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Abstract

Lung cancer is a major cause of cancer-related deaths worldwide. It can be divided into 2 main types, namely
non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). Most patients with NSCLC are diagnosed
at an advanced stage, and current treatments have limited success. Moreover, relapsing tumors that often
appear after surgical or drug treatment are particularly difficult to treat. The existence of cancer stem cells
(CSCs) has been proposed as a key factor contributing to the development of resistance to therapy, recurrence
and metastasis. Targeting (SCsis a potential strategy for eradicating tumors. However, due to the tumor-type
specificity and cellular plasticity, the real clinical application of lung cancer stem cells (LCSCs) has not been
realized. This review details the existing phenotypic markers of LCSCs and the limitations of their identification
and summarizes the roles of the tumor microenvironment (TME) and epithelial—mesenchymal transition
(EMT) in the existence and maintenance of LCSCs, as well as the contribution and controversy of cellular
plasticity theory on LCSCs. It is expected that future research on LCSCs can solve the present problems, and
approaches targeting LCSCs may be applied in the clinic as soon as possible.
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Introduction

Lung cancer is a major cause of cancer-related deaths
worldwide.! It is a heterogeneous disease that can be di-
vided into 2 distinct pathological types: non-small cell
lung cancer (NSCLC) and small cell lung cancer (SCLC),
with NSCLC accounting for approx. 80—85% of all lung
cancer types.2~* After diagnosis, approx. 75% of patients
with NSCLC have advanced diseases (stage III-1V), and
the survival rate is low despite the oncological treatment
of late-stage lung cancer seeing significant advances in re-
cent years. The UK’s Office for National Statistics reported
that patients diagnosed with stage IV lung cancer had
a 1-year survival rate of just 15-19%.°

In addition, relapsing tumors that often appear after sur-
gical or drug treatment are more difficult to treat.® For ex-
ample, platinum-based chemotherapy was most common
for advanced NSCLC, but a generation of drug-resistant
tumors has proven to be a major barrier to chemotherapy
efficacy.”~? Although tyrosine kinase inhibitors have dem-
onstrated significant responses in patients with advanced
adenocarcinoma in recent years, almost all patients have
developed drug resistance after 2—3 years of treatment.!%11

Until now, the cancer stem cells (CSCs) hypothesis has
been posited to be the underlying cause of relapse, metas-
tasis and therapeutic resistance.!>!3 On the one hand, CSCs
can generate new stem cells and daughter cells that differ-
entiate and continuously proliferate to form tumor paren-
chyma. Conversely, CSCs display high expression of the ad-
enosine-triphosphate-binding cassette G2 (ABCG2), which
contributes to pumping out chemotherapeutic drugs,'*-1¢
leading to chemoresistance. Therefore, targeting CSCs
means potential tumor eradication, and several strategies
have been used in the clinical treatment of hematological
malignancies and several solid tumors.1”-1

However, the CSCs theory has faced 2 major barriers.
First, a universal CSC marker is lacking.2? The specific
markers to purify CSCs are still unclear because the cell
surface markers used to identify CSCs vary among tu-
mor types. Second, the mechanism by which CSCs cause
the failure of therapies and the relapse is not fully un-
derstood.1%2-23 One likely explanation for the above con-
troversy surrounding CSCs characterization is cellular
plasticity,?4-2¢ which refers to the reversible transition be-
tween a variety of cellular states, including stem cells (SCs)/
non-stem cells (non-SCs), asymmetric divisions (ADs)/
symmetric divisions (SDs), quiescence/proliferation, epi-
thelial-mesenchymal transition (EMT)/mesenchymal-to-
epithelial transition (MET), and drug sensitivity/drug re-
sistance. Increasing evidence supports that CSCs represent
a dynamic cellular state, in which the acquisition of stem-
like traits is necessary for resistance and the promotion
of tumor progression.?”-?® Additionally, the tumor microen-
vironment (TME) plays an integral role in tumor progres-
sion and metastasis and is believed to support the cellular
fate of CSCs.1%2? Thus, it is crucial to better understand
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the behavior of CSCs based on their microenvironment.
This understanding will aid in the development of more
effective therapeutic strategies targeting CSCs.

