Research status and controversy on non-small cell lung cancer stem cells

Jin Wang^{1,A,D,F}, Yunqing Chen^{2,B,C}, Chengqin Wang^{1,B,C}, Keyu Ren^{3,A,D}

- ¹ Department of Pathology, School of Basic Medicine, The Qingdao University, China
- ² Department of Pathology, The Affiliated Hospital of the Qingdao University, China
- ³ Department of Gastroenterology, The Affiliated Hospital of Qingdao University, China
- A research concept and design; B collection and/or assembly of data; C data analysis and interpretation;
- D writing the article; E critical revision of the article; F final approval of the article

Advances in Clinical and Experimental Medicine, ISSN 1899-5276 (print), ISSN 2451-2680 (online)

Adv Clin Exp Med. 2025;34(4):633-640

Address for correspondence

Keyu Ren

E-mail: rkyqyfy@qdu.edu.cn

Funding sources

The Shandong Province Natural Science Foundation (General Program, grant No. ZR2022MH204).

Conflict of interest

None declared

Acknowledgements

The authors would like to thank Dr. Fenggang Xian for his advice.

Received on December 9, 2023 Reviewed on March 23, 2024 Accepted on April 11, 2024

Published online on November 18, 2024

Abstract

Lung cancer is a major cause of cancer-related deaths worldwide. It can be divided into 2 main types, namely non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). Most patients with NSCLC are diagnosed at an advanced stage, and current treatments have limited success. Moreover, relapsing tumors that often appear after surgical or drug treatment are particularly difficult to treat. The existence of cancer stem cells (CSCs) has been proposed as a key factor contributing to the development of resistance to therapy, recurrence and metastasis. Targeting CSCs is a potential strategy for eradicating tumors. However, due to the tumor-type specificity and cellular plasticity, the real clinical application of lung cancer stem cells (LCSCs) has not been realized. This review details the existing phenotypic markers of LCSCs and the limitations of their identification and summarizes the roles of the tumor microenvironment (TME) and epithelial—mesenchymal transition (EMT) in the existence and maintenance of LCSCs, as well as the contribution and controversy of cellular plasticity theory on LCSCs. It is expected that future research on LCSCs can solve the present problems, and approaches targeting LCSCs may be applied in the clinic as soon as possible.

Key words: non-small cell lung cancer, cancer stem cells, epithelial—mesenchymal transition, tumor microenvironment, cellular plasticity

Cite as

Jin Wang J, Chen Y, Wang C, Ren K. Research status and controversy on non-small cell lung cancer stem cells. *Adv Clin Exp Med*. 2025;34(4):633—640. doi:10.17219/acem/187053

DOI

10.17219/acem/187053

Copyright

Copyright by Author(s)
This is an article distributed under the terms of the
Creative Commons Attribution 3.0 Unported (CC BY 3.0)
(https://creativecommons.org/licenses/by/3.0/)

Introduction

Lung cancer is a major cause of cancer-related deaths worldwide.¹ It is a heterogeneous disease that can be divided into 2 distinct pathological types: non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), with NSCLC accounting for approx. 80–85% of all lung cancer types.²-⁴ After diagnosis, approx. 75% of patients with NSCLC have advanced diseases (stage III–IV), and the survival rate is low despite the oncological treatment of late-stage lung cancer seeing significant advances in recent years. The UK's Office for National Statistics reported that patients diagnosed with stage IV lung cancer had a 1-year survival rate of just 15–19%.⁵

In addition, relapsing tumors that often appear after surgical or drug treatment are more difficult to treat. For example, platinum-based chemotherapy was most common for advanced NSCLC, but a generation of drug-resistant tumors has proven to be a major barrier to chemotherapy efficacy. Although tyrosine kinase inhibitors have demonstrated significant responses in patients with advanced adenocarcinoma in recent years, almost all patients have developed drug resistance after 2–3 years of treatment. 10,11

Until now, the cancer stem cells (CSCs) hypothesis has been posited to be the underlying cause of relapse, metastasis and therapeutic resistance. ^{12,13} On the one hand, CSCs can generate new stem cells and daughter cells that differentiate and continuously proliferate to form tumor parenchyma. Conversely, CSCs display high expression of the adenosine-triphosphate-binding cassette G2 (ABCG2), which contributes to pumping out chemotherapeutic drugs, ^{14–16} leading to chemoresistance. Therefore, targeting CSCs means potential tumor eradication, and several strategies have been used in the clinical treatment of hematological malignancies and several solid tumors. ^{17–19}

However, the CSCs theory has faced 2 major barriers. First, a universal CSC marker is lacking.²⁰ The specific markers to purify CSCs are still unclear because the cell surface markers used to identify CSCs vary among tumor types. Second, the mechanism by which CSCs cause the failure of therapies and the relapse is not fully understood. 16,21-23 One likely explanation for the above controversy surrounding CSCs characterization is cellular plasticity, 24-26 which refers to the reversible transition between a variety of cellular states, including stem cells (SCs)/ non-stem cells (non-SCs), asymmetric divisions (ADs)/ symmetric divisions (SDs), quiescence/proliferation, epithelial-mesenchymal transition (EMT)/mesenchymal-toepithelial transition (MET), and drug sensitivity/drug resistance. Increasing evidence supports that CSCs represent a dynamic cellular state, in which the acquisition of stemlike traits is necessary for resistance and the promotion of tumor progression.^{27,28} Additionally, the tumor microenvironment (TME) plays an integral role in tumor progression and metastasis and is believed to support the cellular fate of CSCs. 19,29 Thus, it is crucial to better understand

the behavior of CSCs based on their microenvironment. This understanding will aid in the development of more effective therapeutic strategies targeting CSCs.

We searched PubMed online database relevant literature until July 21, 2023, using the following search terms; "lung cancer stem cell" OR "lung cancer stemness" AND "cellular plasticity" OR "tumor microenvironment" OR "TME" OR "epithelial-mesenchymal transition" OR "EMT". Moreover, we reviewed citations from retrieved articles to search for additional relevant studies. The retrieved studies were manually screened to assess their appropriateness for inclusion. Here, we introduced the characteristics of lung cancer stem cells (LCSCs), including their specific recognition, the interaction between LCSCs and TME, the role of EMT in acquiring stem-like phenotype, and the relationship between cellular plasticity and LCSCs. Our purpose was to summarize the existing research controversy in the LCSCs theory and to provide further direction for the study of LCSCs.

