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Abstract

I[mmunotherapy has revolutionized oncology; however, its efficacy remains limited by the immunosuppressive
tumor microenvironment (TME). This editorial synthesizes recent advances demonstrating how rationally
designed combination strategies — particularly those incorporating the transforming growth factor beta/
programmed death-ligand 1 (TGF-B/PD-L1) bispecific antibody platform (YM101/BiTP) and the multi-
cytokine-armed oncolytic virus VG161 — can overcome resistance mechanisms. By concurrently dismantling
immunosuppressive networks, activating innate immunity and remodeling the TME, these approaches show
superior preclinical activity across challenging tumor phenatypes. The integration of mechanistic insights
with evolving biomarker-driven strategies heralds a new era of personalized combination immunotherapy.
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Highlights

in cancer immunotherapy.

tumors.

« TGEF-B/PD-L1 bispecific antibody (YM101/BiTP) effectively reprograms the tumor microenvironment, overcomes
immune exclusion and enhances antitumor immune activation, highlighting its potential for clinical translation

+ VG161, a multi-cytokine-armed oncolytic virus, exhibits synergistic effects by activating innate immunity and
enhancing antitumor immune responses, providing a promising therapeutic strategy for immunologically “cold”

Introduction

The advent of immune checkpoint blockade (ICB)
targeting the programmed cell death protein 1 (PD-1)/
programmed death-ligand 1 (PD-L1) axis has marked
a paradigm shift in cancer therapy.? While a subset
of patients experience durable responses, the overall
response rate remains limited.® This limitation is pri-
marily due to the complex immunosuppressive mecha-
nisms within the tumor microenvironment (TME).*>
The TME comprises a heterogeneous network of cellular
and molecular components — including immunosuppres-
sive factors such as tumor growth factor beta (TGF-p)
and PD-L1, impaired antigen presentation, and physical
or structural barriers that limit immune cell infiltration
— that collectively hinder effective antitumor immune
responses.

As a result, non-inflamed tumors — often classified
as immune-excluded (T cells restricted to the stromal
margin) or immune-desert (minimal T cell infiltration)
— exhibit resistance to ICB monotherapy.®” Overcom-
ing this resistance requires combination strategies that
not only relieve immunosuppression but also enhance
immune activation.® Recent preclinical studies have
highlighted 2 promising modalities: bispecific anti-
bodies targeting complementary immunosuppressive
pathways, and oncolytic viruses engineered to de-
liver immunostimulatory payloads.”~!! This editorial
focuses on how these approaches, particularly when
combined, may reshape current strategies to overcome
ICB resistance.

The immunosuppressive TME
as the primary barrier

The TME functions as an immunosuppressive niche that
actively inhibits antitumor immunity.>-* Among the key
mediators, TGF-B and PD-L1 signaling pathways play cen-
tral roles. Transforming growth factor beta suppresses
the effector function of cytotoxic T lymphocytes (CTLs)
and natural killer (NK) cells, promotes the differentiation
of regulatory T cells (Tregs), induces cancer-associated fi-
broblast (CAF) activation, thereby generating desmoplastic

stroma that limits T cell infiltration, and promotes the ex-
pansion of immunosuppressive myeloid populations.t>-18
Concurrently, PD-1/PD-L1 signaling impairs the function
of activated T cells by inducing exhaustion, characterized
by reduced cytokine production and proliferative capac-
ity.120 Therefore, the co-expression and spatial proximity
of TGF-P and PD-L1 signaling contribute to a synergistic
suppression of antitumor immunity.

In addition, defective innate immune activation — par-
ticularly the failure of immature dendritic cells (DCs)
to present tumor antigens and prime T cells — underlies
the immune-desert phenotype.® Myeloid-derived sup-
pressor cells (MDSCs) and M2-like tumor-associated
macrophages (TAMs) further exacerbate immunosup-
pression by producing arginase, indoleamine 2,3-dioxy-
genase (IDO) and interleukin 10 (IL-10).21-2% This complex
interplay between stromal, immune and tumor compo-
nents results in T cell exclusion or dysfunction, thereby
limiting the efficacy of ICB in the majority of patients.?®
A comprehensive understanding of these mechanisms
is critical for designing rational and effective combina-
tion therapies.

