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Abstract

Background. Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma
(RCC). Due to the lack of symptoms until advanced stages, early diagnosis of ccRCCis challenging. Therefore,
the identification of novel secreted biomarkers for the early detection of ccRCCis urgently needed.

Objectives. This study aimed toidentify novel secreted hiomarkers for diagnosing ccRCC using bioinformatics
and machine learning techniques based on transcriptomics data.

Material and methods. Differentially expressed genes (DEGs) in ccRCC compared to normal kidney tis-
sues were identified using 3 transcriptomics datasets (GSE53757, GSE40435 and GSE11151) from the Gene
Expression Omnibus (GEO). Potential secreted biomarkers were examined within these common DEGs using
a list of human secretome proteins from The Human Protein Atlas. The recursive feature elimination (RFE)
technique was used to determine the optimal number of features for building classification machine learn-
ing models. The expression levels and clinical associations of candidate biomarkers identified with RFE were
validated using transcriptomics data from The Cancer Genome Atlas (TCGA). Classification models were then
developed based on the expression levels of these candidate biomarkers. The performance of the models
was evaluated based on accuracy, evaluation metrics, confusion matrices, and ROGAUC (receiver operating
characteristic-area under the ROC curve) curves.

Results. We identified 44 DEGs that encode potential secreted proteins from 274 common DEGs found across
all datasets. Among these, insulin-like growth factor binding protein 3 (IGFBP3) and lectin, galactoside-
binding, soluble, T (LGALS1) were selected for further analysis using the RFE technique. Both IGFBP3 and
LGALST showed significant uprequlation in ccRCC tissues compared to normal tissues in the GEO and TCGA
datasets. The results of the survival analysis indicated that patients with higher expression levels of these
genes exhibited shorter overall and disease-free survival times (S and DFS). Decision tree and random forest
models based on IGFBP3 and LGALST levels achieved an accuracy of 98.04% and an AUC of 0.98.

Conclusions. This study identified IGFBP3 and LGALST as promising novel secreted biomarkers for ccRCC
diagnosis.
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Background

Renal cell carcinoma (RCC) represents the most com-
mon type of kidney cancer, accounting for approx. 90%
of all cases.! Globally, RCC is the 14" most commonly di-
agnosed malignancy, with over 400,000 new cases reported
annually.? Smoking, alcohol consumption, obesity, and
high blood pressure are associated risk factors for RCC.?
Renal cell carcinoma is often asymptomatic in its early
stages, with 60% of cases being discovered incidentally dur-
ing imaging studies for unrelated conditions. When symp-
tomatic, patients may present with a triad of flank pain,
hematuria and an abdominal mass, although this classic
presentation is relatively uncommon. Systemic symptoms,
including fever, weight loss and paraneoplastic syndromes,
may result from advanced disease.*®> The treatment of RCC
has undergone significant evolution over the past few de-
cades. Surgical resection is the standard of care for pa-
tients with localized RCC, while targeted therapies and
immunotherapy have been promising treatment options
for advanced and metastatic RCC.%7

There are 3 common pathological RCC subtypes, in-
cluding clear cell RCC (ccRCC), which makes up 70-80%
of cases; papillary RCC, which comprises 10-15%; and
chromophobe RCC, which accounts for 5%.% Clear cell
RCC is the primary cause of death in kidney cancer pa-
tients due to its asymptomatic nature in the early stages
and resistance to chemotherapy and radiotherapy.’ Early
detection of ccRCC is challenging, relying on a combina-
tion of imaging techniques and histological examination.
Therefore, identifying novel secreted biomarkers is crucial
for its effective diagnosis.

Transcriptomics data, encompassing the complete set
of all RNAs transcribed by specific tissues or cells, are
widely used to identify novel biomarkers and promis-
ing drug targets in many diseases, including cancers.!°
Public transcriptomics databases such as The Cancer
Genome Atlas (TCGA)'"'2 and the Gene Expression Om-
nibus (GEO)''* have become invaluable resources for
researchers in this field. A combination of bioinformat-
ics and machine learning approaches to analyze public
transcriptomics data has emerged as a pivotal approach
to cancer research, offering unprecedented opportunities
to identify novel biomarkers and potential drug targets for
various cancers,'>1° such as colorectal cancer,'” pancreatic
cancer'® and breast cancer.’” However, our latest review
found no reports identifying potential secreted biomark-
ers for ccRCC using bioinformatics and machine learning
approaches on public transcriptomics datasets.