Objectives

We aimed to list the common phenotypic markers of LC-SCs and summarize their limitations, reveal the relationship between LCSCs and TME and EMT, and to determine the role of cellular plasticity theory in the generation and transformation of LCSCs.

Lung cancer stem cells

Several studies have suggested that CSCs are associated with tumor heterogeneity and growth, leading to relapse and therapeutic resistance at any stage of cancer progression. The gold standard for assessing the oncogenic potential of CSCs is their ability to form transplantable tumors in immunodeficient mice. This approach has successfully confirmed the existence of CSCs in various tumor types, including brain, breast, lung, and hematological malignancies. ^{30–32}

The first observation of LCSCs was published in 1982,³³ and subsequent growing evidence has confirmed that putative LCSCs can be isolated from various cell lines and tumor specimens. Lung cancer stem cells share similar properties to CSCs in other tumors: They have been associated with higher recurrence rates, radioresistance³⁴ and chemoresistance.^{35–37} Lung cancer stem cells can form stem cell spheres³⁸ and express stem-like phenotypes, including CD133, ABCG2 and ALDH1, among others.³⁹ In short, there is overwhelming evidence that stem cells exist in lung cancers.

Studies have identified CD133, CD44, CXCR4, CD166, EpCAM, CD90, and CD44 as common stemness-associated markers in lung cancers. In both NSCLC and SCLC cell lines, CD133-positive cells may generate long-term tumor spheres and differentiate into CD133-negative cells. Studies

performed in vivo have shown that 1×10⁴ CD133-positive cells could generate tumors in immunodeficient mice. Additionally, CD133+ cells were found to be chemoresistant and expressed high levels of ABCG2 and other common stem cell markers, such as Oct4 or Nanog.32 Similarly, CD44positive cells exhibited stemness properties in NSCLC cell lines. 40 CD90+ CSCs were also isolated from lung cancer cell lines A549 and H446,41 while cells positive for CXCR4, a chemokine receptor on the surface of hematopoietic stem cells (HSCs), can form tumor spheres in vitro and exhibited self-renewal capacity and radio-resistance in NSCLC.42 Finally, CD166+/CD44+ and CD166+/EpCAM+ lung cancer cells displayed multipotent characteristics of stem cells that can differentiate into adipogenic and osteogenic cells and express stem cell transcription factors such as Sox2 and Oct4.43

The ALDH activity has also been shown to be associated with stemness traits in lung cancer cell lines. It had been reported that ALDH1-positive cells from NSCLC displayed the ability of self-renewal, proliferation potential and in vivo carcinogenicity. Moreover, these ALDH1-positive cells also expressed CD133 and produced resistance after treatment with commonly used chemotherapy drugs. Earlier research has also demonstrated that the putative CSCs in lung cancer were able to express Oct4, Sox2, Nanog, and other core transcription factors responsible for regulating self-renewal and differentiation in embryonic stem cells, as well as CSCs. 45,46

However, it must be acknowledged that the expression of stem cell markers mainly depends on the source of CSCs isolation (such as primary tumors vs patient-derived xenograft tumors vs cell lines), as sometimes cell suspension culture may also cause a variety of cell surface markers. Although surface markers such as CD133 and CD44 have been successfully used to isolate CSCs, their expression is not exclusively linked to the CSC phenotype and is prone to environmental alteration.⁴⁷ Conflicting data have arisen in some settings due to the use of different markers and isolation methods, highlighting the challenges of isolating a pure CSC population.⁴⁸ For instance, CD133 was not detected at all in many lung cancer cases, 49,50 while the expression of CD44 and ALDH display particularly strong associations with squamous cell carcinoma (SCC).51,52 In addition, the combined effect of these stem markers on LCSCs is not completely clear. While it has been shown that the expression of CD133 partially overlapped with that of ALDH protein in NSCLC cell lines,⁵³ there is no convincing evidence to confirm that the enrichment for 1 CSC marker also enriches the others. As these markers possibly play separate roles and represent different subgroups,54 more powerful markers need to be identified to isolate pure CSCs in lung cancer.

Furthermore, it is being questioned whether these surface markers can accurately target CSCs. For example, CD133-negative cells in lung cancer cell lines may also cause the formation of tumors, just like CD133-positive

cells.⁵⁵ Similar results have been observed in the ALDH or SP-negative cells.^{56,57} Overall, the accuracy of currently known markers in identifying CSC populations remains uncertain, as these markers can only identify tumor gene subpopulations to varying degrees. More specific markers may be discovered in future work, and we all look forward to the emergence of real targeting markers for these cells.

Lung cancer stem cells and tumor microenvironment

There is increasing evidence that tumor biology is determined not only by the cancer cells, but also by the surrounding stromal cells and structures, known as the TME. This consists of multiple cell types that are embedded in the extracellular matrix (ECM), including immune cells, endothelial cells and cancer-associated fibroblasts (CAFs). It is now known that TME plays a vital role in the regulation of EMT and the acquisition of stem cell phenotypes. ^{58,59} Moreover, it has been reported that the cytokine network established by CSCs and TME supports the upkeep of existing CSCs and promotes the generation of new CSCs. This process ultimately facilitates tumor survival, propagation and relapse. ⁶⁰

One of the cellular components in the TME, CAFs, plays a critical role in promoting both the differentiation of CSCs and the dedifferentiation of non-CSCs. Cancer-associated fibroblasts increase both CD133 and CD44 expression, increase the proportion of CD133⁺ and CD44⁺ CSCs cells, and enhance the ability of metastasis and chemotherapy resistance during tumor progression. In addition, fibroblasts have a promoting effect as feeder cells on culturing LC-SCs. $^{61,62}\,\text{It}$ has been reported that the activation of the IGF1R signaling pathway in the presence of CAFs expressing IGF2 can induce the expression of Nanog and promote cancer stemness in NSCLC cells.⁶³ Additional research revealed that a unique subpopulation of CAFs in human NSCLC tissues expresses both CD10 and a receptor G-protein coupled receptor 77 (GPR-77), promoting the stemness properties and inducing chemoresistance by activating the NF-κB pathway and secreting intelerleukin 6 (IL-6) and IL-8.64 These findings all demonstrate that CAFs serve as a supportive niche for cancer stemness in NSCLC.

