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Abstract
Background. Accumulating evidence has supported the effect of antibody-dependent cellular phagocytosis 
(ADCP) on the tumor microenvironment (TME) and cancer therapy. However, an ADCP-based signature 
to predict the prognosis of gastric cancer (GC) has not been established.

Objectives. We aimed to develop an ADCP-based signature to improve the prognosis prediction of GC.

Materials and methods. Antibody-dependent cellular phagocytosis genes that exhibited a differential 
expression were characterized, followed by the construction and validation of the ADCP-based signature. 
The potential association between the ADCP-based signature and TME was explored, and the features 
of the signature genes were investigated. Finally, a predictive nomogram was established based on the ADCP-
based signature.

Results. Four ADCP-related genes, MKNK2, VCAN, LRAT, and GNGB, were identified to construct the ADCP-
based signature, and a high ADCP score predicted an unfavorable prognosis in GC patients (p < 0.05). 
The ADCP-based signature was significantly associated with immune cells, immune checkpoints and im-
mune signaling pathways (p < 0.05). Gastric cancer patients with high ADCP scores benefited less from 
immunotherapy compared to those with low ADCP scores. A nomogram including age, stage and risk score 
of the ADCP-based signature was constructed to predict the 1-, 3- and 5-year survival probabilities, with 
an area under the curve (AUC) of 0.669, 0.675 and 0.685, respectively.

Conclusions. The ADCP-based signature may serve as a new option for prognosis prediction and the per-
sonalized treatment of GC patients.
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dependent cellular phagocytosis
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Background

Gastric cancer (GC) was the 5th most diagnosed cancer 
and the 4th most common cause of cancer death in 2020.1 
The incidence and mortality of GC have been reduced 
in recent years as a result of the prevention and treatment 
of Helicobacter pylori and Epstein–Barr virus (EBV) infec-
tions.2,3 However, the prognosis of GC patients continues 
to be unsatisfactory due to the impact of locally advanced 
and distant metastases.4,5

Immunotherapy is a promising treatment strategy, but 
only a fraction of GC patients benefit from it.6 Also, the im-
munosuppressive microenvironment of tumors severely re-
duces the effectiveness of immunotherapy. Therefore, there 
is a strong need for precise immunotherapy and accurate 
efficacy prediction using immune-based biomarkers.

Antibody-dependent cellular phagocytosis (ADCP) 
is  the mechanism that leads to  the  internalization and 
degradation of target cells through the activation of Fcγ 
receptors on the surface of macrophages to induce phagocy-
tosis.7 It has been shown that the ADCP process can influ-
ence the evolution of the tumor microenvironment (TME). 
A previous study has found that rituximab results in the up-
regulation of multiple Fcγ receptors on macrophages, which 
correlates with their phagocytic response.8 In addition, anti-
KIT antibodies have been observed to inhibit the growth 
of gastrointestinal stromal tumors by inducing the phago-
cytosis of macrophages.9 These studies suggest that ADCP 
may regulate the progression of different cancers. Hence, 
it is valuable to examine the role of ADCP-related genes 
in the progression of GC, as well as establish a relevant 
prognostic model for the treatment of GC.

In the present research, we conducted bioinformatics 
approaches to  construct and validate an  ADCP-based 
prognostic signature by employing The Cancer Genome 
Atlas (TCGA) database and the Gene Expression Omnibus 
(GEO) database. We further explored the role of the ADCP-
based signature in the immune microenvironment. Our 
study can effectively predict the prognosis of GC patients 
and may provide new perspectives for the treatment of GC.

Objectives

We aimed to develop a robust ADCP-based signature 
to improve the predicted prognosis of GC.

Methods

Data collection and processing

RNA-seq data and clinical information on TCGA-STAD 
were downloaded from the UCSC-Xena platform (https://
toil.xenahubs.net), which contained 32 normal tissue sam-
ples and 375 tumor tissue samples. The dataset GSE66229 

with 300  tumor tissue samples was downloaded from 
the GEO database for subsequent model validation analy-
sis. A total of 3,405 genes were obtained by downloading 
ADCP-related genes (Supplementary Table 1) from a study 
by Kamber et al.10 and matching them with the above ex-
pression profiles. Our workflow is presented in Fig. 1.

