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Abstract
Background. Age and gender have been identified as significant factors contributing to the global rise 
in thyroid cancer (TC), with this disease predominantly affecting women. It is crucial to thoroughly investigate 
the trends of the disease over time to better understand its progression and potential risk factors.

Objectives. This study analyzed the global incidence of TC using data from the Global Burden of Disease (GBD) 
database from 1990 to 2021. Additionally, we aimed to develop a high-performance diagnostic model using 
machine-learning algorithms and to explore the tumor microenvironment through single-cell sequencing.

Materials and methods. To analyze trends in incidence, age-period cohort models were applied, with 
a particular focus on birth cohort and period effects. Machine learning algorithms, including least absolute 
shrinkage and selection operator (LASSO) and Ridge regression, were used for gene feature selection. Sub-
sequently, cross-validation was conducted to validate the diagnostic model. For deeper insights, single-cell 
RNA sequencing was conducted to analyze myeloid cell subpopulations within the tumor microenvironment.

Results. Age and period effects emerged as the primary drivers in our analysis of TC trends, particularly among 
women. Machine learning models, specifically LASSO and Ridge regression, demonstrated high predictive 
accuracy in diagnosing the disease. Additionally, single-cell RNA sequencing unveiled crucial interactions 
between myeloid cells and the tumor microenvironment.

Conclusions. This study provides a comprehensive analysis of TC trends and introduces a machine-learning-
based diagnostic tool. Additionally, single-cell RNA sequencing offers novel insights into the tumor micro-
environment, which may help shape future treatment strategies for TC.
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Background

Thyroid cancer (TC) is one of the few proliferative endo-
crine tumors, and its incidence has significantly increased 
over the several past decades. Several factors, including 
advancements in diagnostic techniques, heightened public 
awareness and changes in environmental exposures, are 
likely contributing to this rising trend.1,2 With the global 
population aging and environmental factors evolving, 
the epidemiological characteristics of TC are continu-
ously changing. Therefore, updated research and analyses 
are urgently needed. According to data from the World 
Health Organization (WHO), TC ranks as the 9th most 
common cancer globally. In 2020, approx. 586,000 new 
cases were reported, with nearly 90,000 deaths worldwide. 
Over the past decades, the incidence of thyroid cancer has 
been rising, particularly among women.

According to the American Cancer Society (ACS), women 
are 3 times more likely to develop TC than men. There are sig-
nificant differences in TC incidence across different regions. 
For example, South Korea has the highest incidence, while 
rates are relatively low in Africa and South Asia. According 
to the International Agency for Research on Cancer (IARC), 
high-income countries generally have higher TC incidence 
rates compared to low- and middle-income countries.1,2

Previous investigations indicate that age, sex and resi-
dential zone are the most influential factors correlating 
with TC prevalence. For instance, women have greater 
access to diagnosis compared to men. Moreover, the varia-
tions in incidence rates by geography are assumed to be 
indicative of greater exposure to risk factors within differ-
ent regions. However, a systematic analysis based on long-
term trends and the underlying mechanisms contributing 
to the increase in TC cases is still lacking.

The current study aims to conduct a comprehensive 
analysis of the differences in age-standardized incidence 
and prevalence rates of TC across countries from 1990 
to 2021, utilizing data from the Global Burden of Disease 

(GBD) database.3,4 We designed this study to explore a large 
dataset and identify novel trends otherwise hidden from 
prior analyses. Moreover, we aimed to develop a highly 
accurate TC diagnostic model using advanced machine 
learning approaches. This method not only enhances di-
agnostic precision but also provides a more reliable tool for 
clinical practice, ultimately improving patient outcomes.

Additionally, we used single-cell RNA sequencing to gain 
a more precise understanding of  the cellular challenges 
within the tumor microenvironment.5,6 The exciting com-
ponent of this method is that we can identify intricate cellular 
communications and gene expression patterns which are 
critical in tumorigenesis and progression. 

Objectives

The GBD database was used to examine global trends 
in TC incidence from 1990 to 2021. Additionally, this study 
aimed to develop a machine learning-based diagnostic 
model by identifying key genes and to investigate tumor–
microenvironment interactions using single-cell sequenc-
ing, offering potential therapeutic insights.