Mesenchymal stem cells (MSCs) are another important cellular component in the TME, but their precise role in tumor progression is still under debate. Research suggests that the specific effect of MSCs on tumors is dependent on the source of MSCs and tumor types. ^{65,66} One study found that MSCs increase the stemness of lung cancer cells by secreting factors that activate JAK2/STAT3 pathways. ⁶⁷ Another report displayed that MSCs at the primary tumor site promote the proliferation and infiltration of the malignant cells, while the metastatic site MSCs facilitate cell re-seeding. ^{68,69} Non-small cell lung cancer adjacent MSCs were found to induce the expression of stem-related genes

and facilitate the formation of spheroids when tumor cells were co-incubated with them. 70

The TME also includes chronic inflammation that promotes tumor proliferation and metastasis through immunosuppression and evasion from immune surveillance. Cancer cells and CSCs create an inflammatory niche by secreting chemokines and cytokines to recruit tumor-associate macrophages (TAMs), tumor-associated neutrophils (TANs) and myeloid-derived suppressor cells (MDSCs).71 In TME, TAMs are the predominant subpopulation of immune cells, which include 2 subtypes: the classically activated M1 subtype and the alternatively activated M2 subtype. M1 macrophages may cause tumor cells to undergo lysis, promote antigen presentation and activate Th1-type cell-mediated immune responses; they mainly exert their antitumor effects by enhancing the tumor-killing ability of immune cells. In contrast, M2 macrophages may secrete immunosuppressive cytokines and promote tumor growth and metastasis.⁷² During the malignant progression in NSCLC, TAMs can also differentiate into either a tumor-inhibitory (M1) or tumorpromoting (M2) phenotype based on the influence of various stimuli.73,74 Tumor-associated macrophages can also activate both pro-inflammatory and anti-inflammatory pathways, which can directly inhibit or promote the cytotoxic effects of natural killer (NK) cells and CD8⁺ T lymph cells. Additionally, TAMs can trigger Th1 immune responses and induce cytotoxic functions directed toward malignant cells by producing toxic mediators.⁷⁵ In a recent publication, a correlation study was conducted between tumor-infiltrating lymphocytes (TILs) and CSCs in tumor tissues from 12 patients with NSCLC. This research found a moderate-to-high positive linear and rank correlation between ALDH+ CSCs and CD3+ or CD8+ TILs. However, there was no correlation between ALDH+ CSCs and CD4+ cells.⁷⁶ Another group demonstrated that there is no correlation between CD8+ TILs and CD133 CSCs in surgical samples taken from 172 NSCLC patients.⁷⁷ The variation observed in these studies could be attributed to several aspects, such as the utilization of different stem-like markers (ALDH vs CD133), and the involvement of NSCLC in various stages (primary tumors vs metastasis). It has been reported that CD8⁺ T cells are crucial cytotoxic effectors in many kinds of tumors, including NSCLC. At the same time, ALDH⁺ CSCs have the potential to induce the loss of their antitumor activity through the exhaustion of CD8+ T cells that lost antitumor activity, or immunosuppressive CD8⁺ regulatory T cells (Tregs).⁷⁸ Furthermore, A549 cells overexpressing Oct4 were found to express higher levels of macrophage colony-stimulating factor (M-CSF), which contributed to enhanced tumor migration and increased the number of M2 macrophages. This data suggests that lung cancer cells that express Oct4 promote the polarization of M2 macrophages by upregulating the secretion of M-CSF.79

In addition, the TME has the highest concentrations of extracellular ATP (eATP), which is mainly produced from necrotic or lytic tumor cells and stromal cells. 80–84 Recent studies suggest that eATP can induce and regulate transcription, translation and metabolic levels of CSCs through STC1, which interacts with ATP synthesized by mitochondria. 85 Notably, the role of eATP in regulating CSCs is an area of active research and remains poorly understood.

Taken together, to better understand the emergency and maintenance of LCSCs, it is crucial to focus on the TME, which can be called the CSC niche and regulates CSCs through intercellular communication or changes in the secreted milieu. Importantly, we should know that the CSC niche is different in a variety of tumor types, which means the makeup of the CSC niche can vary significantly between tumor types, even within the same subtype of cancer. Thus, more research is needed to fully understand the complex interplay between the CSCs niche and CSCs themselves.

Lung cancer stem cells and epithelialmesenchymal transition

A key process of invasion and metastasis, EMT, has been reported to be associated with the existence of CSCs. Epithelial-mesenchymal transition can promote epithelial cells to acquire invasive and migratory properties and become CSC-like cells. Moreover, it has also been observed that CSCs can undergo EMT86 during radiotherapy and chemotherapy,87,88 in a hypoxic environment,89 or in the process of long-term exposure to PM_{2.5}.90,91 Lung cancer cells can also show EMT and CSC characteristics from signaling that induces EMT, such as TGF-β, Wnt, NF-kB, ERK/MAPK, and Notch pathways, which can promote stemness characteristics of solid tumors. 92-94 It has been shown that the induction of EMT by TGFβ-1 may increase stemness in primary lung cancer cells.95 Moreover, when 8 different lung cancer cell lines were treated by TGFβ1, it was found that TGFβ1 signaling can not only induce EMT but also stimulate the modulation of CD133+ CSCs. However, the responses to TGFβ1 treatment are heterogeneous across the lung cancer cell lines. Some cell lines readily switch to a stem cell state, while others remain unresponsive. This may be caused by the ratio of expression of CDH1 (E-cadherin) to Snail2,96 both downstream effectors of TGFβ1 signaling. Further study revealed that TGF-β signaling induces stemness through the activation of Slug and CD87 by promoter demethylation.94 Moreover, tumor necrosis factor receptor superfamily member 19 (TNFRSF19) can inhibit TGFβ downstream signal factors Smad2/3 through binding with TGFβ receptor I, thus modulating stemness properties and chemotherapy resistance to gefitinib.⁹⁷ Moreover, TGFβ1 may promote cancer sphere-forming capacity, stemness traits

and chemoresistance through the expression of CXCR7. In addition, other factors such as microRNAs miR-181b-5p, miR-99a, long non-coding RNAs (lncRNAs), and RNA demethylase ALKBH5 have also been revealed to modulate EMT concomitantly with the changes of stemness features in lung cancer. $^{99-102}$ Conversely, CSCs also display some degree of EMT regulation. For example, Oct4/Nanog may regulate drug resistance and EMT change through Wnt/ β -catenin signaling activation. 103 Additionally, CD133 may induce CXCR4-mediated EMT in NSCLC. 104 The above studies have demonstrated the close correlation between EMT and CSCs in lung cancers, although the crosstalk mechanism between EMT and CSCs remains elusive.