Protein–protein interaction network 
and functional enrichment analysis

The differential expression analysis of ADCP genes was 
carried out using the R package DESeq2 (v. 1.36.0, https://
www.bioconductor.org/packages/release/bioc/html/DE-
Seq2.html). A false discovery rate (FDR) less than 0.05 and 
a |log2FoldChange| >1 were selected as the threshold for 
screening differentially expressed genes. The interaction re-
lationship of the differentially expressed genes was analyzed 
using the Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) database (https://cn.string-db.org/) and 
imported into Cytoscape (v. 3.9.1) to map the protein-protein 
interaction (PPI) network. Gene Ontology (GO; http://www.
geneontology.org) and Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG; http://www.genome.ad.jp/kegg) functional 
enrichment analysis was conducted using the ClusterProfiler 
package (v. 4.4.4, https://bioconductor.org/packages/release/
bioc/html/clusterProfiler.html).11

Construction and verification  
of the ADCP-based signature

The 2 datasets from TCGA and GEO were log2-trans-
formed and normalized to obey the same distribution, 
thus eliminating the effect from different batches. Tumor 
samples from TCGA-STAD were segregated into a train-
ing set and a test set with a 6:4 random split. Samples 
with survival times less than 30 days were filtered, and 
a total of 342 tumor tissue samples were finally included. 
In the training set samples, the differentially expressed 
genes and the survival information of the samples were 
merged to identify genes strongly related to the overall 
prognosis for survival using univariate Cox regression 
analysis performed with the survival package (v. 3.4-0, 
https://github.com/therneau/survival).12 The genes were 
further screened using a 10-fold cross-validation analy-
sis using the executed least absolute shrinkage and selec-
tion operator  (LASSO) Cox regression model employing 
the glmnet package (v. 2.0-18, httRiskscore://cran.r-project.
org/web/packages/glmnet/index.html).13 Next, multivari-
able regression was conducted to further filter the genes. 
Relying on the gene regression prognostic coefficients and 
the expression levels of genes in the training set samples, 
a risk score model was developed; it was derived as follows: 

risk score = Σ (Expi × Coefi); 

Expi and Coefi represent the expression levels and LASSO 
regression coefficients of prognostic genes.

https://toil.xenahubs.net
https://toil.xenahubs.net
https://www.bioconductor.org/packages/release/bioc/html/DESeq2.html
https://www.bioconductor.org/packages/release/bioc/html/DESeq2.html
https://www.bioconductor.org/packages/release/bioc/html/DESeq2.html
https://cn.string-db.org
http://www.geneontology.org
http://www.geneontology.org
http://www.genome.ad.jp/kegg
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://github.com/therneau/survival
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To inspect the correctness of the model, the risk score 
of each sample from the test set of TCGA and the external 
validation set of GEO was calculated using the same re-
gression coefficients according to the risk score calculation 
formula. The samples from the 2 aforementioned vali-
dation sets were differentiated based on the median risk 
score as the cutoff. The overall survival (OS) of each group 
was assessed using Kaplan–Meier curves. We then plot-
ted the 1-, 3- and 5-year receiver operating characteristic 
(ROC) curves using the R package survival ROC (v. 1.0.3, 
https://cran.rstudio.com/web/packages/survivalROC/in-
dex.html) and calculated the 1-, 3- and 5-year area under 
the curve (AUC) values, respectively.

Prognostic characterization of genes 
in the model and construction of ceRNA 
networks

We used the TCGA-STAD dataset for survival analysis 
of the ADCP-related genes in the signature. The multiMiR 
package was used to predict gene-associated microRNAs 
(miRNAs) in the model. Starbase was then used to predict 
lncRNAs that interact with miRNAs, and the CHEA3 da-
tabase (https://maayanlab.cloud/chea3) was used to predict 
transcription factors (TFs) of the model genes. All results 
were imported into Cytoscape (https://cytoscape.org) to con-
struct a competitive endogenous RNA (ceRNA) network.

