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Abstract

Background. Accumulating evidence has supported the effect of antibody-dependent cellular phagocytosis
(ADCP) on the tumor microenvironment (TME) and cancer therapy. However, an ADCP-based signature
to predict the prognosis of gastric cancer (GC) has not been established.

Objectives. We aimed to develop an ADCP-based signature to improve the prognosis prediction of GC.

Materials and methods. Antibody-dependent cellular phagocytosis genes that exhibited a differential
expression were characterized, followed by the construction and validation of the ADCP-based signature.
The potential association between the ADCP-based signature and TME was explored, and the features
of the signature genes were investigated. Finally, a predictive nomogram was established based on the ADCP-
based signature.

Results. Four ADCP-related genes, MKNK2, VCAN, LRAT, and GNGB, were identified to construct the ADCP-
based signature, and a high ADCP score predicted an unfavorable prognosis in GC patients (p < 0.05).
The ADCP-based signature was significantly associated with immune cells, immune checkpoints and im-
mune signaling pathways (p < 0.05). Gastric cancer patients with high ADCP scores benefited less from
immunotherapy compared to those with low ADCP scores. A nomogram including age, stage and risk score
of the ADCP-based signature was constructed to predict the 1-, 3- and 5-year survival probabilities, with
an area under the curve (AUC) of 0.669, 0.675 and 0.685, respectively.

Conclusions. The ADCP-based signature may serve as a new option for prognosis prediction and the per-
sonalized treatment of GC patients.

Key words: bioinformatics analysis, gastric cancer, tumor microenvironment, prognostic signature, antibody-
dependent cellular phagocytosis
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Background

Gastric cancer (GC) was the 5" most diagnosed cancer
and the 4™ most common cause of cancer death in 2020.!
The incidence and mortality of GC have been reduced
in recent years as a result of the prevention and treatment
of Helicobacter pylori and Epstein—Barr virus (EBV) infec-
tions.>® However, the prognosis of GC patients continues
to be unsatisfactory due to the impact of locally advanced
and distant metastases.*®

Immunotherapy is a promising treatment strategy, but
only a fraction of GC patients benefit from it.® Also, the im-
munosuppressive microenvironment of tumors severely re-
duces the effectiveness of immunotherapy. Therefore, there
is a strong need for precise immunotherapy and accurate
efficacy prediction using immune-based biomarkers.

Antibody-dependent cellular phagocytosis (ADCP)
is the mechanism that leads to the internalization and
degradation of target cells through the activation of Fcy
receptors on the surface of macrophages to induce phagocy-
tosis.” It has been shown that the ADCP process can influ-
ence the evolution of the tumor microenvironment (TME).
A previous study has found that rituximab results in the up-
regulation of multiple Fcy receptors on macrophages, which
correlates with their phagocytic response.® In addition, anti-
KIT antibodies have been observed to inhibit the growth
of gastrointestinal stromal tumors by inducing the phago-
cytosis of macrophages.® These studies suggest that ADCP
may regulate the progression of different cancers. Hence,
it is valuable to examine the role of ADCP-related genes
in the progression of GC, as well as establish a relevant
prognostic model for the treatment of GC.

In the present research, we conducted bioinformatics
approaches to construct and validate an ADCP-based
prognostic signature by employing The Cancer Genome
Atlas (TCGA) database and the Gene Expression Omnibus
(GEO) database. We further explored the role of the ADCP-
based signature in the immune microenvironment. Our
study can effectively predict the prognosis of GC patients
and may provide new perspectives for the treatment of GC.

Objectives

We aimed to develop a robust ADCP-based signature
to improve the predicted prognosis of GC.

Methods

Data collection and processing

RNA-seq data and clinical information on TCGA-STAD
were downloaded from the UCSC-Xena platform (https://
toil.xenahubs.net), which contained 32 normal tissue sam-
ples and 375 tumor tissue samples. The dataset GSE66229
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with 300 tumor tissue samples was downloaded from
the GEO database for subsequent model validation analy-
sis. A total of 3,405 genes were obtained by downloading
ADCP-related genes (Supplementary Table 1) from a study
by Kamber et al.!® and matching them with the above ex-
pression profiles. Our workflow is presented in Fig. 1.