We searched PubMed online database relevant literature
until July 21, 2023, using the following search terms; “lung
cancer stem cell” OR “lung cancer stemness” AND “cel-
lular plasticity” OR “tumor microenvironment” OR “TME”
OR “epithelial-mesenchymal transition” OR “EMT”. More-
over, we reviewed citations from retrieved articles to search
for additional relevant studies. The retrieved studies were
manually screened to assess their appropriateness for in-
clusion. Here, we introduced the characteristics of lung
cancer stem cells (LCSCs), including their specific recog-
nition, the interaction between LCSCs and TME, the role
of EMT in acquiring stem-like phenotype, and the rela-
tionship between cellular plasticity and LCSCs. Our pur-
pose was to summarize the existing research controversy
in the LCSCs theory and to provide further direction for
the study of LCSCs.

Objectives

We aimed to list the common phenotypic markers of LC-
SCs and summarize their limitations, reveal the relation-
ship between LCSCs and TME and EMT, and to determine
the role of cellular plasticity theory in the generation and
transformation of LCSCs.

Lung cancer stem cells

Several studies have suggested that CSCs are associated
with tumor heterogeneity and growth, leading to relapse
and therapeutic resistance at any stage of cancer pro-
gression. The gold standard for assessing the oncogenic
potential of CSCs is their ability to form transplantable
tumors in immunodeficient mice. This approach has suc-
cessfully confirmed the existence of CSCs in various tumor
types, including brain, breast, lung, and hematological
malignancies.30-32

The first observation of LCSCs was published in 1982,%
and subsequent growing evidence has confirmed that pu-
tative LCSCs can be isolated from various cell lines and
tumor specimens. Lung cancer stem cells share similar
properties to CSCs in other tumors: They have been as-
sociated with higher recurrence rates, radioresistance®*
and chemoresistance.?>-3” Lung cancer stem cells can form
stem cell spheres® and express stem-like phenotypes, in-
cluding CD133, ABCG2 and ALDH]I, among others.*
In short, there is overwhelming evidence that stem cells
exist in lung cancers.

Studies have identified CD133, CD44, CXCR4, CD166,
EpCAM, CD90, and CD44 as common stemness-associated
markers in lung cancers. In both NSCLC and SCLC cell
lines, CD133-positive cells may generate long-term tumor
spheres and differentiate into CD133-negative cells. Studies
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performed in vivo have shown that 1x10* CD133-positive
cells could generate tumors in immunodeficient mice. Addi-
tionally, CD133" cells were found to be chemoresistant and
expressed high levels of ABCG2 and other common stem
cell markers, such as Oct4 or Nanog.*? Similarly, CD44-
positive cells exhibited stemness properties in NSCLC cell
lines.** CD90* CSCs were also isolated from lung cancer
cell lines A549 and H446,*! while cells positive for CXCR4,
a chemokine receptor on the surface of hematopoietic stem
cells (HSCs), can form tumor spheres in vitro and exhib-
ited self-renewal capacity and radio-resistance in NSCLC.#2
Finally, CD166*/CD44* and CD166*/EpCAM?* lung cancer
cells displayed multipotent characteristics of stem cells
that can differentiate into adipogenic and osteogenic cells
and express stem cell transcription factors such as Sox2
and Oct4.%3

The ALDH activity has also been shown to be associated
with stemness traits in lung cancer cell lines. It had been
reported that ALDH1-positive cells from NSCLC displayed
the ability of self-renewal, proliferation potential and
in vivo carcinogenicity. Moreover, these ALDHI1-positive
cells also expressed CD133 and produced resistance after
treatment with commonly used chemotherapy drugs.**
Earlier research has also demonstrated that the putative
CSCs in lung cancer were able to express Oct4, Sox2,
Nanog, and other core transcription factors responsible
for regulating self-renewal and differentiation in embry-
onic stem cells, as well as CSCs.4546

However, it must be acknowledged that the expression
of stem cell markers mainly depends on the source of CSCs
isolation (such as primary tumors vs patient-derived xeno-
graft tumors vs cell lines), as sometimes cell suspension
culture may also cause a variety of cell surface markers.
Although surface markers such as CD133 and CD44 have
been successfully used to isolate CSCs, their expression
is not exclusively linked to the CSC phenotype and is prone
to environmental alteration.*” Conflicting data have arisen
in some settings due to the use of different markers and
isolation methods, highlighting the challenges of isolating
a pure CSC population.*® For instance, CD133 was not
detected at all in many lung cancer cases,**° while the ex-
pression of CD44 and ALDH display particularly strong
associations with squamous cell carcinoma (SCC).5>2
In addition, the combined effect of these stem markers
on LCSCs is not completely clear. While it has been shown
that the expression of CD133 partially overlapped with
that of ALDH protein in NSCLC cell lines,* there is no
convincing evidence to confirm that the enrichment for
1 CSC marker also enriches the others. As these markers
possibly play separate roles and represent different sub-
groups,®® more powerful markers need to be identified
to isolate pure CSCs in lung cancer.