Materials and methods

Patients

Study population

The study included patients diagnosed with TC, utilizing 
data obtained from publicly available datasets (e.g., GBD da-
tabase, GSE27155, GSE111455, GSE196264, TCGA-THCA). 
The inclusion criteria encompassed confirmed cases of TC, 
with documented patient characteristics including age, sex, 
geographic location, and stage at diagnosis. Exclusion crite-
ria included patients with missing clinical or demographic 
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data. The datasets were thoroughly cleaned to eliminate in-
consistencies or errors, ensuring high-quality data for analy-
sis. Gene expression data were normalized to mitigate batch 
effects and technical variations across different datasets.

Specimen characteristics

Biological material

Gene expression data from TC patients were collected 
from the Gene Expression Omnibus (GEO) database and 
The Cancer Genome Atlas (TCGA). Control samples were 
also obtained from the same datasets and consisted of non-
cancerous thyroid tissue from patients diagnosed with 
thyroid conditions.

Preservation and storage

Datasets used were publicly available and underwent 
quality control in their respective studies. Data were stored 
in compliance with open-source data-sharing standards.

Assay methods

Global Burden of Disease analysis

This study utilized the R programming language for data 
analysis, primarily leveraging packages such as ggplot2, 
dplyr, reshape2, readxl, and ggpubr. First, epidemiologi-
cal data were imported using the read.csvfunction, with 
a focus on data from 2021. The dataset was categorized 
into 20 age groups, and the subset function was applied 
to extract data based on specific conditions, including 
age group, gender (male and female), geographic location 
(global), metrics (“rate” or “number”), and measurement 
type (“prevalence” or “incidence”).

Data cleaning was conducted using the gsub function, 
while order and factor were utilized for sorting and cat-
egorization to ensure the correct arrangement of variables. 
The ggplot2 package was employed to generate visualiza-
tions, including line charts for prevalence and incidence 
trends across different age groups and pyramid charts for 
case distribution. These visualizations were created using 
functions such as geom_line, geom_point, geom_ribbon, 
and geom_bar. Additionally, the ggarrange function from 
the ggpubr package was used to combine multiple graphs, 
facilitating easy comparison and effective presentation 
of results.

In this study, Joinpoint regression analysis and decom-
position analysis were conducted on incidence and mor-
tality data using R. Age-standardized incidence data from 
China and global sources were selected for analysis, and 
their corresponding standard errors (SE) were calculated. 
The data were then sorted by gender and year and exported 
as *csv files for regression analysis in Joinpoint software 
to identify trends in incidence changes. The annual percent 

change (AAPC) and segment-specific percent change 
(APC) were extracted from Joinpoint and formatted us-
ing R for further analysis and visualization.

In the decomposition analysis, demographic data were in-
tegrated to calculate the population proportions for different 
age groups in 1990 and 2021. Specific formulas were applied 
to decompose the total change and distinguish the contribu-
tions of age structure, total population growth, and epide-
miological changes. Data processing and analysis primarily 
utilized R packages such as dplyr, tidyr, and ggplot2.

Study design

Case selection and time frame

The study was retrospective, utilizing data from 1990–
2021 to  analyze global trends in  TC incidence using 
the GBD database. To enhance accuracy, the data were 
stratified by gender, age and geographical location.

Endpoints

The primary endpoints of this study included age-stan-
dardized incidence rates, prevalence and mortality rates 
of TC. The secondary endpoint focused on exploring gene 
expression differences within the tumor microenviron-
ment using single-cell sequencing data.

Candidate variables

The variables initially considered in this study included 
age, sex, geographical region, and gene expression levels, 
as they are key factors influencing TC prognosis.

Sample size and power

A large dataset from the GBD, TCGA and GEO databases 
was used to ensure adequate statistical power. The study 
was designed to detect significant epidemiological trends 
and gene expression patterns, with a target power of 0.8 
to detect medium effect sizes.

Statistical analyses

We processed the sample data using the following meth-
ods: TCGA for TC, including 100 normal tissue samples 
and 507 tumor samples, totaling 607 samples. GSE27155: 
Human thyroid adenomas, carcinomas and normals. Hu-
man samples of various thyroid carcinomas, adenomas and 
normals (99 samples). GSE111455: Array-based genome-
wide transcriptome analysis of minimally invasive follicu-
lar thyroid carcinomas (3 samples). GSE196264: Gene pro-
file of human medullary TC. Eight sporadic MTC patients 
were selected for the gene microarray analysis (17 samples). 
Joinpoint regression models were employed for trend 
analysis to assess changes in incidence and prevalence 
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over time. The age-period-cohort (APC) model was also 
utilized to evaluate the influence of age, period and cohort 
on incidence trends. Differentially expressed genes (DEGs) 
identified by DESeq2 and limma were analyzed using dif-
ferential gene expression analysis.