Protein-protein interaction network
and functional enrichment analysis

The differential expression analysis of ADCP genes was
carried out using the R package DESeq2 (v. 1.36.0, https://
www.bioconductor.org/packages/release/bioc/html/DE-
Seq2.html). A false discovery rate (FDR) less than 0.05 and
a |log2FoldChange| >1 were selected as the threshold for
screening differentially expressed genes. The interaction re-
lationship of the differentially expressed genes was analyzed
using the Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) database (https://cn.string-db.org/) and
imported into Cytoscape (v. 3.9.1) to map the protein-protein
interaction (PPI) network. Gene Ontology (GO; http://www.
geneontology.org) and Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG; http://www.genome.ad.jp/kegg) functional
enrichment analysis was conducted using the ClusterProfiler
package (v. 4.4.4, https://bioconductor.org/packages/release/
bioc/html/clusterProfiler.html).}t

Construction and verification
of the ADCP-based signature

The 2 datasets from TCGA and GEO were log2-trans-
formed and normalized to obey the same distribution,
thus eliminating the effect from different batches. Tumor
samples from TCGA-STAD were segregated into a train-
ing set and a test set with a 6:4 random split. Samples
with survival times less than 30 days were filtered, and
a total of 342 tumor tissue samples were finally included.
In the training set samples, the differentially expressed
genes and the survival information of the samples were
merged to identify genes strongly related to the overall
prognosis for survival using univariate Cox regression
analysis performed with the survival package (v. 3.4-0,
https://github.com/therneau/survival).!? The genes were
further screened using a 10-fold cross-validation analy-
sis using the executed least absolute shrinkage and selec-
tion operator (LASSO) Cox regression model employing
the glmnet package (v. 2.0-18, httRiskscore://cran.r-project.
org/web/packages/glmnet/index.html).!3 Next, multivari-
able regression was conducted to further filter the genes.
Relying on the gene regression prognostic coefficients and
the expression levels of genes in the training set samples,
arisk score model was developed; it was derived as follows:

risk score = X (Expi x Coefi);

Expi and Coefi represent the expression levels and LASSO
regression coefficients of prognostic genes.
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Fig. 1. Study flowchart. Transcriptome data and clinical data were
downloaded from TCGA and UCSC Xena. Differential expression
analyses were conducted on ADCP-related genes. Protein—protein
interaction network and functional enrichment analyses were
performed on differentially expressed ADCP-related genes. Four key
genes were identified using uni- and multivariable Cox regression

as well as the LASSO method to construct an ADCP-based signature.
The predictive performance of the ADCP-based signature was validated
using GSE66229 from the GEO database. The immune-infiltrating cells,
immune pathways and drug sensitivity were explored in risk subgroups
defined by the ADCP-based signature

TCGA - The Cancer Genome Atlas; UCSC - University of California

Santa Cruz; ADCP - antibody-dependent cellular phagocytosis;

PPI - protein-protein interaction; LASSO - Least Absolute Shrinkage and
Selection Operator; GEO — Gene Expression Omnibus; STAD — stomach
adenocarcinoma; GO — Gene Ontology; KEGG - Kyoto Encyclopedia

of Genes and Genomes; TME — tumor microenvironment; HLA — human
leukocyte antigen; GSEA — Gene Set Enrichment Analysis; ssGSEA — single-
sample Gene Set Enrichment Analysis.
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To inspect the correctness of the model, the risk score
of each sample from the test set of TCGA and the external
validation set of GEO was calculated using the same re-
gression coefficients according to the risk score calculation
formula. The samples from the 2 aforementioned vali-
dation sets were differentiated based on the median risk
score as the cutoff. The overall survival (OS) of each group
was assessed using Kaplan—Meier curves. We then plot-
ted the 1-, 3- and 5-year receiver operating characteristic
(ROC) curves using the R package survival ROC (v. 1.0.3,
https://cran.rstudio.com/web/packages/survivalROC/in-
dex.html) and calculated the 1-, 3- and 5-year area under
the curve (AUC) values, respectively.