Combination therapy:
A mechanistic approach
to overcome resistance

Given the redundancy and compensatory nature
of immunosuppressive pathways within the TME,
monotherapies targeting individual molecules are insuf-
ficient to restore antitumor immunity. Combination ap-
proaches that simultaneously modulate multiple aspects
of the cancer-immunity cycle offer a more effective strat-
egy.® Several therapeutic modalities have demonstrated
potential in combination with ICB. Chemotherapy and
radiotherapy promote immunogenic cell death, lead-
ing to antigen release and activation of DCs.?’~% Anti-
angiogenic agents normalize tumor vasculature, reduce
hypoxia and facilitate immune cell infiltration.3%3! Co-
stimulatory receptor agonists (e.g., CD40, OX40, GITR)
enhance T cell activation and expansion.3? Agonists
of the stimulator of interferon genes (STING) pathway
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activate type I interferon responses in DCs, promoting
cross-priming of CD8* T cells.33-3¢ Epigenetic modula-
tors reverse exhaustion-associated transcriptional pro-
grams in T cells,?” while metabolic regulators improve
nutrient availability and reduce acidity in the TME, thus
enhancing T cell viability and function.3%3 In this con-
text, bispecific antibodies that co-target non-redundant
immunosuppressive pathways provide a spatially coor-
dinated mechanism to inhibit immune evasion. These
molecules offer dual blockade within the tumor site and
may enhance efficacy while limiting systemic toxicity. 4
Ultimately, the effectiveness of combination regimens
relies on mechanistic synergy — defined as the capacity
to overcome multiple rate-limiting steps across antigen
release, presentation, T cell priming, infiltration, and
effector function.

VG161 oncolytic virus: Multi-
mechanistic immune activation

Oncolytic viruses are a class of immunotherapeutic
agents capable of inducing direct tumor cell lysis while
stimulating innate and adaptive immunity.*! VG161 is a ge-
netically modified oncolytic herpes simplex virus type 1
(0HSV-1) that encodes 3 immunostimulatory transgenes:
IL-12, a single-chain IL-15/IL-15RA fusion protein and
a PD-LI-targeting peptide.? These payloads are designed
to enhance local immune activation and counteract tumor-
associated immunosuppression.

Upon intertumoral injection, VG161 selectively repli-
cates in tumor cells, leading to immunogenic cell death
and release of tumor-associated antigens (TAAs). This
promotes the recruitment and activation of antigen-pre-
senting cells, particularly DCs.!! The locally expressed
IL-12 facilitates DC maturation and promotes Thl-type
immune responses. The IL-15/IL-15RA fusion protein sup-
ports the survival and expansion of NK cells and CD8*
T cells, while the PD-L1-targeting fusion protein blocks
inhibitory signaling in the TME.43-4°

Preclinical studies in breast cancer models have dem-
onstrated that VG161 increases the infiltration of CD4*
and CD8" T cells, as well as NK cells, while enhancing
the production of pro-inflammatory cytokines such
as tumor necrosis factor alpha (TNF-a) and interferon
gamma (IFN-y).!! Notably, VG161 exhibits strong synergy
with paclitaxel (PTX). In addition to its cytotoxic effects,
PTX facilitates antigen release and alters the TME to sup-
port viral replication and immune cell infiltration.4647
Sequential administration of VG161 followed by PTX re-
sults in enhanced tumor growth suppression, reduced
pulmonary metastasis and increased CD3* and CD8*
T cell infiltration in metastatic sites. These effects are
more pronounced with VG161 than with its parental virus
VG160, underscoring the importance of its immunomodu-
latory transgenes.
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Bispecific targeting of TGF-f3
and PD-L1: From YM101 to BiTP