Differential gene expression analysis

Differential expression analysis was conducted using 
the limma package in R, designed for differential expres-
sion analysis of microarray and RNA-Seq data. We used 
normalized expression data from the TCGA dataset. To en-
sure robust statistical analysis, genes with 0 variance across 
samples were removed. A linear model was fitted using 
the lmFit function and a design matrix specifying control 
and treatment groups. Contrasts were defined to compare 
treatment and control groups, and Empirical Bayes method 
(eBayes) was used to compute adjusted t-statistics and log-
odds for differential expression. Genes were considered 
significantly differentially expressed if the absolute log2 fold 
change (|log2FC|) exceeded 0.585 and the adjusted p-value, 
corrected for false discovery rate (FDR), was less than 0.05.7

Significant genes were further analyzed to visualize ex-
pression patterns. Heatmaps were generated using pheat-
map in R to display the most significantly differentially 
expressed genes, applying hierarchical clustering to rows 
while keeping columns unclustered. Volcano plots were cre-
ated using ggplot2 in R to illustrate the distribution of log2 
fold changes against the negative log of the adjusted p-value.

KEGG analysis

We  conducted gene set enrichment analysis using 
the Kyoto Encyclopedia of Genes and Genomes database 
(KEGG, https://www.kegg.jp) to identify significant path-
ways associated with our gene list of interest. The anal-
ysis was performed using the  clusterProfiler package 
in R (v. 4.4.1, a programming language and software envi-
ronment for statistical computing and data visualization; 
R Foundation for Statistical Computing, Vienna, Austria). 
First, gene symbols were converted to Entrez Gene Identi-
fier using the org.Hs.eg.db package. Duplicate entries were 
removed, and genes without corresponding Entrez IDs were 
excluded. The enrichKEGG function was used for KEGG 
pathway enrichment analysis, specifying “hsa” (human) 
as the organism. The significance threshold for pathway 
inclusion was set at a p-value of 0.05 and an adjusted p-
value (q-value) of 1. Pathway descriptions were simplified 
by removing redundant species information. Results were 
filtered to include only pathways meeting the specified sig-
nificance criteria and saved to a file named “KEGG.txt”. 
Visualization of the top 30 pathways was done using barplot 
and dotplot functions from the enrichplot package. Plots 
were colored based on adjusted p-values, using raw p-values 
if the threshold exceeded 0.05. All visualization results were 
saved in *pdf format for further analysis and presentation.

WGCNA analysis

Weighted gene co-expression network analysis 
(WGCNA) was performed using R to identify gene mod-
ules associated with clinical traits in the TCGA dataset. 
First, the expression data were normalized, and genes with 
low variance (standard deviation (SD) <1.5) were filtered 
out to ensure robustness. The soft-thresholding power 
was determined by scale-free topology criteria, selecting 
a power value X to achieve a scale-free topology fit index 
of at least 0.8. This power was used to construct an adja-
cency matrix, which was then transformed into a topo-
logical overlap matrix (TOM) to measure network inter-
connectedness. Gene modules were identified by dynamic 
tree cutting based on the TOM gene dendrogram, with 
a minimum module size of 60 genes. Module eigengenes 
were calculated and similar expression pattern modules 
were merged based on a height cut of 0.25 on the eigen-
gene dendrogram. Pearson’s correlation analysis was used 
to assess the relationship between module eigengenes 
and clinical traits (e.g., control and treat), and significant 
modules were analyzed in depth. Gene significance (GS) 
and module membership (MM) metrics were calculated 
for each gene, and scatter plots were generated to visualize 
the relationship between GS and MM in key modules. All 
analyses were conducted using the WGCNA package in R, 
with results visualized through a series of dendrograms, 
heatmaps and scatter plots. Final module assignments 
and gene significance metrics were exported for further 
biological interpretation and validation.

Machine learning models

This study employed a comprehensive machine learning 
approach to develop and evaluate predictive models for 
classification tasks. Data were sourced from publicly avail-
able GEO datasets and preprocessed to ensure consistency 
between training and test sets. Key libraries used included 
randomForestSRC, glmnet, xgboost, and ComplexHeat-
map for data processing, model training and visualization. 
Feature selection was performed using various machine 
learning algorithms to identify important variables. Model 
training utilized diverse algorithms, including random 
forest, least absolute shrinkage and selection operator 
(LASSO) regression and gradient boosting machine, with 
hyperparameter optimization to enhance performance. 
Training data were scaled and centered to standardize 
input features, ensuring robust model development.