Prognostic characterization of genes
in the model and construction of ceRNA
networks

We used the TCGA-STAD dataset for survival analysis
of the ADCP-related genes in the signature. The multiMiR
package was used to predict gene-associated microRNAs
(miRNAs) in the model. Starbase was then used to predict
IncRNAs that interact with miRNAs, and the CHEA3 da-
tabase (https://maayanlab.cloud/chea3) was used to predict
transcription factors (TFs) of the model genes. All results
were imported into Cytoscape (https://cytoscape.org) to con-
struct a competitive endogenous RNA (ceRNA) network.

Characteristics of the TME and GSEA
in different subgroups

To further examine the immune microenvironment
in high- and low-risk groups, Estimation of STromal and
Immune cells in MAlignant Tumours using Expression data
(ESTIMATE),** Cell-type Identification by Estimating Rel-
ative Subsets of RNA Transcripts (CIBERSORT),'%as well
as single-sample gene set enrichment analysis (ssGSEA)
algorithms were utilized to obtain TME scores and im-
mune cell scores. Moreover, we extracted immune gene-
related pathways through the immport database (https://
www.immport.org/home). To assess immune pathway
variations between high- and low-risk groups, the ssG-
SEA algorithm was used to calculate the immune pathway
scores of cancer samples. We also captured expression
data of human leukocyte antigen (HLA) family genes and
immune checkpoint-associated genes to analyze their dif-
ferential expression in high- and low-risk groups. Gene
Set Enrichment Analysis (GSEA) was performed using
the ClusterProfiler package (v. 3.18.0)!! to observe signifi-
cant pathways enriched in the high- and low-risk groups.

Drug sensitivity and immunotherapy
efficacy prediction

The sensitivity of patients to chemotherapeutic agents
was evaluated using Genomics of Drug Sensitivity in Cancer


https://cran.rstudio.com/web/packages/survivalROC/index.html
https://cran.rstudio.com/web/packages/survivalROC/index.html
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(GDSC; https://www.cancerrxgene.org).l® The R software
package pRRophetic (v. 0.5, https://github.com/paulgeeleher/
pRRophetic) was used to determine half-maximal inhibi-
tory concentrations (IC50). We evaluated the differential
in drug sensitivity between high- and low-risk groups.
The Tumor Immune Dysfunction and Exclusion (TIDE)
method was used to predict the benefit of immune check-
point inhibitor (ICI) treatment in patients with GC.

Construction of nomogram

Clinical risk models were constructed using univariate
and multivariate Cox regression analyses. Next, clinical
risk values were calculated for all samples of TCGA-STAD.
The prognosis was assessed using Kaplan—Meier curve
analysis, and to test the clinical risk model, ROC curves
were generated. The calibration curve analysis of the model
was assessed using the R package rms (v. 6.3-0, https://
hbiostat.org/r/rms). Using the R package dcurves (v. 0.3.0,
https://github.com/ddsjoberg/dcurves), decision curve
analysis (DCA) decision curves were produced to evalu-
ate the clinical risk model.

Statistical analyses

All analyses were conducted in R v. 4.2.1 (R Founda-
tion for Statistical Computing, Vienna, Austria), and a p-
value of 0.05 or less was deemed statistically significant.
Univariate and multivariate Cox regression analyses
were performed to identify genes and clinical parameters
significantly associated with the OS prognosis. Schoen-
feld residual plots (conducted by the ggcoxzph function
of the survival R package) were used to assess the pro-
portional hazards assumption, which determines whether
the effect of the variable on the hazard function is con-
stant over time. The log-rank test was used to compare
the differences in survival distributions. A Wilcoxon test
was used to compare the differences in medians between
samples. The key R-script used in this study can be found
in the Supplementary materials.