Furthermore, it is being questioned whether these sur-
face markers can accurately target CSCs. For example,
CD133-negative cells in lung cancer cell lines may also
cause the formation of tumors, just like CD133-positive
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cells.®® Similar results have been observed in the ALDH
or SP-negative cells.>®>” Overall, the accuracy of cur-
rently known markers in identifying CSC populations
remains uncertain, as these markers can only identify
tumor gene subpopulations to varying degrees. More
specific markers may be discovered in future work, and
we all look forward to the emergence of real targeting
markers for these cells.

Lung cancer stem cells and tumor
microenvironment

There is increasing evidence that tumor biology is de-
termined not only by the cancer cells, but also by the sur-
rounding stromal cells and structures, known as the TME.
This consists of multiple cell types that are embedded
in the extracellular matrix (ECM), including immune cells,
endothelial cells and cancer-associated fibroblasts (CAFs).
It is now known that TME plays a vital role in the regu-
lation of EMT and the acquisition of stem cell pheno-
types.”®* Moreover, it has been reported that the cytokine
network established by CSCs and TME supports the up-
keep of existing CSCs and promotes the generation of new
CSCs. This process ultimately facilitates tumor survival,
propagation and relapse.®°

One of the cellular components in the TME, CAFs, plays
a critical role in promoting both the differentiation of CSCs
and the dedifferentiation of non-CSCs. Cancer-associated
fibroblasts increase both CD133 and CD44 expression, in-
crease the proportion of CD133* and CD44* CSCs cells,
and enhance the ability of metastasis and chemotherapy
resistance during tumor progression. In addition, fibroblasts
have a promoting effect as feeder cells on culturing LC-
SCs.°462 It has been reported that the activation of the IGFIR
signaling pathway in the presence of CAFs expressing IGF2
can induce the expression of Nanog and promote cancer
stemness in NSCLC cells.%® Additional research revealed
that a unique subpopulation of CAFs in human NSCLC tis-
sues expresses both CD10 and a receptor G-protein coupled
receptor 77 (GPR-77), promoting the stemness properties
and inducing chemoresistance by activating the NF-xB
pathway and secreting intelerleukin 6 (IL-6) and IL-8.%*
These findings all demonstrate that CAFs serve as a sup-
portive niche for cancer stemness in NSCLC.

Mesenchymal stem cells (MSCs) are another important
cellular component in the TME, but their precise role in tu-
mor progression is still under debate. Research suggests
that the specific effect of MSCs on tumors is dependent
on the source of MSCs and tumor types.5>®¢ One study
found that MSCs increase the stemness of lung cancer cells
by secreting factors that activate JAK2/STAT3 pathways.*’
Another report displayed that MSCs at the primary tumor
site promote the proliferation and infiltration of the ma-
lignant cells, while the metastatic site MSCs facilitate cell
re-seeding.%®% Non-small cell lung cancer adjacent MSCs
were found to induce the expression of stem-related genes
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and facilitate the formation of spheroids when tumor cells
were co-incubated with them.”®