Characteristics of the TME and GSEA 
in different subgroups

To  further examine the  immune microenvironment 
in high- and low-risk groups, Estimation of STromal and 
Immune cells in MAlignant Tumours using Expression data 
(ESTIMATE),14 Cell-type Identification by Estimating Rel-
ative Subsets of RNA Transcripts (CIBERSORT),15as well 
as single-sample gene set enrichment analysis (ssGSEA) 
algorithms were utilized to obtain TME scores and im-
mune cell scores. Moreover, we extracted immune gene-
related pathways through the immport database (https://
www.immport.org/home). To  assess immune pathway 
variations between high- and low-risk groups, the ssG-
SEA algorithm was used to calculate the immune pathway 
scores of cancer samples. We also captured expression 
data of human leukocyte antigen (HLA) family genes and 
immune checkpoint-associated genes to analyze their dif-
ferential expression in high- and low-risk groups. Gene 
Set Enrichment Analysis (GSEA) was performed using 
the ClusterProfiler package (v. 3.18.0)11 to observe signifi-
cant pathways enriched in the high- and low-risk groups.

Drug sensitivity and immunotherapy 
efficacy prediction

The sensitivity of patients to chemotherapeutic agents 
was evaluated using Genomics of Drug Sensitivity in Cancer 

Fig. 1. Study flowchart. Transcriptome data and clinical data were 
downloaded from TCGA and UCSC Xena. Differential expression 
analyses were conducted on ADCP-related genes. Protein–protein 
interaction network and functional enrichment analyses were 
performed on differentially expressed ADCP-related genes. Four key 
genes were identified using uni- and multivariable Cox regression 
as well as the LASSO method to construct an ADCP-based signature. 
The predictive performance of the ADCP-based signature was validated 
using GSE66229 from the GEO database. The immune-infiltrating cells, 
immune pathways and drug sensitivity were explored in risk subgroups 
defined by the ADCP-based signature

TCGA – The Cancer Genome Atlas; UCSC – University of California 
Santa Cruz; ADCP – antibody-dependent cellular phagocytosis; 
PPI – protein-protein interaction; LASSO – Least Absolute Shrinkage and 
Selection Operator; GEO – Gene Expression Omnibus; STAD – stomach 
adenocarcinoma; GO – Gene Ontology; KEGG – Kyoto Encyclopedia 
of Genes and Genomes; TME – tumor microenvironment; HLA – human 
leukocyte antigen; GSEA – Gene Set Enrichment Analysis; ssGSEA – single-
sample Gene Set Enrichment Analysis.

https://cran.rstudio.com/web/packages/survivalROC/index.html
https://cran.rstudio.com/web/packages/survivalROC/index.html
https://maayanlab.cloud/chea3
https://cytoscape.org
https://www.immport.org/home
https://www.immport.org/home
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(GDSC; https://www.cancerrxgene.org).16 The R software 
package pRRophetic (v. 0.5, https://github.com/paulgeeleher/ 
pRRophetic) was used to determine half-maximal inhibi-
tory concentrations (IC50). We evaluated the differential 
in drug sensitivity between high- and low-risk groups. 
The Tumor Immune Dysfunction and Exclusion (TIDE) 
method was used to predict the benefit of immune check-
point inhibitor (ICI) treatment in patients with GC.

Construction of nomogram

Clinical risk models were constructed using univariate 
and multivariate Cox regression analyses. Next, clinical 
risk values were calculated for all samples of TCGA-STAD. 
The prognosis was assessed using Kaplan–Meier curve 
analysis, and to test the clinical risk model, ROC curves 
were generated. The calibration curve analysis of the model 
was assessed using the R package rms (v. 6.3-0, https://
hbiostat.org/r/rms). Using the R package dcurves (v. 0.3.0, 
https://github.com/ddsjoberg/dcurves), decision curve 
analysis (DCA) decision curves were produced to evalu-
ate the clinical risk model.

Statistical analyses

All analyses were conducted in R v. 4.2.1 (R Founda-
tion for Statistical Computing, Vienna, Austria), and a p-
value of 0.05 or less was deemed statistically significant. 
Univariate and multivariate Cox regression analyses 
were performed to identify genes and clinical parameters 
significantly associated with the OS prognosis. Schoen-
feld residual plots (conducted by the ggcoxzph function 
of the survival R package) were used to assess the pro-
portional hazards assumption, which determines whether 
the effect of the variable on the hazard function is con-
stant over time. The log-rank test was used to compare 
the differences in survival distributions. A Wilcoxon test 
was used to compare the differences in medians between 
samples. The key R-script used in this study can be found 
in the Supplementary materials.