Each model’s performance was assessed using cross-
validation and evaluated based on the area under the curve 
(AUC) metric. The best-performing model was selected 
for further analysis and validated on an independent test 
dataset. Additionally, a  logistic regression model was 
constructed to compare its performance with machine 
learning models. Results were visualized using heatmaps 
to display AUC values across different models and datasets, 

https://www.kegg.jp
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facilitating comparative analysis. The  final model was 
saved to ensure reproducibility and future application. 
This rigorous approach ensured the development of robust 
predictive models with potential applications in bioinfor-
matics and computational biology.

Single-cell sequencing

Single-cell RNA sequencing (scRNA-seq) data were ob-
tained from publicly available datasets. We used the Matrix 
package (v. 1.7-2) in R to load the raw count matrix and 
the Seurat package (v.5.2.1) for further processing. Gene 
and barcode information were annotated onto the count 
matrix, creating a Seurat object for downstream analy-
sis. The NormalizeData function was used to normalize 
the Seurat object, and high-variance features were identi-
fied using FindVariableFeatures. The data were then scaled 
using ScaleData and subjected to principal component 
analysis (PCA) with RunPCA. The first 10 principal com-
ponents were used to construct a shared nearest neigh-
bor graph (FindNeighbors) and identify cell clusters using 
the FindClusters function with a resolution of 0.1. For data 
visualization, t-distributed stochastic neighbor embed-
ding (t-SNE) was applied using RunTSNE. Cluster-specific 
marker genes were identified using FindAllMarkers, with 
criteria set to include genes expressed in at least 10% of cells 
and a log fold change threshold of 0.1. The top 4 marker 
genes for each cluster were extracted and saved for further 
analysis. Cell type annotation was based on known marker 
genes for various cell types. A DotPlot was generated to vi-
sualize the expression of these marker genes across clus-
ters. Annotations were manually added to the metadata 
of the Seurat object, updating cluster identities accordingly.

Cell–cell communication analysis

Cell–cell communication analysis was performed using 
the CellChat package (v. 1.5.0). A CellChat object was cre-
ated from the Seurat object, and the CellChatDB.human 
database (https://github.com/sqjin/CellChat) was used 
to  identify secreted signaling pathways. Overexpressed 
genes and ligand-receptor pairs were identified, and com-
munication probabilities were computed using comput-
eCommunProb. Interactions between different cell types 
and signaling pathways were visualized using various meth-
ods, including circle plots, chord diagrams and heatmaps.

Results

Epidemiological trends of thyroid cancer

Incidence by age and gender revealed age-specific in-
cidence rates for both men and women, with incidence 
increasing with age and peaking in middle age. Women 
exhibited a  higher incidence rate than men (Fig. 1A). 

The population pyramid illustrates the age and gender 
distribution, showing a balanced distribution in younger 
age groups and a higher proportion of women in older age 
groups (Fig. 1B).

The age- and gender-adjusted incidence rates, as illus-
trated in Fig. 1A, were further refined by incorporating 
specific factors such as risk factors and demographic vari-
ables, allowing for a more precise and contextualized analy-
sis. The analysis confirms a higher incidence rate among 
women, with distinct peaks observed during middle age 
(Fig. 1C). Additionally, the adjusted population pyramid 
illustrates the population distribution after incorporating 
these adjustments, highlighting demographic shifts and 
underscoring trends related to an aging population (Fig. 1D).

Joinpoint analysis of the change of thyroid 
cancer incidence rate in the general 
population

Figure 2 results show that Joinpoint analysis revealed 
significant changes in TC incidence rates at multiple time 
points for the overall population, females and males, with 
a more pronounced growth trend after the year 2000. 
Decomposition analysis indicates that the increase in in-
cidence and mortality rates was primarily influenced 
by population aging, epidemiological changes and popu-
lation growth. Among these factors, population aging and 
epidemiological changes have a more significant impact 
on women. Collectively, these factors contribute to the in-
creasing burden of TC (Fig. 2).