Results

Differentially expressed ADCP genes
and their function in GC

The TCGA dataset was used to obtain the differential
expression matrix of GC, which was intersected with
ADCP-related genes to obtain 531 differentially expressed
ADCP-related genes (238 of them were upregulated and
293 were downregulated, Fig. 2A, Supplementary Table 2).
The most significantly up- and downregulated genes were
plotted as a heat map (Fig. 2B), with a total of 20 included.
These 531 differentially expressed ADCP-related genes
were mapped into a PPI network (Fig. 2C, Supplementary
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Table 7) through the STRING database. Gene Ontology
(Fig. 2D, Supplementary Table 3) and KEGG analysis
(Fig. 2E, Supplementary Table 4) were used to explore
the functions of the 531 genes. Functional investigation
of differentially expressed ADCP-related genes revealed
that they were involved in the p53 signaling pathway,
PI3K/Akt signaling pathway, calcium signaling pathway,
and platinum drug resistance (Fig. 2E), which suggested
the possible role of ADCP genes in cancer progression
and metastasis.

Development and validation
of ADCP-based signature

Based on the above 531 differential genes, univariate Cox
regression was applied using the TCGA-STAD training set
to detect 7 prognosis genes (ADAMTS12, MKNK2, VCAN,
MMPI, CLDNY, LRAT, and GNGS; Fig. 3A, Supplemen-
tary Table 5). The results of the proportional hazards as-
sumption can be found in Supplementary Fig. 1. To further
screen the prognostic markers of GC, LASSO regression
was employed to identify the prognostic genes acquired
from the above univariate Cox regression. The optimal
A\ was obtained when the partial likelihood of deviance
reached the minimum value (Fig. 3B,C). Four prognosis-
associated genes (MKNK2, VCAN, LRAT, and GNGB;
Fig. 3D, Supplementary Table 6) were available to con-
struct ADCP-related gene signatures after performing
multivariate Cox regression. Based on the median risk
score, the samples from the training set were separated
into a high-risk group (risk score >median risk score) and
a low-risk group (risk score <median risk score). The ROC
curve was plotted to display the 1-, 3- and 5-year AUC for
the training set. Validation of the model was conducted
in the TCGA test set and the GEO external validation set,
indicating a good predictive performance of the model
(Fig. 3E). The prognosis differed significantly between
the 2 groups, with patients in the high-risk score group
presenting a poorer prognosis. In the TCGA-STAD train-
ing cohort of 206 GC patients, those with high-risk scores
(50%) had a shorter OS (p = 5e-07) than those with low-risk
scores (50%). High-risk patients (52.941%) had a shorter
OS than low-risk patients (47.059%) across all 136 GC pa-
tients in the TCGA-STAD test cohorts (p = 0.003; Fig. 3F).
To identify whether or not the ADCP-based signature
was reliable, the accuracy of the ADCP-based signature
was evaluated using the GEO external validation cohort,
with a total of 300 GC patients participating in this study.
Asseenin Fig. 3F, high-risk patients (49%) had a shorter OS
than the low-risk group (51%) (p = 5e-05). The prognostic
information of the 4 genes in the signature was demon-
strated using a Kaplan—Meier curve, while 3 genes showed
significant prognostic value in GC. Between the MKNK2
subgroups, no OS differences were observed (log-rank test,
p = 0.151, Fig. 4A). In the VCAN high-expression group,
GC patients were found to have a lower survival probability


https://www.cancerrxgene.org
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Fig. 2. Identification and characterization of differentially expressed ADCP-related genes. A. A volcano plot representing the 531 differentially expressed
ADCP genes (238 of them were upregulated and 293 were downregulated) with a threshold of FDR less than 0.05 and a |log2FC| > 1; B. A heat map
containing the 20 most significantly up-and downregulatedADCP genes between normal and tumor samples; C. The PPl network of 531 differentially
expressed ADCP-related genes; D-E. GO (D) and KEGG (E) and analysis exploring the functions of the 531 genes

ADCP - antibody-dependent cellular phagocytosis; PPl — protein—protein interaction; FDR - false discovery rate; FC - fold change; GO — Gene Ontology;

KEGG - Kyoto Encyclopedia of Genes and Genomes.