Results

Differentially expressed ADCP genes 
and their function in GC

The TCGA dataset was used to obtain the differential 
expression matrix of  GC, which was intersected with 
ADCP-related genes to obtain 531 differentially expressed 
ADCP-related genes (238 of them were upregulated and 
293 were downregulated, Fig. 2A, Supplementary Table 2). 
The most significantly up- and downregulated genes were 
plotted as a heat map (Fig. 2B), with a total of 20 included. 
These 531 differentially expressed ADCP-related genes 
were mapped into a PPI network (Fig. 2C, Supplementary 

Table 7) through the STRING database. Gene Ontology 
(Fig. 2D, Supplementary Table  3) and KEGG analysis 
(Fig. 2E, Supplementary Table 4) were used to explore 
the functions of the 531 genes. Functional investigation 
of differentially expressed ADCP-related genes revealed 
that they were involved in  the  p53 signaling pathway, 
PI3K/Akt signaling pathway, calcium signaling pathway, 
and platinum drug resistance (Fig. 2E), which suggested 
the possible role of ADCP genes in cancer progression 
and metastasis.

Development and validation  
of ADCP-based signature

Based on the above 531 differential genes, univariate Cox 
regression was applied using the TCGA-STAD training set 
to detect 7 prognosis genes (ADAMTS12, MKNK2, VCAN, 
MMP1, CLDN9, LRAT, and GNG8; Fig. 3A, Supplemen-
tary Table 5). The results of the proportional hazards as-
sumption can be found in Supplementary Fig. 1. To further 
screen the prognostic markers of GC, LASSO regression 
was employed to identify the prognostic genes acquired 
from the above univariate Cox regression. The optimal 
λ was obtained when the partial likelihood of deviance 
reached the minimum value (Fig. 3B,C). Four prognosis-
associated genes (MKNK2, VCAN, LRAT, and GNGB; 
Fig. 3D, Supplementary Table 6) were available to con-
struct ADCP-related gene signatures after performing 
multivariate Cox regression. Based on the median risk 
score, the samples from the training set were separated 
into a high-risk group (risk score >median risk score) and 
a low-risk group (risk score ≤median risk score). The ROC 
curve was plotted to display the 1-, 3- and 5-year AUC for 
the training set. Validation of the model was conducted 
in the TCGA test set and the GEO external validation set, 
indicating a good predictive performance of the model 
(Fig. 3E). The prognosis differed significantly between 
the 2 groups, with patients in the high-risk score group 
presenting a poorer prognosis. In the TCGA-STAD train-
ing cohort of 206 GC patients, those with high-risk scores 
(50%) had a shorter OS (p = 5e-07) than those with low-risk 
scores (50%). High-risk patients (52.941%) had a shorter 
OS than low-risk patients (47.059%) across all 136 GC pa-
tients in the TCGA-STAD test cohorts (p = 0.003; Fig. 3F). 
To  identify whether or not the ADCP-based signature 
was reliable, the accuracy of the ADCP-based signature 
was evaluated using the GEO external validation cohort, 
with a total of 300 GC patients participating in this study. 
As seen in Fig. 3F, high-risk patients (49%) had a shorter OS 
than the low-risk group (51%) (p = 5e-05). The prognostic 
information of the 4 genes in the signature was demon-
strated using a Kaplan–Meier curve, while 3 genes showed 
significant prognostic value in GC. Between the MKNK2 
subgroups, no OS differences were observed (log-rank test, 
p = 0.151, Fig. 4A). In the VCAN high-expression group, 
GC patients were found to have a lower survival probability 

https://www.cancerrxgene.org
https://github.com/paulgeeleher/pRRophetic
https://github.com/paulgeeleher/pRRophetic
https://hbiostat.org/r/rms
https://hbiostat.org/r/rms
https://github.com/ddsjoberg/dcurves
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(log-rank test, p = 0.027, Fig. 4B). Also, in the LRAT high-
expression group, GC patients had a significantly lower OS 
(log-rank test, p = 0.01, Fig. 4C). The high GNG8 expres-
sion group indicated a more favorable prognosis (log-rank 
test, p = 0.011, Fig. 4D). Based on the 4 genes, 61 miRNAs 
were predicted using multiR, and 52 lncRNAs were further 

predicted with starbase (http://starbase.sysu.edu.cn), fol-
lowed by the TFs of genes predicted with the CHEA3 da-
tabase, and the top 10 TFs of meanRank were selected. 
Genes, miRNAs, lncRNAs, TFs, and interactions between 
them were imported into Cytoscape to map the ceRNA-
TF network.