The clustering of gene expression across 
different samples

Figure 3A presents differential gene expression be-
tween the  control and test groups, highlighting genes 
such as ETV4, LIPH and GABRR2, which exhibit higher 
expression (red) in the test group, while CDR2, HSDL1 and 
LRIG1 show lower expression (blue). Figure 3B visualizes 
the significance and magnitude of gene expression changes, 
where red dots indicate significantly upregulated genes and 
green dots represent significantly downregulated genes. 
The x-axis denotes the log fold change (logFC), while the y-
axis represents the negative log of the adjusted p-value.

Weighted gene co-expression network 
analysis results

In Fig. 4, the sample clustering tree and trait heatmap 
illustrate the distribution of samples under the “Control” 
and “Treat” traits, displaying distinct clustering patterns. 
The gene clustering tree, along with module colors, groups 
genes into multiple modules, each represented by a dif-
ferent color, highlighting gene co-expression patterns. 
The module-trait relationship heatmap reveals correlations 
between gene modules and clinical traits, with certain 

https://github.com/sqjin/CellChat
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Fig. 2. Joinpoint and decomposition 
analysis. A. Joinpoint analysis for 
the total population; B. Decomposition 
analysis of incidence rates; 
C. Decomposition analysis of mortality 
rates
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Fig. 3. The clustering of gene expression across different samples. A. Heatmap: Displaying the clustering of gene expression in different samples. Red 
indicates high expression and blue indicates low expression; B. Volcano plot: Showing the results of gene expression differential analysis. Red points represent 
significantly upregulated genes, green points represent significantly downregulated genes and grey points indicate genes with no significant change
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modules, such as MEblue and MEmagenta, showing strong 
positive correlations with the “Treat” trait. These findings 
suggest that these modules may play a crucial role in TC.

The gene significance bar plot illustrates the importance 
and significance of genes within each module, with error 
bars representing SEs. The scatter plot of module mem-
bership compared to gene significance further confirms 
the strong correlation between module membership and 
gene significance, particularly in the midnight blue and 
blue modules. These findings suggest that the gene mod-
ules identified through WGCNA may play critical roles 
in the development and progression of TC, offering valu-
able insights for further research and potential therapeutic 
target identification (Fig. 4).

Differential expression gene and WGCNA 
module overlap and functional enrichment

The analysis results in Fig. 5 indicate that 510 genes over-
lapped between DEGs and gene modules identified through 
WGCNA, suggesting that these genes may play critical 
roles in TC. Gene Ontology (GO) enrichment analysis re-
vealed significant enrichment of these genes in biological 
processes such as cell proliferation, signal transduction 
and metabolic regulation. The gene-pathway network dia-
gram illustrated the connections between key genes and 
multiple pathways, indicating their involvement in various 
biological processes. The pathway network diagram further 
highlighted the intricate interactions between pathways. 

Fig. 4. Weighted gene co-expression network analysis (WGCNA) results. A. Gene clustering tree and module colors; B. Module-trait relationship heatmap; 
C. Module membership vs gene significance scatter plot (based on module membership (MM)); D. Module membership vs gene significance scatter plot 
(based on gene significance (GS))
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Molecular function enrichment analysis reveals significant 
enrichment in functions such as ligand binding and enzyme 
activity, while pathway analysis underscores the impor-
tance of neuroligand-receptor interactions and metabolic 
pathways. These findings provide valuable insights into 
the molecular mechanisms of TC and may offer potential 
directions for developing therapeutic strategies (Fig. 5).

Model performance evaluation, gene 
expression difference and predictive 
ability analysis

Figure 6 results demonstrate the performance of various 
machine learning models across different datasets, using 
AUC values as evaluation metrics. The Ridge and LASSO 
models performed best on the GSE27155 dataset, achiev-
ing AUC values close to 1. The volcano plot highlights sig-
nificantly upregulated and downregulated genes, including 
ETV4 and RXRG. Gene expression box plots showed sig-
nificant differences in gene expression between control and 

experimental groups. The gene correlation matrix revealed 
strong correlations among multiple genes. The receiver op-
erating characteristic (ROC) curve for the GSE27155 data-
set indicates excellent model prediction performance, with 
an AUC of 0.963. Additionally, multiple genes exhibited 
high predictive potential as biomarkers, with ETV4 and 
KLHDC8A achieving perfect AUC scores of 1. These analy-
ses suggest that the identified genes hold promise for TC 
diagnosis and prediction (Fig. 6).

