18):1695–1705. doi:10.1056/NEJMoa1814052
- Généreux P, Piazza N, Alu MC, et al. Valve Academic Research Consortium 3: Updated endpoint definitions for aortic valve clinical research. Eur Heart J. 2021;42(19):1825–1857. doi:10.1093/eurheartj/ehaa799
- Pilgrim T, Stortecky S, Luterbacher F, Windecker S, Wenaweser P. Transcatheter aortic valve implantation and bleeding: Incidence, predictors and prognosis. *J Thromb Thrombolysis*. 2013;35(4):456–462. doi:10.1007/s11239-012-0842-3
- Ribeiro HB, Rodés-Cabau J, Blanke P, et al. Incidence, predictors, and clinical outcomes of coronary obstruction following transcatheter aortic valve replacement for degenerative bioprosthetic surgical valves: Insights from the VIVID registry. Eur Heart J. 2018;39(8):687–695. doi:10.1093/eurhearti/ehx455
- 7. Gargiulo G, Sannino A, Capodanno D, et al. Impact of postoperative acute kidney injury on clinical outcomes after transcatheter aortic valve implantation: A meta-analysis of 5,971 patients. *Catheter Cardiovasc Interv.* 2015;86(3):518–527. doi:10.1002/ccd.25867
- Houthuizen P, Van Der Boon RMA, Urena M, et al. Occurrence, fate and consequences of ventricular conduction abnormalities after transcatheter aortic valve implantation. EuroIntervention. 2014;9(10): 1142–1150. doi:10.4244/EIJV9I10A194

- Tamburino C, Capodanno D, Ramondo A, et al. Incidence and predictors of early and late mortality after transcatheter aortic valve implantation in 663 patients with severe aortic stenosis. *Circulation*. 2011;123(3):299–308. doi:10.1161/CIRCULATIONAHA.110.946533
- Coté N, Mahmut A, Bosse Y, et al. Inflammation is associated with the remodeling of calcific aortic valve disease. *Inflammation*. 2013; 36(3):573–581. doi:10.1007/s10753-012-9579-6
- 11. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352(16):1685–1695. doi:10.1056/NEJMra043430
- 12. Uhle F, Castrup C, Necaev A, et al. Inflammation and its consequences after surgical versus transcatheter aortic valve replacement. *Artif Organs*. 2018;42(2):E1–E12. doi:10.1111/aor.13051
- Olasińska-Wiśniewska A, Perek B, Grygier M, et al. Increased neutrophil-to-lymphocyte ratio is associated with higher incidence of acute kidney injury and worse survival after transcatheter aortic valve implantation. *Cardiol J.* 2021;30(6):938–945. doi:10.5603/CJ.a2021.0149
- Merdler I, Frydman S, Sirota S, et al. Neutrophil-to-lymphocyte ratio as a prognostic marker in transcatheter aortic valve implantation (TAVI) patients. Isr Med Assoc J. 2022;24(4):229–234. PMID:35415981.
- Eichler S, Salzwedel A, Harnath A, et al. Nutrition and mobility predict all-cause mortality in patients 12 months after transcatheter aortic valve implantation. Clin Res Cardiol. 2018;107(4):304–311. doi:10.1007/ s00392-017-1183-1
- Zencirkiran Agus H, Kahraman S. Prognostic nutritional index predicts one-year outcome in heart failure with preserved ejection fraction. Acta Cardiol. 2020;75(5):450–455. doi:10.1080/00015385.2019. 1661139
- 17. Cheng Y, Sung S, Cheng H, et al. Prognostic nutritional index and the risk of mortality in patients with acute heart failure. *J Am Heart Assoc.* 2017;6(6):e004876. doi:10.1161/JAHA.116.004876
- Basta G, Chatzianagnostou K, Paradossi U, et al. The prognostic impact of objective nutritional indices in elderly patients with ST-elevation myocardial infarction undergoing primary coronary intervention. *Int J Cardiol*. 2016;221:987–992. doi:10.1016/j.ijcard.2016.07.039
- Chen QJ, Qu HJ, Li DZ, et al. Prognostic nutritional index predicts clinical outcome in patients with acute ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Sci Rep. 2017;7(1):3285. doi:10.1038/s41598-017-03364-x
- Mas-Peiro S, Hoffmann J, Seppelt PC, et al. Value of prognostic nutritional index for survival prediction in trans-catheter aortic valve replacement compared to other common nutritional indexes.