(log-rank test, p = 0.027, Fig. 4B). Also, in the LRAT high-
expression group, GC patients had a significantly lower OS
(log-rank test, p = 0.01, Fig. 4C). The high GNG8 expres-
sion group indicated a more favorable prognosis (log-rank
test, p = 0.011, Fig. 4D). Based on the 4 genes, 61 miRNAs
were predicted using multiR, and 52 IncRNAs were further

predicted with starbase (http://starbase.sysu.edu.cn), fol-
lowed by the TFs of genes predicted with the CHEA3 da-
tabase, and the top 10 TFs of meanRank were selected.
Genes, miRNAs, IncRNAs, TFs, and interactions between
them were imported into Cytoscape to map the ceRNA-
TF network.


http://starbase.sysu.edu.cn
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Fig. 3. Construction and validation of an ADCP-based signature. A. Univariate Cox regression analysis identified 7 ADCP-related genes with prognostic value
(ADAMTS12, MKNK2, VCAN, MMP1, CLDN9, LRAT, and GNG8); B. Selection of the tuning parameter (\) in the least absolute shrinkage and selection operator
(LASSO) regression with a 10-fold cross-validation as the minimum criteria; C. LASSO coefficient profiles for clinical features and 6 non-zero coefficients were
selected; D. Four genes (MKNK2, VCAN, LRAT, and GNG8) were selected by multivariate Cox regression analysis; E. Receiver operating characteristic (ROC)
curves to display the 1-, 3- and 5-year area under the curve (AUC) in the train cohort, test cohort and validation cohort; F. Survival differences between low-
and high-risk groups in the training cohort (log-rank test, p = 5e-07), test cohort (log-rank test, p = 0.003) and validation cohort (log-rank test, p = 5e-05)

ADCP - antibody-dependent cellular phagocytosis; ADAMTS12 — a disintegrin and metalloproteinase with thrombospondin motifs 12; MKNK2 — threonine
kinase 2/MAP kinase interacting serine; VCAN - versican; MMP1 — matrix metallopeptidase 1; CLDN9 - claudin 9; LRAT - lecithin retinol acyltransferase;
GNG8 - G protein subunit gamma 8.
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Fig. 4. Survival estimation and PPl network of the signature genes. A-D. Survival differences between low- and high-expression groups of MKNK2 (A)
(log-rank test, p = 0.151), VCAN (B) (log-rank test, p = 0.027), LRAT (C) (log-rank test, p = 0.011) and GNG8 (D) (log-rank test, p = 0.011); E. ceRNA-TF network

based on the selected genes, miRNAs, IncRNAs, and transcription factors

PPI - protein—protein interaction; MKNK2 — threonine kinase 2/MAP kinase interacting serine; VCAN — versican; LRAT - lecithin retinol acyltransferase;
GNG8 - G protein subunit gamma 8; ceRNA — competing endogenous ribonucleic acid; TF — transcription factors; miRNA — microRNA; IncRNA - long non-

coding ribonucleic acid.

ADCP-based signature in TME

To gain further insight into the involvement of ADCP-
based signature in TME, we used the CIBERSORT (Fig. 5A),
ssGSEA (Fig. 5B) and ESTIMATE (Fig. 5C) algorithms to ex-
plore theimmune infiltration in subgroups. A higher percent-
age of M2 macrophages was observed in the high-risk score
group from the result of CIBERSORT, while T cells CD8*
accounted for a smaller percentage compared to the low-risk

score group (Fig. 5A, Supplementary Table 8). The ssGSEA
algorithm showed a higher percentage of regulatory T cells
(Tregs), as well as alower percentage of activated CD8* T cells
and activated B cells in the high-risk group (Fig. 5B, Supple-
mentary Table 9). The ESTIMATE algorithm also confirmed
the differences in immune infiltration between the high- and
low-risk groups (Fig. 5C). In the following work, we analyzed
the connection between signature genes and immune cells.
As shown in Fig. 5D, VCAN had a significant correlation
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Fig. 5. Immune cell infiltration and immunomodulators of the ADCP-based signature. A,B. Differences in the abundance of immune cell infiltration

in high- and low-risk groups using CIBERSORT (A) and ssGSEA (B) algorithms; C. Heat map of immune infiltration between high- and low-risk groups

using the CIBERSORT and ESTIMATE algorithms; D. Heat map of the correlation between model genes and differential immune cells using CIBERSORT;