Fig. 2. Identification and characterization of differentially expressed ADCP-related genes. A. A volcano plot representing the 531 differentially expressed 
ADCP genes (238 of them were upregulated and 293 were downregulated) with a threshold of FDR less than 0.05 and a |log2FC| > 1; B. A heat map 
containing the 20 most significantly up-and downregulatedADCP genes between normal and tumor samples; C. The PPI network of 531 differentially 
expressed ADCP-related genes; D–E. GO (D) and KEGG (E) and analysis exploring the functions of the 531 genes

ADCP – antibody-dependent cellular phagocytosis; PPI – protein–protein interaction; FDR – false discovery rate; FC – fold change; GO – Gene Ontology; 
KEGG – Kyoto Encyclopedia of Genes and Genomes.

http://starbase.sysu.edu.cn
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Fig. 3. Construction and validation of an ADCP-based signature. A. Univariate Cox regression analysis identified 7 ADCP-related genes with prognostic value 
(ADAMTS12, MKNK2, VCAN, MMP1, CLDN9, LRAT, and GNG8); B. Selection of the tuning parameter (λ) in the least absolute shrinkage and selection operator 
(LASSO) regression with a 10-fold cross-validation as the minimum criteria; C. LASSO coefficient profiles for clinical features and 6 non-zero coefficients were 
selected; D. Four genes (MKNK2, VCAN, LRAT, and GNG8) were selected by multivariate Cox regression analysis; E. Receiver operating characteristic (ROC) 
curves to display the 1-, 3- and 5-year area under the curve (AUC) in the train cohort, test cohort and validation cohort; F. Survival differences between low- 
and high-risk groups in the training cohort (log-rank test, p = 5e-07), test cohort (log-rank test, p = 0.003) and validation cohort (log-rank test, p = 5e-05)

ADCP – antibody-dependent cellular phagocytosis; ADAMTS12 – a disintegrin and metalloproteinase with thrombospondin motifs 12; MKNK2 – threonine 
kinase 2/MAP kinase interacting serine; VCAN – versican; MMP1 – matrix metallopeptidase 1; CLDN9 – claudin 9; LRAT – lecithin retinol acyltransferase; 
GNG8 – G protein subunit gamma 8.
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ADCP-based signature in TME

To gain further insight into the involvement of ADCP-
based signature in TME, we used the CIBERSORT (Fig. 5A), 
ssGSEA (Fig. 5B) and ESTIMATE (Fig. 5C) algorithms to ex-
plore the immune infiltration in subgroups. A higher percent-
age of M2 macrophages was observed in the high-risk score 
group from the result of CIBERSORT, while T cells CD8+ 
accounted for a smaller percentage compared to the low-risk 

score group (Fig. 5A, Supplementary Table 8). The ssGSEA 
algorithm showed a higher percentage of regulatory T cells 
(Tregs), as well as a lower percentage of activated CD8+ T cells 
and activated B cells in the high-risk group (Fig. 5B, Supple-
mentary Table 9). The ESTIMATE algorithm also confirmed 
the differences in immune infiltration between the high- and 
low-risk groups (Fig. 5C). In the following work, we analyzed 
the connection between signature genes and immune cells. 
As shown in Fig. 5D, VCAN had a significant correlation 

Fig. 4. Survival estimation and PPI network of the signature genes. A–D. Survival differences between low- and high-expression groups of MKNK2 (A) 
(log-rank test, p = 0.151), VCAN (B) (log-rank test, p = 0.027), LRAT (C) (log-rank test, p = 0.011) and GNG8 (D) (log-rank test, p = 0.011); E. ceRNA-TF network 
based on the selected genes, miRNAs, lncRNAs, and transcription factors

PPI – protein–protein interaction; MKNK2 – threonine kinase 2/MAP kinase interacting serine; VCAN – versican; LRAT – lecithin retinol acyltransferase; 
GNG8 – G protein subunit gamma 8; ceRNA – competing endogenous ribonucleic acid; TF – transcription factors; miRNA – microRNA; lncRNA – long non-
coding ribonucleic acid.
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with M2 macrophages. GNG8 was positively correlated with 
Tregs and was negatively correlated with activated natural 
killer cells (Supplementary Table 10). Surprisingly, HLA gene 

expression and immune checkpoint gene expression varied 
significantly across the 2 risk groups (Fig. 5E,F, Supplemen-
tary Tables 11,12).