Lung cancer stem cells and cellular plasticity

In general, cellular plasticity refers to the capability of a cell to change its differentiation levels or hierarchy. It can also be defined as a cell's ability to accept a new identity when faced with changes to its environment. Cellular plasticity is not limited to stem cells, as even progenitor cells, daughter cells, transient cells, and differentiation-committed cells have been found to possess this capacity. This implies that daughter cells and even fully differentiated cells can re-enter the niche to take the place of stem cells that have been lost. We now call this course neutral competition. 105,106

Previous investigations believed that plasticity is largely only related to CSCs because it was widely suggested that plasticity is limited to non-CSCs.31 However, recent research has demonstrated that non-CSCs can also supplement the CSC pool through cell plasticity in certain environmental niches, although this phenomenon is not observed in all tumor types. 107-109 These findings highlight that CSCs are not a fixed entity in malignant tumors, but rather a state controlled by temporal and spatial characteristics. 110 It has been revealed that transformation is also common between both CSCs and non-CSCs in lung adenocarcinoma.⁵⁴ One study demonstrated that lung cancer cells grown under standard culture conditions exhibited multidrug resistance when cultured as floating tumor spheres. However, upon re-incubation under standard culture conditions, the cells rapidly reattached and lost the acquired resistance.111 One study revealed that dedifferentiation of lung non-CSCs into CSCs may be induced by the transcription factor HOXA5 that is mediated by oxidative stress. 112 A hybrid epithelial/mesenchymal phenotype could, therefore, identify tumors with a greater ability to "sense" microenvironment signals, and for this reason, lung cancer cells displaying both EMT traits may retain a high level of plasticity and could be highly reactive to convert to a stem-like state.⁹⁶ Marjanovic et al. prospectively isolated mixed program cells during lung adenocarcinoma evolution from human patient-derived xenografts.¹¹³ These cells were defined as being in a high-plasticity cell state (HPCS). They found that the HPCS cells possess functions of both normal stem cells and CSCs, such as increased proliferation and differentiation potential. However, the *HPCS* gene expression was largely different from the common signatures in both normal stem cells and CSCs.^{105,114} Consequently, further research is required to elucidate the relationship between CSCs and HPCS.

Limitations

There is a large amount of literature on LCSCs. Unfortunately, we only summarized part of it, and the clinical application was not covered in this paper. This review catalogued the findings of pertinent research and highlighted discrepancies or deficiencies. However, the underlying mechanism remained underexplored, necessitating a more comprehensive investigation in the subsequent study.

Conclusions

In recent years, there has been a great deal of interest in the use of CSCs as a targeted antitumor strategy. Here, we concentrated on the characteristics of LCSCs, including the existing stemness phenotypes, the relationship and interaction between EMT, TME and LCSCs, as well as the role of cell plasticity theory in CSCs. As discussed, the clinical application of LCSCs will not be possible in the near future due to the present research controversy on LCSCs. On the one hand, accurate recognition of these cells requires the discovery of more specific phenotypic markers. On the other, the acquisition and maintenance of CSCs not only depend on the plasticity potential of cancer cells but also have a close relationship with the microenvironmental tumor niche. Thus, gaining a better understanding of the molecular mechanisms in CSC biology and cancer heterogeneity may help us find more effective and innovative treatment strategies.

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Consent for publication

Not applicable.

ORCID iDs

References

- Leiter A, Veluswamy RR, Wisnivesky JP. The global burden of lung cancer: Current status and future trends. Nat Rev Clin Oncol. 2023; 20(9):624–639. doi:10.1038/s41571-023-00798-3
- Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi:10.3322/ caac.21660
- Zappa C, Mousa SA. Non-small cell lung cancer: Current treatment and future advances. *Transl Lung Cancer Res.* 2016;5(3):288–300. doi:10.21037/tlcr.2016.06.07
- Barta JA, Powell CA, Wisnivesky JP. Global epidemiology of lung cancer. *Ann Glob Health*. 2019;85(1):8. doi:10.5334/aoqh.2419
- Blandin Knight S, Crosbie PA, Balata H, Chudziak J, Hussell T, Dive C. Progress and prospects of early detection in lung cancer. *Open Biol.* 2017;7(9):170070. doi:10.1098/rsob.170070
- Kelsey CR, Marks LB, Hollis D, et al. Local recurrence after surgery for early stage lung cancer: An 11-year experience with 975 patients. Cancer. 2009;115(22):5218–5227. doi:10.1002/cncr.24625
- Kryczka J, Kryczka J, Czarnecka-Chrebelska KH, Brzeziańska-Lasota E. Molecular mechanisms of chemoresistance induced by cisplatin in NSCLC cancer therapy. *Int J Mol Sci.* 2021;22(16):8885. doi:10.3390/ iims22168885
- Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer. 2007;7(8):573–584. doi:10.1038/nrc2167
- Schiller JH, Harrington D, Belani CP, et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med. 2002;346(2):92–98. doi:10.1056/NEJMoa011954
- Katayama R, Shaw AT, Khan TM, et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci Transl Med. 2012; 4(120):120ra17. doi:10.1126/scitranslmed.3003316
- Dai J, Qu T, Yin D, et al. LncRNA LINC00969 promotes acquired gefitinib resistance by epigenetically suppressing of NLRP3 at transcriptional and posttranscriptional levels to inhibit pyroptosis in lung cancer. Cell Death Dis. 2023;14(5):312. doi:10.1038/s41419-023-05840-x
- Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–111. doi:10.1038/35102167
- Heng WS, Gosens R, Kruyt FAE. Lung cancer stem cells: Origin, features, maintenance mechanisms and therapeutic targeting. *Biochem Pharmacol*. 2019;160:121–133. doi:10.1016/j.bcp.2018.12.010
- Gillet J, Efferth T, Remacle J. Chemotherapy-induced resistance by ATPbinding cassette transporter genes. *Biochim Biophys Acta Rev Cancer*. 2007;1775(2):237–262. doi:10.1016/j.bbcan.2007.05.002
- Leon G, MacDonagh L, Finn SP, Cuffe S, Barr MP. Cancer stem cells in drug resistant lung cancer: Targeting cell surface markers and signaling pathways. *Pharmacol Ther.* 2016;158:71–90. doi:10.1016/j. pharmthera.2015.12.001
- Cojoc M, Mäbert K, Muders MH, Dubrovska A. A role for cancer stem cells in therapy resistance: Cellular and molecular mechanisms. Semin Cancer Biol. 2015;31:16–27. doi:10.1016/j.semcancer.2014.06.004
- Liu M, Wu H, Xu C. Targeting cancer stem cell pathways for lung cancer therapy. *Curr Opin Oncol*. 2023;35(1):78–85. doi:10.1097/CCO. 0000000000000912
- Yang L, Shi P, Zhao G, et al. Targeting cancer stem cell pathways for cancer therapy. Sig Transduct Target Ther. 2020;5(1):8. doi:10.1038/ s41392-020-0110-5
- Dzobo K, Senthebane DA, Ganz C, Thomford NE, Wonkam A, Dandara C. Advances in therapeutic targeting of cancer stem cells within the tumor microenvironment: An updated review. *Cells*. 2020;9(8):1896. doi:10.3390/cells9081896
- Abbaszadegan MR, Bagheri V, Razavi MS, Momtazi AA, Sahebkar A, Gholamin M. Isolation, identification, and characterization of cancer stem cells: A review. *J Cell Physiol*. 2017;232(8):2008–2018. doi:10.1002/jcp.25759
- Kazi JU. Mechanisms of anticancer therapy resistance: The role of cancer stem cells. *Int J Mol Sci.* 2020;21(23):9006. doi:10.3390/ ijms21239006
- Konrad CV, Murali R, Varghese BA, Nair R. The role of cancer stem cells in tumor heterogeneity and resistance to therapy. Can J Physiol Pharmacol. 2017;95(1):1–15. doi:10.1139/cjpp-2016-0079
- 23. Yoshida GJ, Saya H. Molecular pathology underlying the robustness of cancer stem cells. *Regen Ther.* 2021;17:38–50. doi:10.1016/j.reth. 2021.02.002