 Acta Cardiol. 2021;76(6):615–622. doi:10.1080/00015385.2020.1757854
- Onodera T, Goseki N, Kosaki G. Prognostic nutritional index in gastrointestinal surgery of malnourished cancer patients [in Japanese]. Nihon Geka Gakkai Zasshi. 1984;85(9):1001–1005. PMID:6438478.
- Sousa ALS, Carvalho LAF, Salgado CG, et al. C-reactive protein as a prognostic marker of 1-year mortality after transcatheter aortic valve implantation in aortic stenosis. *Arq Bras Cir Dig.* 2021;117(5): 1018–1027. doi:10.36660/abc.20190715
- Hioki H, Watanabe Y, Kozuma K, et al. Effect of serum C-reactive protein level on admission to predict mortality after transcatheter aortic valve implantation. Am J Cardiol. 2018;122(2):294–301. doi:10.1016/j. amjcard.2018.04.005
- 24. Sexton TR, Wallace EL, Chen A, et al. Thromboinflammatory response and predictors of outcomes in patients undergoing transcatheter aortic valve replacement. *J Thromb Thrombolysis*. 2016;41(3):384–393. doi:10.1007/s11239-015-1326-z
- 25. Karahan S, Okuyan E. Monocyte-to-high density lipoprotein cholesterol ratio as a predictor of mortality in patients with transcatheter aortic valve replacement. *Eur Rev Med Pharmacol Sci.* 2021;25(16): 5153–5162. doi:10.26355/eurrev_202108_26529
- 26. Condado JF, Junpaparp P, Binongo JN, et al. Neutrophil-lymphocyte ratio (NLR) and platelet-lymphocyte ratio (PLR) can risk stratify patients in transcatheter aortic-valve replacement (TAVR). *Int J Cardiol*. 2016;223:444–449. doi:10.1016/j.ijcard.2016.08.260
- Kappetein AP, Head SJ, Généreux P, et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: The Valve Academic Research Consortium-2 consensus document. Eur Heart J. 2012;33(19):2403–2418. doi:10.1093/eurheartj/ehs255
- 28. Afari ME, Bhat T. Neutrophil to lymphocyte ratio (NLR) and cardiovascular diseases: An update. *Exp Rev Cardiovasc Ther.* 2016;14(5):573–577. doi:10.1586/14779072.2016.1154788

- 29. Arbel Y, Shacham Y, Ziv-Baran T, et al. Higher neutrophil/lymphocyte ratio is related to lower ejection fraction and higher long-term all-cause mortality in ST-elevation myocardial infarction patients. *Can J Cardiol.* 2014;30(10):1177–1182. doi:10.1016/j.cjca.2014.05.010
- 30. Emami S, Rudasill S, Bellamkonda N, et al. Impact of malnutrition on outcomes following transcatheter aortic valve implantation (from a national cohort). *Am J Cardiol*. 2020;125(7):1096–1101. doi:10.1016/j. amjcard.2019.12.038
- Goldfarb M, Lauck S, Webb JG, et al. Malnutrition and mortality in frail and non-frail older adults undergoing aortic valve replacement. *Circulation*. 2018;138(20):2202–2211. doi:10.1161/CIRCULATIONAHA. 118.033887
- 32. Hebeler KR, Baumgarten H, Squiers JJ, et al. Albumin is predictive of 1-year mortality after transcatheter aortic valve replacement. *Ann Thorac Surg.* 2018;106(5):1302–1307. doi:10.1016/j.athoracsur. 2018.06.024
- 33. Ishizu K, Shirai S, Tashiro H, et al. Prevalence and prognostic significance of malnutrition in older Japanese adults at high surgical risk undergoing transcatheter aortic valve implantation. *J Am Heart Assoc.* 2022;11(19):e026294. doi:10.1161/JAHA.122.026294
- Magri CJ, Chieffo A, Durante A, et al. Impact of mean platelet volume on combined safety endpoint and vascular and bleeding complications following percutaneous transfemoral transcatheter aortic valve implantation. *Biomed Res Int*. 2013;2013:645265. doi:10.1155/2013/645265
- 35. Conners KM, Shearer JJ, Joo J, et al. The Metabolic Vulnerability Index. *JACC Heart Fail*. 2024;12(2):290–300. doi:10.1016/j.jchf.2023.06.013