Fig. 5. Immune cell infiltration and immunomodulators of the ADCP-based signature. A,B. Differences in the abundance of immune cell infiltration 
in high- and low-risk groups using CIBERSORT (A) and ssGSEA (B) algorithms; C. Heat map of immune infiltration between high- and low-risk groups 
using the CIBERSORT and ESTIMATE algorithms; D. Heat map of the correlation between model genes and differential immune cells using CIBERSORT; 
E. Differences in the expression of HLA family genes between high- and low-risk groups; F. Differences in the expression of immune checkpoints between 
high- and low-risk groups

ADCP – antibody-dependent cellular phagocytosis; CIBERSORT – Cell-type Identification by Estimating Relative Subsets of RNA Transcripts; 
ESTIMATE – Estimation of STromal and Immune cells in MAlignant Tumours using Expression data; ssGSEA – single-sample Gene Set Enrichment Analysis; 
HLA – human leukocyte antigen.
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To further characterize the effect of the ADCP-based 
signature on the TME, we examined the variations of im-
mune pathways between the  subgroups. The  ssGSEA 
method was used to provide an estimated value for each 
cancer sample’s immune pathway, which is  presented 
in Fig. 6A and Supplementary Table 13. The association 
of 4 key genes in the signature with immune-related path-
ways was also explored (Fig. 6B, Supplementary Table 14). 
A comparative study of significantly enriched pathways 
between subgroups was accomplished using GSEA, and 
the 5 most strongly associated pathways were selected for 
presentation (Fig. 6C,D, Supplementary Table 15).

Drug sensitivity and immunotherapy 
efficacy prediction

As shown in Fig. 7A, patients with high-risk scores ex-
hibited a  higher TIDE scoring. Nine compounds with 
sensitization differences in the high- and low-risk groups 
were illustrated. In the high-risk group of ADCP-based 
signatures, the IC50 of GNF.2, Z.LLNle.CHO, AP.24534, 

imatinib, NSC.87877, NVP.TAE684, pazopanib, X17.AAG, 
and PHA.665752 were significantly lower when compared 
with the low-risk group (Fig. 7B).

Construction of nomogram

Univariate Cox analysis of the risk score and clinical pa-
rameters (age, gender, stage, and grade) demonstrated that 
age, stage, and risk scores could serve as prognostic factors 
for GC patients (Supplementary Fig. 2). With additional 
multivariate Cox regression analysis, a clinical risk model 
consisting of 3 independent prognostic factors: age, stage 
and risk score (Fig. 8A) was finally constructed as a no-
mogram (Fig. 8B). The Kaplan–Meier curve demonstrated 
that patients with high nomogram scores have a more un-
favorable prognosis (Fig. 8C; log-rank test, p = 1.77e-06). 
The AUC values for 1, 3 and 5 years shown in the ROC 
curves (Fig. 8D) were 0.669, 0.675 and 0.685, respectively. 
Calibration curves (Fig. 8E), as well as DCA curves (Fig. 8F), 
were evaluated for the nomogram, implying it has a good 
level of predictive accuracy.

Fig. 6. Immune pathways of the ADCP-based signature. A. Box plots presenting the differences in immune pathway enrichment scores between high- and 
low-risk groups using ssGSEA; B. Heat map of the correlation between model gene expression and immune pathways using ssGSEA; C,D. High- (C) and low-
risk (D) and groups significantly enriched in the different pathways using GSEA

ADCP – antibody-dependent cellular phagocytosis; ssGSEA – single-sample Gene Set Enrichment Analysis; GSEA – Gene Set Enrichment Analysis.
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Fig. 7. Analyses of drug sensitivity and immunotherapy responses between subgroups. A. The TIDE score was more enriched in the high-risk group; 
B. The pRRophetic algorithm showed 9 compounds that are more effective for high-risk patients

TIDE – Tumor Immune Dysfunction and Exclusion.
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Discussion

Due to the heterogeneity of GC, the survival durations 
among patients exhibits huge variation, which covers 
a range from 5 months to 10 years.17,18 Patients with early-
stage localized GC have a 5-year OS rate above 60%, while 
in those diagnosed with distant metastasis, it is lower than 
5%.19 Encouragingly, the exploration of reliable biomark-
ers through bioinformatics has demonstrated remarkable 
potential in clinical applications. It was recognized that 
prognostic signatures derived from multiple genes exhib-
ited a significant role in the survival prediction of malig-
nancies. We built an ADCP-based prognostic signature 
incorporating TCGA data and verified its practicability 
using the GEO dataset, as well as researching its charac-
teristics with TME. The signature correlates with multiple 

immune cells and immune checkpoints. Additionally, dif-
ferential drug sensitivities and immune efficacies were 
detected in the subgroups.