The TME also includes chronic inflammation that
promotes tumor proliferation and metastasis through
immunosuppression and evasion from immune surveil-
lance. Cancer cells and CSCs create an inflammatory
niche by secreting chemokines and cytokines to recruit
tumor-associate macrophages (TAMs), tumor-associated
neutrophils (TANs) and myeloid-derived suppressor cells
(MDSCs).”t In TME, TAMs are the predominant sub-
population of immune cells, which include 2 subtypes:
the classically activated M1 subtype and the alternatively
activated M2 subtype. M1 macrophages may cause tu-
mor cells to undergo lysis, promote antigen presentation
and activate Thl-type cell-mediated immune responses;
they mainly exert their antitumor effects by enhancing
the tumor-killing ability of immune cells. In contrast,
M2 macrophages may secrete immunosuppressive cyto-
kines and promote tumor growth and metastasis.”> Dur-
ing the malignant progression in NSCLC, TAMs can also
differentiate into either a tumor-inhibitory (M1) or tumor-
promoting (M2) phenotype based on the influence of vari-
ous stimuli.”®”* Tumor-associated macrophages can also
activate both pro-inflammatory and anti-inflammatory
pathways, which can directly inhibit or promote the cyto-
toxic effects of natural killer (NK) cells and CD8* T lymph
cells. Additionally, TAMs can trigger Thl immune re-
sponses and induce cytotoxic functions directed toward
malignant cells by producing toxic mediators.” In a recent
publication, a correlation study was conducted between
tumor-infiltrating lymphocytes (TILs) and CSCs in tumor
tissues from 12 patients with NSCLC. This research found
a moderate-to-high positive linear and rank correlation
between ALDH* CSCs and CD3* or CD8* TILs. However,
there was no correlation between ALDH* CSCs and CD4+*
cells.”® Another group demonstrated that there is no cor-
relation between CD8* TILs and CD133 CSCs in surgical
samples taken from 172 NSCLC patients.”” The variation
observed in these studies could be attributed to several as-
pects, such as the utilization of different stem-like markers
(ALDH vs CD133), and the involvement of NSCLC in vari-
ous stages (primary tumors vs metastasis). It has been
reported that CD8* T cells are crucial cytotoxic effectors
in many kinds of tumors, including NSCLC. At the same
time, ALDH* CSCs have the potential to induce the loss
of their antitumor activity through the exhaustion of CD8*
T cells that lost antitumor activity, or immunosuppressive
CD8* regulatory T cells (Tregs).”® Furthermore, A549 cells
overexpressing Oct4 were found to express higher levels
of macrophage colony-stimulating factor (M-CSF), which
contributed to enhanced tumor migration and increased
the number of M2 macrophages. This data suggests that
lung cancer cells that express Oct4 promote the polariza-
tion of M2 macrophages by upregulating the secretion
of M-CSE.”®
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In addition, the TME has the highest concentrations
of extracellular ATP (eATP), which is mainly produced
from necrotic or lytic tumor cells and stromal cells.30-84
Recent studies suggest that eATP can induce and regulate
transcription, translation and metabolic levels of CSCs
through STCI, which interacts with ATP synthesized
by mitochondria.?> Notably, the role of eATP in regulat-
ing CSCs is an area of active research and remains poorly
understood.

Taken together, to better understand the emergency and
maintenance of LCSCs, it is crucial to focus on the TME,
which can be called the CSC niche and regulates CSCs
through intercellular communication or changes in the se-
creted milieu. Importantly, we should know that the CSC
niche is different in a variety of tumor types, which means
the makeup of the CSC niche can vary significantly be-
tween tumor types, even within the same subtype of can-
cer. Thus, more research is needed to fully understand
the complex interplay between the CSCs niche and CSCs
themselves.

Lung cancer stem cells and epithelial-
mesenchymal transition

A key process of invasion and metastasis, EMT, has been
reported to be associated with the existence of CSCs. Epi-
thelial-mesenchymal transition can promote epithelial
cells to acquire invasive and migratory properties and
become CSC-like cells. Moreover, it has also been ob-
served that CSCs can undergo EMT?® during radiother-
apy and chemotherapy,®”#® in a hypoxic environment,®
or in the process of long-term exposure to PM, 5.°%! Lung
cancer cells can also show EMT and CSC characteristics
from signaling that induces EMT, such as TGF-$, Wnt,
NE-kB, ERK/MAPK, and Notch pathways, which can
promote stemness characteristics of solid tumors.”?-
It has been shown that the induction of EMT by TGFp-1
may increase stemness in primary lung cancer cells.”
Moreover, when 8 different lung cancer cell lines were
treated by TGFp1, it was found that TGFp1 signaling can
not only induce EMT but also stimulate the modulation
of CD133* CSCs. However, the responses to TGFp1 treat-
ment are heterogeneous across the lung cancer cell lines.
Some cell lines readily switch to a stem cell state, while
others remain unresponsive. This may be caused by the ra-
tio of expression of CDH1 (E-cadherin) to Snail2,°® both
downstream effectors of TGFpP1 signaling. Further study
revealed that TGF- signaling induces stemness through
the activation of Slug and CD87 by promoter demethyl-
ation.”* Moreover, tumor necrosis factor receptor super-
family member 19 (TNFRSF19) can inhibit TGFp down-
stream signal factors Smad2/3 through binding with TGF
receptor I, thus modulating stemness properties and che-
motherapy resistance to gefitinib.’” Moreover, TGFf1 may
promote cancer sphere-forming capacity, stemness traits
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and chemoresistance through the expression of CXCR7.8
In addition, other factors such as microRNAs miR-181b-
5p, miR-99a, long non-coding RNAs (IncRNAs), and RNA
demethylase ALKBHS5 have also been revealed to modulate
EMT concomitantly with the changes of stemness features
in lung cancer.”*192 Conversely, CSCs also display some
degree of EMT regulation. For example, Oct4/Nanog may
regulate drug resistance and EMT change through Wnt/(3-
catenin signaling activation.!®® Additionally, CD133 may
induce CXCR4-mediated EMT in NSCLC.!%* The above
studies have demonstrated the close correlation between
EMT and CSCs in lung cancers, although the crosstalk
mechanism between EMT and CSCs remains elusive.