- 24. Varga J, Greten FR. Cell plasticity in epithelial homeostasis and tumorigenesis. *Nat Cell Biol*. 2017;19(10):1133–1141. doi:10.1038/ncb3611
- Chaffer CL, Marjanovic ND, Lee T, et al. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell. 2013;154(1):61–74. doi:10.1016/j.cell.2013.06.005
- Gupta PB, Pastushenko I, Skibinski A, Blanpain C, Kuperwasser C. Phenotypic plasticity: Driver of cancer initiation, progression, and therapy resistance. *Cell Stem Cell*. 2019;24(1):65–78. doi:10.1016/j. stem.2018.11.011
- Pisco AO, Huang S. Non-genetic cancer cell plasticity and therapyinduced stemness in tumour relapse: 'What does not kill me strengthens me.' Br J Cancer. 2015;112(11):1725–1732. doi:10.1038/bjc.2015.146
- 28. Biddle A, Gammon L, Liang X, Costea DE, Mackenzie IC. Phenotypic plasticity determines cancer stem cell therapeutic resistance in oral squamous cell carcinoma. *EBioMedicine*. 2016;4:138–145. doi:10.1016/j.ebiom.2016.01.007
- Nayak A, Warrier NM, Kumar P. Cancer stem cells and the tumor microenvironment: Targeting the critical crosstalk through nanocarrier systems. Stem Cell Rev Rep. 2022;18(7):2209–2233. doi:10.1007/s12015-022-10426-9
- Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–3988. doi:10.1073/pnas. 0530291100
- Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. *Nature*. 2004;432(7015):396–401. doi:10.1038/ nature03128
- 32. Eramo A, Lotti F, Sette G, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. *Cell Death Differ.* 2008;15(3):504–514. doi:10.1038/sj.cdd.4402283
- Carney DN, Gazdar AF, Bunn PA, Guccion JG. Demonstration of the stem cell nature of clonogenic tumor cells from lung cancer patients. Stem Cells (1981). 1982;1(3):149–164. PMID:6294885.
- 34. Xia P, Gou WF, Wang JJ, et al. Distinct radiosensitivity of lung carcinoma stem-like side population and main population cells. Cancer Biother Radiopharm. 2013;28(6):471–478. doi:10.1089/cbr. 2012.1388
- Shien K, Toyooka S, Yamamoto H, et al. Acquired resistance to EGFR inhibitors is associated with a manifestation of stem cell-like properties in cancer cells. Cancer Res. 2013;73(10):3051–3061. doi:10.1158 /0008-5472.CAN-12-4136
- Liu YP, Yang CJ, Huang MS, et al. Cisplatin selects for multidrug-resistant CD133+ cells in lung adenocarcinoma by activating notch signaling. Cancer Res. 2013;73(1):406–416. doi:10.1158/0008-5472.CAN-12-1733
- Xie M, Zhang L, He C, et al. Activation of Notch-1 enhances epithelialmesenchymal transition in gefitinib-acquired resistant lung cancer cells. J Cell Biochem. 2012;113(5):1501–1513. doi:10.1002/jcb.24019
- Morrison BJ, Steel JC, Morris JC. Sphere culture of murine lung cancer cell lines are enriched with cancer initiating cells. *PLoS One*. 2012; 7(11):e49752. doi:10.1371/journal.pone.0049752
- 39. Okudela K, Woo T, Mitsui H, Tajiri M, Masuda M, Ohashi K. Expression of the potential cancer stem cell markers, CD 133, CD 44, ALDH 1, and β-catenin, in primary lung adenocarcinoma: Their prognostic significance. *Pathol Int*. 2012;62(12):792–801. doi:10.1111/pin.12019
- Leung ELH, Fiscus RR, Tung JW, et al. Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. *PLoS One*. 2010;5(11):e14062. doi:10.1371/journal.pone.0014062
- 41. Yan X, Luo H, Zhou X, Zhu B, Wang Y, Bian X. Identification of CD90 as a marker for lung cancer stem cells in A549 and H446 cell lines. Oncol Rep. 2013;30(6):2733–2740. doi:10.3892/or.2013.2784
- Jung MJ, Rho JK, Kim YM, et al. Upregulation of CXCR4 is functionally crucial for maintenance of stemness in drug-resistant non-small cell lung cancer cells. Oncogene, 2013;32(2):209–221. doi:10.1038/onc.2012.37
- Zakaria N, Yusoff NM, Zakaria Z, et al. Human non-small cell lung cancer expresses putative cancer stem cell markers and exhibits the transcriptomic profile of multipotent cells. *BMC Cancer*. 2015;15(1):84. doi:10.1186/s12885-015-1086-3
- 44. Jiang F, Qiu Q, Khanna A, et al. Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. *Mol Cancer Res.* 2009;7(3): 330–338. doi:10.1158/1541-7786.MCR-08-0393