The 4 genes in the ADCP-based signature (MKNK2, 
VCAN, LRAT, and GNGB) have been reported in asso-
ciation with the progression of cancer. As  in previous 
studies, MKNK2 (threonine kinase 2/MAP kinase inter-
acting serine) has been considered an oncogene, which 
acts as a mediator of various cellular processes to pro-
mote the development of prostate cancer and gliomas.20,21 
Furthermore, it has been discovered that MKNK2 can be 
targeted by miR-125b, leading to the progression of breast 
cancer.22 A previous study also demonstrated that MKNK2 
contributes to  the  enhancement of  chemoresistance 
of ovarian cancer by inhibiting autophagy through miR-
125b.23 Versican (VCAN) accumulates in tumor cells and 

Fig. 8. Construction of nomogram. A. Multivariate Cox analysis revealed 3 independent prognostic factors (age, stage and risk score); B. A predictive 
nomogram based on age, stage and risk score; C. Overall survival estimation of nomogram score subgroups (log-rank test, p = 1.77e-06); D. ROC curves 
showed that the 1-, 3- and 5-year AUC reached 0.669, 0.675 and 0.685 in the TCGA train cohort, respectively; E. The 1-, 3- and 5-year calibration curves 
of the nomogram; F. The 1-, 3- and 5-year DCA decision curves of the nomogram.

ROC – receiver operating characteristic; AUC – area under the curve; TCGA – The Cancer Genome Atlas; DCA – decision curve analysis
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mesenchyme as a protein and is regulated by cytokines. 
In cancer research, it has been proven that VCAN is in-
volved in the progression of GC. Moreover, VCAN has 
been recognized as an independent prognostic predictor 
of GC.24 Lecithin retinol acyltransferase (LRAT) converts 
retinol to retinyl esters, regulating cell growth and differ-
entiation.25 Researchers have demonstrated a significant 
loss of LRAT expression in invasive bladder cancer, cor-
relating with an increasing tumor stage.26 G protein sub-
unit gamma 8 (GNG8) participates in chemokine signaling 
that controls leukocyte migration across the endothelium, 
which may have a potential implication for the TME.27

As  research on  the  TME deepens, the  development 
of new immunotherapy regimens targeting the TME is be-
coming a major field of interest for cancer treatment. Given 
that the characteristics of the TME can influence the ef-
ficacy of immunotherapy, we focused on the role of ADCP 
signatures in the TME. The high-risk group of ADCP 
signatures exhibited a lower probability of survival, result-
ing from the suppression of the TME. As an important 
component of  the TME, M2 macrophages can secrete 
undesirable cytokines, thus promoting tumor angiogen-
esis and tumor metastasis, which is detrimental to pa-
tient prognosis. A larger percentage of M2 macrophages 
was found in  the  high-risk group, while CD8 T  cells, 
the main contributor that kills tumor cells, displayed 
a significant proportional decline. Interestingly, there are 
differential infiltrations of Tregs between the high- and 
low-risk groups. Tregs are key immune cells with immu-
nosuppressive abilities in the TME, which exert effects 
through mechanisms such as secreting cytokines, limiting 
the activation of CD4+ helper T cells and CD8+ cytotoxic 
T  cells, and regulating antigen-presenting cell (APC) 
functions.28–33 This hinders GC patients from benefiting 
from ICI therapy. Targeting Tregs holds great potential for 
reshaping the GC immune microenvironment, enhancing 
anti-tumor immune responses and improving the OS rate 
of GC patients. This study stratified GC patients based 
on ADCP-related genes at the transcriptomic level and 
also stratified the abundance of Tregs. For GC patients 
with high Treg activity, traditional ICIs may not be suf-
ficient to fully activate anti-tumor immune responses. 
In this case, adopting additional strategies to inhibit Treg 
activities becomes an effective supplementary approach.