Thyroid cancer single cell RNA 
sequencing analysis

In Fig. 7, violin plots illustrate the distribution of RNA 
counts and feature numbers in tumor samples, highlight-
ing variability between samples and indicating diversity 
in gene expression across different cells. The PCA scatter 
plot visualizes sample distribution using PCA, with samples 
clustering along the first 2 principal components (PC1 and 
PC2), providing insights into the main sources of variation.

Fig. 5. Differential expression gene and weighted gene co-
expression network analysis (WGCNA) module overlap and 
functional enrichment analysis. A. Venn diagram; B. Pathway 
analysis bubble plot; C. Molecular function enrichment bubble plot
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Fig. 6. Model performance evaluation, gene expression difference and predictive ability analysis. A. Model performance heatmap; B. Volcano plot; C. Gene 
expression box plot; D. Receiver operating characteristic (ROC) curve plot (single dataset); E. ROC curve plot (multiple genes)
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Fig. 7. Thyroid cancer single cell RNA sequencing analysis. A. Violin plot showing the distribution of counts (top) in tumor samples; B. Principal component 
analysis (PCA)  scatter plot; C. The plot of explained variance; D. t-distributed stochastic neighbor embedding (t-SNE) clustering plot; E. t-SNE cell type plot: 
Cells distinguished and annotated for different types by the result of (tSNE)



Adv Clin Exp Med. 2025;34(11):1881–1896 1893

The variance explained plot displays the SD of each prin-
cipal component, with the first few components explaining 
most of the data variance, providing a basis for principal com-
ponent selection. The t-SNE clustering plot identifies multiple 
distinct cell populations through t-SNE analysis, revealing 
cellular diversity and potential subgroups. The t-SNE cell 
type plot further annotates and distinguishes different cell 
types based on t-SNE results, including myeloid cells, pro-
liferating cells, T cells, natural killer (NK) cells, endothelial 
cells, dendritic cells, B cells, and fibroblasts. These analyses 
provide important information about cellular heterogeneity 
in TC, contributing to the understanding of its biological 
characteristics and potential therapeutic targets (Fig. 7).

For network diagram of intercellular 
interaction quantity

Cell interaction network shows frequent interactions 
among myeloid cells, T, B, NK cells, endothelial cells, 
and fibroblasts. Notably, myeloid–NK cell interactions 
are particularly strong. T-cell network focuses on T cell 

interactions with myeloid and dendritic cells, crucial for 
immune responses. Myeloid cell network highlights exten-
sive interactions with T-cells, dividing cells and endothe-
lial cells, emphasizing their role in the tumor microenvi-
ronment. Macrophage migration inhibitory factor (MIF) 
signaling pathway primarily involves myeloid and T cells 
in the MIF signaling process. GALECTIN signaling path-
way involves myeloid cells, endothelial cells and fibroblasts, 
with JAK-STAT as a central signaling pathway (Fig. 8).

Analysis of cell–cell communication and 
gene expression in the MIF and GALECTIN 
signaling pathways

Among these interactions, the communication between 
myeloid cells and Treg/NKr is  particularly important 
in the MIF signaling pathway, as it may play a pivotal role 
in explaining both immunological functions and the rel-
evance to  the tumor microenvironment. Among these 
well-known molecules, genes such as MIF and its receptor 
CD74 (along with CXCR4) are predominantly expressed 

Fig. 8. The network interaction diagram between different TC cells, highlighting their interactions with each other. A. Network diagram of intercellular 
interaction quantity; B. Network analysis of the intercellular interaction strength; C. T-cell interaction network diagram; D. Myeloid cell interaction network
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by myeloid cells and T cells, suggesting their crucial roles 
in cell-type signaling and immune regulation.

The  interaction between myeloid cells and endothe-
lial cells in the GALECTIN signaling pathway emerges 
as a strong potential mediator of tumor progression, play-
ing an unsuspected yet significant role in angiogenesis. 
Moreover, the interaction strength was highest between 
myeloid cells and fibroblasts, with gene expression pat-
terns indicating that many of these cells are actively en-
gaged in central signal transduction processes within this 
population. Data from the heatmap and violin plot further 
highlight the differential expression of genes within cell 
types involved in these pathways, providing insights into 
intercellular communication.

In summary, our findings reveal a complex interplay be-
tween the MIF and GALECTIN pathways in papillary TC 
cells, involving myeloid dendritic cells. This insight may 
have significant implications for understanding cancer 
biology and developing future therapeutic targets (Fig. 9).