- 45. Schoenhals M, Kassambara A, Vos JD, Hose D, Moreaux J, Klein B. Embryonic stem cell markers expression in cancers. *Biochem Biophys Res Commun*. 2009;383(2):157–162. doi:10.1016/j.bbrc.2009.02.156
- Chiou SH, Wang ML, Chou YT, et al. Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial–mesenchymal transdifferentiation. Cancer Res. 2010;70(24):10433–10444. doi:10.1158/0008-5472. CAN-10-2638
- Miranda-Lorenzo I, Dorado J, Lonardo E, et al. Intracellular autofluorescence: A biomarker for epithelial cancer stem cells. *Nat Methods*. 2014;11(11):1161–1169. doi:10.1038/nmeth.3112
- 48. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ. Efficient tumour formation by single human melanoma cells. *Nature*. 2008;456(7222):593–598. doi:10.1038/nature07567
- Bertolini G, Roz L, Perego P, et al. Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. *Proc Natl Acad Sci U S A*. 2009;106(38):16281–16286. doi:10.1073/pnas.0905653106
- Salnikov AV, Gladkich J, Moldenhauer G, Volm M, Mattern J, Herr I. CD133 is indicative for a resistance phenotype but does not represent a prognostic marker for survival of non-small cell lung cancer patients. *Int J Cancer*. 2010;126(4):950–958. doi:10.1002/ijc.24822
- 51. Ko YH, Won HS, Jeon EK, et al. Prognostic significance of CD44s expression in resected non-small cell lung cancer. *BMC Cancer*. 2011; 11(1):340. doi:10.1186/1471-2407-11-340
- Moreb JS, Zucali JR, Ostmark B, Benson NA. Heterogeneity of aldehyde dehydrogenase expression in lung cancer cell lines is revealed by Aldefluor flow cytometry-based assay. Cytometry B Clin Cytom. 2007;72B(4):281–289. doi:10.1002/cyto.b.20161
- 53. Shi Y, Fu X, Hua Y, Han Y, Lu Y, Wang J. The side population in human lung cancer cell line NCI-H460 is enriched in stem-like cancer cells. *PLoS One*. 2012;7(3):e33358. doi:10.1371/journal.pone.0033358
- 54. Akunuru S, James Zhai Q, Zheng Y. Non-small cell lung cancer stem/progenitor cells are enriched in multiple distinct phenotypic subpopulations and exhibit plasticity. *Cell Death Dis.* 2012;3(7):e352–e352. doi:10.1038/cddis.2012.93
- Meng X, Li M, Wang X, Wang Y, Ma D. Both CD133⁺ and CD133⁻ sub-populations of A549 and H446 cells contain cancer-initiating cells. *Cancer Sci.* 2009;100(6):1040–1046. doi:10.1111/j.1349-7006.2009. 01144.x
- Ucar D, Cogle CR, Zucali JR, et al. Aldehyde dehydrogenase activity as a functional marker for lung cancer. *Chem Biol Interact*. 2009;178(1–3): 48–55. doi:10.1016/j.cbi.2008.09.029
- Akunuru S, Palumbo J, Zhai QJ, Zheng Y. Rac1 targeting suppresses human non-small cell lung adenocarcinoma cancer stem cell activity. PLoS One. 2011;6(2):e16951. doi:10.1371/journal.pone.0016951
- 58. Gao D, Vahdat LT, Wong S, Chang JC, Mittal V. Microenvironmental regulation of epithelial—mesenchymal transitions in cancer. *Cancer Res.* 2012;72(19):4883–4889. doi:10.1158/0008-5472.CAN-12-1223
- Mani SA, Guo W, Liao MJ, et al. The epithelial mesenchymal transition generates cells with properties of stem cells. *Cell*. 2008;133(4):704–715. doi:10.1016/j.cell.2008.03.027
- Ravindran S, Rasool S, Maccalli C. The crosstalk between cancer stem cells/cancer Initiating cells and tumor microenvironment: The missing piece of the puzzle for the efficient targeting of these cells with immunotherapy. *Cancer Microenviron*. 2019;12(2–3):133–148. doi:10.1007/s12307-019-00233-1
- Xu Y, Hu Y, Zhou J, Zhang M. Establishing a lung cancer stem cell culture using autologous intratumoral fibroblasts as feeder cells. Cell Biol Int. 2011;35(5):509–517. doi:10.1042/CBI20100473
- Shintani Y, Abulaiti A, Kimura T, et al. Pulmonary fibroblasts induce epithelial mesenchymal transition and some characteristics of stem cells in non-small cell lung cancer. *Ann Thorac Surg.* 2013;96(2):425–433. doi:10.1016/j.athoracsur.2013.03.092
- 63. Chen WJ, Ho CC, Chang YL, et al. Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. *Nat Commun.* 2014;5(1):3472. doi:10.1038/ncomms4472
- Su S, Chen J, Yao H, et al. CD10⁺GPR77⁺ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. *Cell.* 2018;172(4):841–856.e16. doi:10.1016/j.cell.2018. 01.009