Our functional enrichment analysis further suggested 
that the ADCP model regulates the TME through mul-
tiple immune pathways and has a strong immune char-
acteristic. Considering high-risk patients may not benefit 
as much from immunotherapy, we screened for sensitive 
and effective compounds for high-risk patients and found 
that they are more sensitive to pazopanib and imatinib. 
Notably, imatinib and pazopanib are both tyrosine ki-
nase inhibitors. In addition to the 2 targeted drugs, some 
chemical drugs were also identified; however, most are 
limited to  cellular experiments. Moreover, traditional 
cancer chemotherapy based on chemical drugs is prone 

to drug resistance and toxic side effects. As an improved 
form of chemotherapy, metronomic chemotherapy involves 
administering low doses of drugs continuously without 
long breaks, which can help avoid these 2 drawbacks. More 
than 10 years ago, Chinese scholars demonstrated the ef-
ficacy and good tolerability of metronomic capecitabine 
for palliative treatment of advanced GC patients after 
fluoropyrimidine-based chemotherapy.34 Furthermore, 
the good tolerability and potential durable anti-tumor 
activity of metronomic capecitabine in patients with he-
patocellular carcinoma undergoing sorafenib treatment 
was also confirmed.35 Mechanistically, metronomic che-
motherapy works by inhibiting tumor angiogenesis and 
inducing immunogenic cell death (ICD), thereby regulating 
vascular–immune crosstalk.36 As a result, the combination 
of metronomic chemotherapy with ICIs has shown syner-
gistic therapeutic effects in preclinical and clinical studies. 
Especially for high-risk patients, the combination of both 
may be an effective approach. Unfortunately, metronomic 
chemotherapy is currently used as a palliative standard 
care tool. Utilizing bioinformatic methods to identify bio-
markers can benefit metronomic chemotherapy and may 
expand the role of metronomic chemotherapy in cancer 
therapy.

To  more accurately exploit the  predictive ability 
of the ADCP signature, we combined univariate and mul-
tivariate analysis with Cox regression and eventually con-
structed a nomogram selecting age, stage and risk scores. 
This nomogram visualized the logistic regression model 
to facilitate rapid clinical judgment on the prognosis of GC 
patients. The AUC curve demonstrated that the model 
predicted the prognosis of GC patients with reliable ac-
curacy. The calibration curve illustrates that the predicted 
probability of patient survival is in good agreement with 
the actual probability, and its clinical application can be 
attempted.

Limitations

Despite the fact that this research made some contribu-
tions, it did have several shortcomings. First, although 
our work evaluated high sample sizes of  GC cohorts 
to construct a well-validated prognostic signature, the use 
of diverse platforms might generate sampling bias, which 
may induce some ambiguity in the assessments of gene 
expression. Second, the underlying mechanisms by which 
the 4 genes (MKNK2, VCAN, LRAT, and GNGB) that were 
combined into the ADCP signature in our investigation 
contributed to  GC progression, and the  unfavorable 
outcome still remains unexplained; additional in-depth 
research into their biological functions might generate 
fresh targets and therapeutic strategies. Third, recog-
nizing that these cohorts are merely retrospective, more 
prospective clinical studies are necessary to confirm our 
results. In particular, future research needs to evaluate 
the predictive function of the ADCP signature throughout 
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both prognosis and the responsiveness to different kinds 
of treatment interventions. Finally, the accuracy of CIBER-
SORT and ssGSEA is  limited by the representativeness 
of the training data and the assumptions of the algorithms 
themselves, leading to biases in assessing the levels of im-
mune cell infiltration. These 2 algorithms mainly focus 
on the composition and proportion of immunocytes, with 
limited evaluation of their functional states. This calls 
for the adoption of more validated algorithms to analyze 
immunocytes and to compare algorithm performance 
through methods like cross-validation. Additionally, in-
tegrating multi-omics data, including gene expression, pro-
teomics and metabolomics data, is essential for inferring 
the functional states of immune cells.

Conclusions

We identified 4 prognosis-associated genes that were 
related to OS and the TME in GC by also constructing 
a model with strong predictive effects. To the best of our 
knowledge, this report is the first effort to develop a prog-
nostic signature of ADCP-related genes for GC. Our study 
offers a novel option for the diagnosis and prediction of GC 
and may contribute new biomarkers for the  treatment 
of GC.
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