E. Differences in the expression of HLA family genes between high- and low-risk groups; F. Differences in the expression of immune checkpoints between
high- and low-risk groups

ADCP - antibody-dependent cellular phagocytosis; CIBERSORT - Cell-type Identification by Estimating Relative Subsets of RNA Transcripts;
ESTIMATE - Estimation of STromal and Immune cells in MAlignant Tumours using Expression data; ssGSEA - single-sample Gene Set Enrichment Analysis;
HLA — human leukocyte antigen.

with M2 macrophages. GNG8 was positively correlated with expression and immune checkpoint gene expression varied
Tregs and was negatively correlated with activated natural significantly across the 2 risk groups (Fig. 5E,F, Supplemen-
killer cells (Supplementary Table 10). Surprisingly, HLA gene tary Tables 11,12).
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Fig. 6. Immune pathways of the ADCP-based signature. A. Box plots presenting the differences in immune pathway enrichment scores between high- and
low-risk groups using ssGSEA; B. Heat map of the correlation between model gene expression and immune pathways using ssGSEA; C,D. High- (C) and low-

risk (D) and groups significantly enriched in the different pathways using GSEA

ADCP - antibody-dependent cellular phagocytosis; ssSGSEA - single-sample Gene Set Enrichment Analysis; GSEA — Gene Set Enrichment Analysis.

To further characterize the effect of the ADCP-based
signature on the TME, we examined the variations of im-
mune pathways between the subgroups. The ssGSEA
method was used to provide an estimated value for each
cancer sample’s immune pathway, which is presented
in Fig. 6A and Supplementary Table 13. The association
of 4 key genes in the signature with immune-related path-
ways was also explored (Fig. 6B, Supplementary Table 14).
A comparative study of significantly enriched pathways
between subgroups was accomplished using GSEA, and
the 5 most strongly associated pathways were selected for
presentation (Fig. 6C,D, Supplementary Table 15).

Drug sensitivity and immunotherapy
efficacy prediction

As shown in Fig. 7A, patients with high-risk scores ex-
hibited a higher TIDE scoring. Nine compounds with
sensitization differences in the high- and low-risk groups
were illustrated. In the high-risk group of ADCP-based
signatures, the IC50 of GNF.2, Z.LLNle.CHO, AP.24534,

imatinib, NSC.87877, NVP.TAE684, pazopanib, X17.AAG,
and PHA.665752 were significantly lower when compared
with the low-risk group (Fig. 7B).

Construction of nomogram

Univariate Cox analysis of the risk score and clinical pa-
rameters (age, gender, stage, and grade) demonstrated that
age, stage, and risk scores could serve as prognostic factors
for GC patients (Supplementary Fig. 2). With additional
multivariate Cox regression analysis, a clinical risk model
consisting of 3 independent prognostic factors: age, stage
and risk score (Fig. 8A) was finally constructed as a no-
mogram (Fig. 8B). The Kaplan—Meier curve demonstrated
that patients with high nomogram scores have a more un-
favorable prognosis (Fig. 8C; log-rank test, p = 1.77e-06).
The AUC values for 1, 3 and 5 years shown in the ROC
curves (Fig. 8D) were 0.669, 0.675 and 0.685, respectively.
Calibration curves (Fig. 8E), as well as DCA curves (Fig. 8F),
were evaluated for the nomogram, implying it has a good
level of predictive accuracy.
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Fig. 7. Analyses of drug sensitivity and immunotherapy responses between subgroups. A. The TIDE score was more enriched in the high-risk group;
B. The pRRophetic algorithm showed 9 compounds that are more effective for high-risk patients

TIDE — Tumor Immune Dysfunction and Exclusion.
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Fig. 8. Construction of nomogram. A. Multivariate Cox analysis revealed 3 independent prognostic factors (age, stage and risk score); B. A predictive
nomogram based on age, stage and risk score; C. Overall survival estimation of nomogram score subgroups (log-rank test, p = 1.77e-06); D. ROC curves
showed that the 1-, 3- and 5-year AUC reached 0.669, 0.675 and 0.685 in the TCGA train cohort, respectively; E. The 1-, 3- and 5-year calibration curves

of the nomogram; F. The 1-, 3- and 5-year DCA decision curves of the nomogram.