- 65. Eiro N, Fraile M, Fernández-Francos S, Sánchez R, Costa LA, Vizoso FJ. Importance of the origin of mesenchymal (stem) stromal cells in cancer biology: "Alliance" or "war" in intercellular signals. *Cell Biosci*. 2021;11(1):109. doi:10.1186/s13578-021-00620-6
- Galland S, Stamenkovic I. Mesenchymal stromal cells in cancer: A review of their immunomodulatory functions and dual effects on tumor progression. *J Pathol.* 2020;250(5):555–572. doi:10.1002/ path.5357
- 67. Hsu HS, Lin JH, Hsu TW, et al. Mesenchymal stem cells enhance lung cancer initiation through activation of IL-6/JAK2/STAT3 pathway. Lung Cancer. 2012;75(2):167–177. doi:10.1016/j.lungcan.2011.07.001
- 68. Attar-Schneider O, Zismanov V, Drucker L, Gottfried M. Secretome of human bone marrow mesenchymal stem cells: An emerging player in lung cancer progression and mechanisms of translation initiation. *Tumor Biol.* 2016;37(4):4755–4765. doi:10.1007/s13277-015-4304-3
- Attar-Schneider O, Drucker L, Gottfried M. The effect of mesenchymal stem cells' secretome on lung cancer progression is contingent on their origin: Primary or metastatic niche. *Lab Invest*. 2018;98(12): 1549–1561. doi:10.1038/s41374-018-0110-z
- 70. Yan C, Chang J, Song X, et al. Lung cancer-associated mesenchymal stem cells promote tumor metastasis and tumorigenesis by induction of epithelial–mesenchymal transition and stem-like reprogram. *Aging*. 2021;13(7):9780–9800. doi:10.18632/aging.202732
- 71. Kitamura T, Qian BZ, Pollard JW. Immune cell promotion of metastasis. *Nat Rev Immunol*. 2015;15(2):73–86. doi:10.1038/nri3789
- 72. Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity. *Annu Rev Pathol Mech Dis.* 2020;15(1): 123–147. doi:10.1146/annurev-pathmechdis-012418-012718
- Tang B, Wang Y, Xu W, et al. Macrophage xCT deficiency drives immune activation and boosts responses to immune checkpoint blockade in lung cancer. *Cancer Lett*. 2023;554:216021. doi:10.1016/j.canlet. 2022.216021
- 74. Mei J, Xiao Z, Guo C, et al. Prognostic impact of tumor-associated macrophage infiltration in non-small cell lung cancer: A systemic review and meta-analysis. *Oncotarget*. 2016;7(23):34217–34228. doi:10.18632/oncotarget.9079
- Capece D, Fischietti M, Verzella D, et al. The inflammatory microenvironment in hepatocellular carcinoma: A pivotal role for tumor-associated macrophages. *Biomed Res Int.* 2013;2013:187204. doi:10.1155 /2013/187204
- Masciale V, Grisendi G, Banchelli F, et al. Correlating tumor-infiltrating lymphocytes and lung cancer stem cells: A cross-sectional study. Ann Transl Med. 2019;7(22):619–619. doi:10.21037/atm.2019.11.27
- Huang Z, Yu H, Zhang J, et al. Correlation of cancer stem cell markers and immune cell markers in resected non-small cell lung cancer. J Cancer. 2017;8(16):3190–3197. doi:10.7150/jca.20172
- 78. Kinoshita T, Kawakami Y. Interface of cancer stem cells and cancer immunity. *Ann Transl Med.* 2020;8(13):810–810. doi:10.21037/atm.2020.04.08
- Lu CS, Shiau AL, Su BH, et al. Oct4 promotes M2 macrophage polarization through upregulation of macrophage colony-stimulating factor in lung cancer. *J Hematol Oncol*. 2020;13(1):62. doi:10.1186/s13045-020-00887-1
- Schenk U, Westendorf AM, Radaelli E, et al. Purinergic control of T cell activation by ATP released through pannexin-1 hemichannels. Sci Signal. 2008;1(39):ra6. doi:10.1126/scisignal.1160583
- 81. De Andrade Mello P, Coutinho-Silva R, Savio LEB. Multifaceted effects of extracellular adenosine triphosphate and adenosine in the tumorhost interaction and therapeutic perspectives. *Front Immunol.* 2017; 8:1526. doi:10.3389/fimmu.2017.01526
- 82. Grygorczyk R, Boudreault F, Ponomarchuk O, et al. Lytic release of cellular ATP: Physiological relevance and therapeutic applications. *Life*. 2021;11(7):700. doi:10.3390/life11070700
- 83. Moriyama Y, Hiasa M, Sakamoto S, Omote H, Nomura M. Vesicular nucleotide transporter (VNUT): Appearance of an actress on the stage of purinergic signaling. *Purinergic Signal*. 2017;13(3):387–404. doi:10.1007/s11302-017-9568-1
- 84. Sandilos JK, Chiu YH, Chekeni FB, et al. Pannexin 1, an ATP release channel, is activated by caspase cleavage of its pore-associated C-terminal autoinhibitory region. *J Biol Chem.* 2012;287(14):11303–11311. doi:10.1074/jbc.M111.323378