To overcome the limited efficacy of PD-1/PD-L1 block-
ade in immunosuppressive microenvironment, especially
in immune-excluded tumors, a bispecific antibody strat-
egy targeting both TGF-f3 and PD-L1 has been developed.
YM101, constructed using the Check-BODY™ platform,
combines binding domains for TGF-f and PD-L1 in a sin-
gle molecule.!® Preclinical studies showed that YM101 ef-
fectively inhibited TGF-B—Smad and PD-L1-PD-1 signal-
ing pathways, reversed epithelial-mesenchymal transition
(EMT) and enhanced T cell activation in vitro. In murine
tumor models, YM101 exhibited superior antitumor ac-
tivity compared to monotherapy. This was accompanied
by increased infiltration of CD8* T cells and dendritic
cells, a higher M1/M2 macrophage ratio, and enhanced
cytokine production, collectively promoting a ‘hot’ tumor
phenotype.

Building on these results, a humanized version
of YM101 — termed BiTP — was developed to enable trans-
lational application.’ BiTP retained high binding affinity
and functional activity against both TGF-p and human
PD-L1. In humanized TNBC models, BiTP exhibited en-
hanced antitumor efficacy over anti-PD-L1 or anti-TGF-8
monotherapy. Mechanistically, BiTP reduced stromal col-
lagen deposition, improved CD8* T cell infiltration and
increased tumor-infiltrating lymphocyte density. These
changes contributed to immune reprogramming within
the TME and reinforced antitumor immunity. Together,
YM101 and BiTP exemplify a promising bispecific anti-
body approach that simultaneously alleviates immune
exclusion and checkpoint-mediated suppression, offer-
ing a novel therapeutic strategy for immune-excluded
tumors.

Future perspectives

Current limitations of immune checkpoint blockade
highlight the essential role of the immunosuppressive
TME in mediating therapeutic resistance. Accumulating
preclinical evidence supports the need for combination
strategies that concurrently target multiple immunosup-
pressive mechanisms within the TME. In our recent stud-
ies, we employed the TGF-B/PD-L1 bispecific antibody
platform and the cytokine-armed oncolytic virus VG161
as complementary strategies to address TME-associated
immune exclusion and desert-like features.

The therapeutic efficacy of these platforms is further
enhanced when used in combination with agents targeting
innate immune activation or adaptive resistance. For ex-
ample, YM101 demonstrates improved antitumor activity
when combined with STING agonists, which enhance an-
tigen presentation and type I interferon responses within
the TME.3%48 [n addition, resistance-associated features
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such as CCR5" T cell enrichment — identified through sin-
gle-cell RNA sequencing — may be targeted by agents such
as Maraviroc to further optimize therapeutic response.*’
VG161 also exhibits synergy with chemotherapeutic agents
such as paclitaxel, which not only induces direct cytotoxic-
ity but also modulates suppressive myeloid cells, thereby
amplifying systemic antitumor immunity and inhibiting
metastatic dissemination.

To facilitate successful clinical translation, several key
factors must be addressed. First, the development and
validation of predictive biomarkers are critical for strati-
fying patients according to TME immunophenotypes
(inflamed, excluded, desert) and dominant resistance
mechanisms. This will enable rational selection of per-
sonalized combination regimens. Second, optimization
of treatment sequencing and dosing is required to bal-
ance efficacy with toxicity. Third, ongoing exploration
of novel combination strategies — including integration
of bispecific antibodies or oncolytic viruses with meta-
bolic modulators, epigenetic therapies, co-stimulatory
receptor agonists, or adoptive cell therapies — holds
considerable therapeutic potential.>° Finally, advances
in spatial and single-cell multi-omics technologies are
expected to provide high-resolution insights into TME
dynamics during treatment, facilitating the identifica-
tion of emergent resistance pathways and novel thera-
peutic targets.>!

Conclusions

The integration of multi-targeted agents such as YM101/
BiTP and VG161, informed by mechanistic insights and
supported by biomarker-driven patient selection, rep-
resents a rational and promising approach to overcom-
ing the immunosuppressive TME. These strategies may
substantially broaden the clinical benefit of immuno-
therapy across a wider range of tumor types and patient
populations.
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