ROC - receiver operating characteristic; AUC — area under the curve; TCGA — The Cancer Genome Atlas; DCA — decision curve analysis

Discussion

Due to the heterogeneity of GC, the survival durations
among patients exhibits huge variation, which covers
arange from 5 months to 10 years.!”® Patients with early-
stage localized GC have a 5-year OS rate above 60%, while
in those diagnosed with distant metastasis, it is lower than
5%.1 Encouragingly, the exploration of reliable biomark-
ers through bioinformatics has demonstrated remarkable
potential in clinical applications. It was recognized that
prognostic signatures derived from multiple genes exhib-
ited a significant role in the survival prediction of malig-
nancies. We built an ADCP-based prognostic signature
incorporating TCGA data and verified its practicability
using the GEO dataset, as well as researching its charac-
teristics with TME. The signature correlates with multiple

immune cells and immune checkpoints. Additionally, dif-
ferential drug sensitivities and immune efficacies were
detected in the subgroups.

The 4 genes in the ADCP-based signature (MKNK2,
VCAN, LRAT, and GNGB) have been reported in asso-
ciation with the progression of cancer. As in previous
studies, MKNK?2 (threonine kinase 2/MAP kinase inter-
acting serine) has been considered an oncogene, which
acts as a mediator of various cellular processes to pro-
mote the development of prostate cancer and gliomas.202!
Furthermore, it has been discovered that MKNK2 can be
targeted by miR-125b, leading to the progression of breast
cancer.?? A previous study also demonstrated that MKNK2
contributes to the enhancement of chemoresistance
of ovarian cancer by inhibiting autophagy through miR-
125b.2% Versican (VCAN) accumulates in tumor cells and
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mesenchyme as a protein and is regulated by cytokines.
In cancer research, it has been proven that VCAN is in-
volved in the progression of GC. Moreover, VCAN has
been recognized as an independent prognostic predictor
of GC.** Lecithin retinol acyltransferase (LRAT) converts
retinol to retinyl esters, regulating cell growth and differ-
entiation.?> Researchers have demonstrated a significant
loss of LRAT expression in invasive bladder cancer, cor-
relating with an increasing tumor stage.?® G protein sub-
unit gamma 8 (GNG8) participates in chemokine signaling
that controls leukocyte migration across the endothelium,
which may have a potential implication for the TME.?’
As research on the TME deepens, the development
of new immunotherapy regimens targeting the TME is be-
coming a major field of interest for cancer treatment. Given
that the characteristics of the TME can influence the ef-
ficacy of immunotherapy, we focused on the role of ADCP
signatures in the TME. The high-risk group of ADCP
signatures exhibited a lower probability of survival, result-
ing from the suppression of the TME. As an important
component of the TME, M2 macrophages can secrete
undesirable cytokines, thus promoting tumor angiogen-
esis and tumor metastasis, which is detrimental to pa-
tient prognosis. A larger percentage of M2 macrophages
was found in the high-risk group, while CD8 T cells,
the main contributor that kills tumor cells, displayed
a significant proportional decline. Interestingly, there are
differential infiltrations of Tregs between the high- and
low-risk groups. Tregs are key immune cells with immu-
nosuppressive abilities in the TME, which exert effects
through mechanisms such as secreting cytokines, limiting
the activation of CD4* helper T cells and CD8* cytotoxic
T cells, and regulating antigen-presenting cell (APC)
functions.?®-33 This hinders GC patients from benefiting
from ICI therapy. Targeting Tregs holds great potential for
reshaping the GC immune microenvironment, enhancing
anti-tumor immune responses and improving the OS rate
of GC patients. This study stratified GC patients based
on ADCP-related genes at the transcriptomic level and
also stratified the abundance of Tregs. For GC patients
with high Treg activity, traditional ICIs may not be suf-
ficient to fully activate anti-tumor immune responses.
In this case, adopting additional strategies to inhibit Treg
activities becomes an effective supplementary approach.
Our functional enrichment analysis further suggested
that the ADCP model regulates the TME through mul-
tiple immune pathways and has a strong immune char-
acteristic. Considering high-risk patients may not benefit
as much from immunotherapy, we screened for sensitive
and effective compounds for high-risk patients and found
that they are more sensitive to pazopanib and imatinib.
Notably, imatinib and pazopanib are both tyrosine ki-
nase inhibitors. In addition to the 2 targeted drugs, some
chemical drugs were also identified; however, most are
limited to cellular experiments. Moreover, traditional
cancer chemotherapy based on chemical drugs is prone
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to drug resistance and toxic side effects. As an improved
form of chemotherapy, metronomic chemotherapy involves
administering low doses of drugs continuously without
long breaks, which can help avoid these 2 drawbacks. More
than 10 years ago, Chinese scholars demonstrated the ef-
ficacy and good tolerability of metronomic capecitabine
for palliative treatment of advanced GC patients after
fluoropyrimidine-based chemotherapy.3* Furthermore,
the good tolerability and potential durable anti-tumor
activity of metronomic capecitabine in patients with he-
patocellular carcinoma undergoing sorafenib treatment
was also confirmed.?® Mechanistically, metronomic che-
motherapy works by inhibiting tumor angiogenesis and
inducing immunogenic cell death (ICD), thereby regulating
vascular—-immune crosstalk.3® As a result, the combination
of metronomic chemotherapy with ICIs has shown syner-
gistic therapeutic effects in preclinical and clinical studies.
Especially for high-risk patients, the combination of both
may be an effective approach. Unfortunately, metronomic
chemotherapy is currently used as a palliative standard
care tool. Utilizing bioinformatic methods to identify bio-
markers can benefit metronomic chemotherapy and may
expand the role of metronomic chemotherapy in cancer
therapy.