- 85. Song J, Qian Y, Evers M, Nielsen CM, Chen X. Cancer stem cell formation induced and regulated by extracellular ATP and stannio-calcin-1 in human lung cancer cells and tumors. *Int J Mol Sci.* 2022; 23(23):14770. doi:10.3390/ijms232314770
- Gammon L, Biddle A, Heywood HK, Johannessen AC, Mackenzie IC. Sub-sets of cancer stem cells differ intrinsically in their patterns of oxygen metabolism. *PLoS One*. 2013;8(4):e62493. doi:10.1371/journal. pone.0062493
- Raei M, Bagheri M, Aghaabdollahian S, Ghorbani M, Sadeghi A. Ionizing radiation promotes epithelial-mesenchymal transition phenotype and stem cell marker in the lung adenocarcinoma: In vitro and bioinformatic studies. *Cell J.* 2022;24(9):522–530. doi:10.22074/ celli.2022.8403
- 88. Zou K, Li Z, Zhang Y, et al. β-Elemene enhances radiosensitivity in non-small-cell lung cancer by inhibiting epithelial–mesenchymal transition and cancer stem cell traits via Prx-1/NF-kB/iNOS signaling pathway. *Aging*. 2021;13(2):2575–2592. doi:10.18632/aging.202291
- Gu X, Zhang J, Shi Y, et al. ESM1/HIF-1α pathway modulates chronic intermittent hypoxia-induced non-small-cell lung cancer proliferation, stemness and epithelial–mesenchymal transition. *Oncol Rep.* 2020;45(3):1226–1234. doi:10.3892/or.2020.7913
- 90. Wei H, Liang F, Cheng W, et al. The mechanisms for lung cancer risk of PM_{2.5}: Induction of epithelial–mesenchymal transition and cancer stem cell properties in human non-small cell lung cancer cells. *Environ Toxicol.* 2017;32(11):2341–2351. doi:10.1002/tox.22437
- 91. Chao X, Yi L, Lan LL, Wei HY, Wei D. Long-term PM_{2.5} exposure increases the risk of non-small cell lung cancer (NSCLC) progression by enhancing interleukin-17a (IL-17a)-regulated proliferation and metastasis. *Aging*. 2020;12(12):11579–11602. doi:10.18632/aging.103319
- 92. Kotiyal S, Bhattacharya S. Breast cancer stem cells, EMT and therapeutic targets. *Biochem Biophys Res Commun*. 2014;453(1):112–116. doi:10.1016/j.bbrc.2014.09.069
- 93. Zhou P, Li B, Liu F, et al. The epithelial to mesenchymal transition (EMT) and cancer stem cells: Implication for treatment resistance in pancreatic cancer. *Mol Cancer*. 2017;16(1):52. doi:10.1186/s12943-017-0624-9
- 94. Kim BN, Ahn DH, Kang N, et al. TGF-β induced EMT and stemness characteristics are associated with epigenetic regulation in lung cancer. *Sci Rep.* 2020:10(1):10597. doi:10.1038/s41598-020-67325-7
- 95. Pirozzi G, Tirino V, Camerlingo R, et al. Epithelial to mesenchymal transition by TGFβ-1 induction increases stemness characteristics in primary non small cell lung cancer cell line. *PLoS One.* 2011; 6(6):e21548. doi:10.1371/journal.pone.0021548
- Andriani F, Bertolini G, Facchinetti F, et al. Conversion to stem-cell state in response to microenvironmental cues is regulated by balance between epithelial and mesenchymal features in lung cancer cells. Mol Oncol. 2016;10(2):253–271. doi:10.1016/j.molonc.2015.10.002
- 97. Wu L, Yu Y, Xu L, Wang X, Zhou J, Wang Y. TROY modulates cancer stem-like cell properties and gefitinib resistance through EMT signaling in non-small cell lung cancer. *Front Genet*. 2022;13:881875. doi:10.3389/fgene.2022.881875
- Wu YC, Tang SJ, Sun GH, Sun KH. CXCR7 mediates TGFβ1-promoted EMT and tumor-initiating features in lung cancer. *Oncogene*. 2016; 35(16):2123–2132. doi:10.1038/onc.2015.274

- Li X, Han J, Zhu H, Peng L, Chen Z. miR-181b-5p mediates TGF-β1induced epithelial-to-mesenchymal transition in non-small cell lung cancer stem-like cells derived from lung adenocarcinoma A549 cells. Int J Oncol. 2017;51(1):158–168. doi:10.3892/ijo.2017.4007
- Feliciano A, Garcia-Mayea Y, Jubierre L, et al. miR-99a reveals two novel oncogenic proteins E2F2 and EMR2 and represses stemness in lung cancer. *Cell Death Dis*. 2017;8(10):e3141. doi:10.1038/cddis. 2017.544
- 101. Guo L, Sun C, Xu S, et al. Knockdown of long non-coding RNA linc-ITGB1 inhibits cancer stemness and epithelial–mesenchymal transition by reducing the expression of Snail in non-small cell lung cancer. *Thorac Cancer.* 2019;10(2):128–136. doi:10.1111/1759-7714.12911
- 102. Liu X, Wang Z, Yang Q, et al. RNA demethylase ALKBH5 prevents lung cancer progression by regulating EMT and stemness via regulating p53. *Front Oncol.* 2022;12:858694. doi:10.3389/fonc.2022.858694
- 103. Liu L, Zhu H, Liao Y, et al. Inhibition of Wnt/β-catenin pathway reverses multi-drug resistance and EMT in Oct4+/Nanog+ NSCLC cells. Biomed Pharmacother. 2020;127:110225. doi:10.1016/j.biopha.2020. 110225
- 104. Tu Z, Xie S, Xiong M, et al. CXCR4 is involved in CD133-induced EMT in non-small cell lung cancer. *Int J Oncol.* 2017;50(2):505–514. doi:10.3892/ijo.2016.3812
- 105. Batlle E, Clevers H. Cancer stem cells revisited. *Nat Med.* 2017;23(10): 1124–1134. doi:10.1038/nm.4409
- Snippert HJ, Van Der Flier LG, Sato T, et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. *Cell*. 2010;143(1):134–144. doi:10.1016/j.cell. 2010.09.016
- 107. De Sousa E Melo F, Kurtova AV, Harnoss JM, et al. A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer. *Nature*. 2017;543(7647):676–680. doi:10.1038/nature21713
- 108. Shimokawa M, Ohta Y, Nishikori S, et al. Visualization and targeting of LGR5⁺ human colon cancer stem cells. *Nature*. 2017;545(7653): 187–192. doi:10.1038/nature22081
- 109. Chen J, Li Y, Yu TS, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. *Nature*. 2012;488(7412): 522–526. doi:10.1038/nature11287
- Rahman M, Deleyrolle L, Vedam-Mai V, Azari H, Abd-El-Barr M, Reynolds BA. The cancer stem cell hypothesis: Failures and pitfalls. Neurosurgery. 2011;68(2):531–545. doi:10.1227/NEU.0b013e3181ff9eb5
- 111. Yakisich JS, Azad N, Kaushik V, Iyer AKV. Cancer cell plasticity: Rapid reversal of chemosensitivity and expression of stemness markers in lung and breast cancer tumorspheres. *J Cell Physiol.* 2017; 232(9):2280–2286. doi:10.1002/jcp.25725
- 112. Saijo H, Hirohashi Y, Torigoe T, et al. Plasticity of lung cancer stem-like cells is regulated by the transcription factor *HOXA5* that is induced by oxidative stress. *Oncotarget*. 2016;7(31):50043–50056. doi:10.18632/oncotarget.10571
- 113. Marjanovic ND, Hofree M, Chan JE, et al. Emergence of a high-plasticity cell state during lung cancer evolution. *Cancer Cell*. 2020;38(2): 229–246.e13. doi:10.1016/j.ccell.2020.06.012
- Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14(3):275–291. doi:10.1016/j.stem.2014.02.006