Discussion

Thyroid cancer is a heterogeneous disease with various 
subtypes, each exhibiting unique molecular character-
istics and biological behaviors. As research progresses, 
more molecular drivers are being identified, playing key 
roles in the initiation and progression of TC. These drivers 

Fig. 9. Cellular interactions and gene expression in migration inhibitory factor (MIF) and GALECTIN pathways. A. MIF signaling pathway network diagram; 
B. Signaling pathway heatmap; C. Violin plot of the expression levels of the 4 target genes in different cell populations; D. GALECTIN signaling pathway 
network map.
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include gene mutations, gene fusions and changes in ex-
pression levels, affecting processes like cell signaling, cell 
cycle control and apoptosis. Myeloid cells play a crucial 
role in the tumor microenvironment, where they can be 
educated or activated by tumor cells to promote tumor de-
velopment and immune evasion. The expression and func-
tion of inflammatory factors or immune-related molecules 
in myeloid cells may significantly impact the progression 
of  TC. To  further elucidate the  complex interactions 
within the tumor microenvironment (TME), advanced 
technologies, such as single-cell RNA sequencing (scRNA-
seq), have emerged as indispensable tools, enabling high-
resolution profiling of cellular heterogeneity and intercel-
lular communication. Single-cell RNA sequencing enables 
the analysis of cellular heterogeneity within the tumor mi-
croenvironment at the single-cell level, providing detailed 
gene expression profiles of various cell subpopulations. 
This technology facilitates the identification of specific 
cell types that interact with myeloid cells and their com-
munication patterns through the MIF and GALECTIN 
signaling pathways.8–10

Macrophage migration inhibitory factor supports tumor 
growth and metastasis by enhancing myeloid cell activation 
and their adaptability to TME.11–13 The GALECTIN signal-
ing pathway, along with other signaling mechanisms, has 
been identified as a critical contributor to tumorigenesis 
in various cancers. It primarily functions by disrupting 
cell–cell interactions and promoting immune evasion.

Our study highlights the crucial role of the GALEC-
TIN pathway in mediating interactions between med-
ullary cells, endothelial cells and fibroblasts. This find-
ing is further supported by other studies, emphasizing 
its significance in tumor cell–stromal cell interactions. 
Members of the GALECTIN family specifically bind to car-
bohydrates, influencing cell adhesion and migration. This 
interaction plays a crucial role in tumor cell survival, par-
ticularly during migration through the basement mem-
brane or the tumor extracellular matrix (ECM).15–17

Therapeutic agents that inhibit GALECTIN binding have 
the potential to reduce tumor cell adhesion and migration, 
thereby limiting metastasis. This strategy could be partic-
ularly effective in preventing tumor cells from interacting 
with the ECM and stromal cells. Combining GALECTIN 
inhibitors with other treatments, such as immunotherapy 
or chemotherapy, may enhance overall efficacy by simul-
taneously targeting multiple aspects of tumor progression 
and immune evasion.

In this study, leveraging machine learning approaches 
and demonstrating superior performance compared 
to  several existing studies, we  developed a  diagnostic 
model for TC with a high degree of predictive accuracy. 
The Ridge and LASSO models achieved AUC values close 
to 1 on the GSE27155 dataset, indicating excellent per-
formance in  identifying gene features associated with 
TC. These results align with findings from other studies 
utilizing machine learning for cancer prediction, further 

validating the potential of machine learning in  tumor 
diagnosis.

Limitations

The study has several limitations. First, it relies on pub-
licly available datasets, which may not fully represent all 
geographic or demographic variations, potentially limiting 
the generalizability of the results. Second, the machine 
learning models, though validated, are based on a specific 
dataset and may require further validation across more 
diverse populations. Third, while single-cell RNA sequenc-
ing provides valuable insights, our analysis focuses primar-
ily on myeloid cells, leaving other cell types underexplored. 
Lastly, the study does not account for potential changes 
in diagnostic techniques or environmental factors over 
the years, which may influence TC trends.

Conclusions

This study conducted a comprehensive analysis of global 
TC incidence and prevalence from 1990 to 2021, identify-
ing multiple influencing factors and their interactions. 
Using the age-period-cohort model, we found that TC inci-
dence significantly increases with age, particularly among 
women. Our findings suggest that population aging, epi-
demiological shifts and environmental factors collectively 
contribute to the rising burden of TC.
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