To more accurately exploit the predictive ability
of the ADCP signature, we combined univariate and mul-
tivariate analysis with Cox regression and eventually con-
structed a nomogram selecting age, stage and risk scores.
This nomogram visualized the logistic regression model
to facilitate rapid clinical judgment on the prognosis of GC
patients. The AUC curve demonstrated that the model
predicted the prognosis of GC patients with reliable ac-
curacy. The calibration curve illustrates that the predicted
probability of patient survival is in good agreement with
the actual probability, and its clinical application can be
attempted.

Limitations

Despite the fact that this research made some contribu-
tions, it did have several shortcomings. First, although
our work evaluated high sample sizes of GC cohorts
to construct a well-validated prognostic signature, the use
of diverse platforms might generate sampling bias, which
may induce some ambiguity in the assessments of gene
expression. Second, the underlying mechanisms by which
the 4 genes (MKNK?2, VCAN, LRAT, and GNGB) that were
combined into the ADCP signature in our investigation
contributed to GC progression, and the unfavorable
outcome still remains unexplained; additional in-depth
research into their biological functions might generate
fresh targets and therapeutic strategies. Third, recog-
nizing that these cohorts are merely retrospective, more
prospective clinical studies are necessary to confirm our
results. In particular, future research needs to evaluate
the predictive function of the ADCP signature throughout
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both prognosis and the responsiveness to different kinds
of treatment interventions. Finally, the accuracy of CIBER-
SORT and ssGSEA is limited by the representativeness
of the training data and the assumptions of the algorithms
themselves, leading to biases in assessing the levels of im-
mune cell infiltration. These 2 algorithms mainly focus
on the composition and proportion of immunocytes, with
limited evaluation of their functional states. This calls
for the adoption of more validated algorithms to analyze
immunocytes and to compare algorithm performance
through methods like cross-validation. Additionally, in-
tegrating multi-omics data, including gene expression, pro-
teomics and metabolomics data, is essential for inferring
the functional states of immune cells.

Conclusions

We identified 4 prognosis-associated genes that were
related to OS and the TME in GC by also constructing
a model with strong predictive effects. To the best of our
knowledge, this report is the first effort to develop a prog-
nostic signature of ADCP-related genes for GC. Our study
offers a novel option for the diagnosis and prediction of GC
and may contribute new biomarkers for the treatment
of GC.
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