Lung cancer stem cells and cellular
plasticity

In general, cellular plasticity refers to the capability
of a cell to change its differentiation levels or hierarchy.
It can also be defined as a cell’s ability to accept a new iden-
tity when faced with changes to its environment. Cellular
plasticity is not limited to stem cells, as even progenitor
cells, daughter cells, transient cells, and differentiation-
committed cells have been found to possess this capacity.
This implies that daughter cells and even fully differenti-
ated cells can re-enter the niche to take the place of stem
cells that have been lost. We now call this course neutral
competition, 105106

Previous investigations believed that plasticity is largely
only related to CSCs because it was widely suggested
that plasticity is limited to non-CSCs.3! However, re-
cent research has demonstrated that non-CSCs can also
supplement the CSC pool through cell plasticity in cer-
tain environmental niches, although this phenomenon
is not observed in all tumor types.!’-1%° These findings
highlight that CSCs are not a fixed entity in malignant
tumors, but rather a state controlled by temporal and spa-
tial characteristics.!'? It has been revealed that transforma-
tion is also common between both CSCs and non-CSCs
in lung adenocarcinoma.>* One study demonstrated that
lung cancer cells grown under standard culture conditions
exhibited multidrug resistance when cultured as floating
tumor spheres. However, upon re-incubation under stan-
dard culture conditions, the cells rapidly reattached and
lost the acquired resistance.!'! One study revealed that
dedifferentiation of lung non-CSCs into CSCs may be in-
duced by the transcription factor HOXAS5 that is mediated
by oxidative stress.!''? A hybrid epithelial/mesenchymal
phenotype could, therefore, identify tumors with a greater
ability to “sense” microenvironment signals, and for this
reason, lung cancer cells displaying both EMT traits may
retain a high level of plasticity and could be highly re-
active to convert to a stem-like state.”® Marjanovic et al.
prospectively isolated mixed program cells during lung
adenocarcinoma evolution from human patient-derived
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xenografts.!’® These cells were defined as being in a high-
plasticity cell state (HPCS). They found that the HPCS cells
possess functions of both normal stem cells and CSCs, such
as increased proliferation and differentiation potential.
However, the HPCS gene expression was largely different
from the common signatures in both normal stem cells
and CSCs.1%114 Consequently, further research is required
to elucidate the relationship between CSCs and HPCS.

Limitations

There is a large amount of literature on LCSCs. Unfor-
tunately, we only summarized part of it, and the clinical
application was not covered in this paper. This review cata-
logued the findings of pertinent research and highlighted
discrepancies or deficiencies. However, the underlying
mechanism remained underexplored, necessitating a more
comprehensive investigation in the subsequent study.

Conclusions

In recent years, there has been a great deal of interest
in the use of CSCs as a targeted antitumor strategy. Here,
we concentrated on the characteristics of LCSCs, includ-
ing the existing stemness phenotypes, the relationship
and interaction between EMT, TME and LCSCs, as well
as the role of cell plasticity theory in CSCs. As discussed,
the clinical application of LCSCs will not be possible
in the near future due to the present research controversy
on LCSCs. On the one hand, accurate recognition of these
cells requires the discovery of more specific phenotypic
markers. On the other, the acquisition and maintenance
of CSCs not only depend on the plasticity potential of can-
cer cells but also have a close relationship with the micro-
environmental tumor niche. Thus, gaining a better under-
standing of the molecular mechanisms in CSC biology and
cancer heterogeneity may help us find more effective and
innovative treatment strategies.
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