In this study, bioinformatics and machine learning
analysis were used to identify novel secreted biomarkers
for ccRCC diagnosis using transcriptomics datasets from
the GEO and TCGA databases. Differentially expressed
genes (DEGs) were identified by comparing ccRCC tis-
sues with normal kidney tissues, and potentially secreted
proteins among the common DEGs were further analyzed.
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The optimal number of features for building machine
learning models was determined using the recursive fea-
ture elimination (RFE) technique. Subsequently, classifica-
tion models were developed based on the expression levels
of candidate-secreted biomarkers. Finally, the expression
levels and clinical associations of these candidate biomark-
ers were validated using additional transcriptomic data
from the TCGA database.

Objectives

This research aimed to discover novel secreted biomark-
ers for diagnosing ccRCC by integrating bioinformatics and
machine learning techniques with public transcriptomics
data.

Materials and methods
Transcriptomics datasets

Three microarray datasets of ccRCC and normal kidney
tissues, including GSE11151, GSE40435 and GSE53757,
were obtained from the GEO database (https://www.ncbi.
nlm.nih.gov/geo). The datasets GSE11151 and GSE53757
were generated using the Affymetrix Human Genome
U133 Plus 2.0 Array platform (Thermo Fisher Scientific,
Waltham, USA), which was utilized for transcriptional
profiling, while GSE40435 was based on the [llumina Hu-
manHT-12 V4.0 expression BeadChip platform (Illumina
Inc., San Diego, USA).

Differentially expressed gene analysis

The DEGs were identified by comparing ccRCC and nor-
mal kidney tissues using the GEO2R (https://www.ncbi.
nlm.nih.gov/geo/geo2r) with an adjusted p < 0.05 and abso-
lute log fold-changes >1.0 as criteria. GEO2R is a web-based
tool provided by the Gene Expression Omnibus (GEO)
for analyzing gene expression data. It allows researchers
to compare 2 or more groups of samples to identify differ-
entially expressed genes. Data visualization was performed
using a volcano plot in RStudio (https://rstudio.com). Ad-
ditionally, Venn diagrams (http://bioinformatics.psb.ugent.
be/webtools/Venn) were generated to display common
DEGs across the 3 transcriptomics datasets.

Gene expression analysis

Gene expression analysis was conducted on the GSE40435
dataset retrieved from the GEO database using the GEO-
query package in R (R Foundation for Statistical Com-
puting, Vienna, Austria).?’ Expression data were trans-
formed using a base-2 logarithmic scale to normalize
the distribution.


https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo/geo2r
https://www.ncbi.nlm.nih.gov/geo/geo2r
https://rstudio.com
http://bioinformatics.psb.ugent.be/webtools/Venn
http://bioinformatics.psb.ugent.be/webtools/Venn
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Identification of potential secreted
biomarkers in common DEGs

Potential secreted biomarkers in ccRCC were identified
based on overlapping genes between common DEGs and
a list of 1,665 secreted proteins from The Human Protein
Atlas (https://www.proteinatlas.org).?"2

Feature selection

The recursive feature elimination, based on the random
forest classifier, was employed to select the minimal set
of genes needed to create classification models. The fea-
ture-selection process was conducted using the scikit-learn
library (https://scikit-learn.org/stable/modules/generated/
sklearn.feature_selection.RFE.html). Feature subsets of
sizes 44, 20, 10, 5, 3, 2, and 1 were used for training and
evaluation. The performance of the random forest classifier
for each gene subset was assessed using several evaluation
metrics, including accuracy, precision, recall, and F1-score.

Machine learning for classification

Seven supervised machine learning algorithms, including
decision trees, random forests, logistic regression, K-near-
est neighbors, Gaussian naive Bayes (GNB), support vector
machines, and multilayer perceptrons (MLPs), were used
to develop classification models based on the selected poten-
tial secreted DEGs. The Python scikit-learn library (https://
scikit-learn.org) was used to implement these algorithms.
The transcriptomics data were split into training and test sets.
The training set was used to develop models with 7 machine
learning algorithms, and their performance was evaluated
on the test set. GridSearchCV (https://scikit-learn.org/1.5/
modules/generated/sklearn.model_selection.GridSearchCV.
html) was employed to optimize hyperparameters for each
model. The classification performance of each model was
assessed using accuracy, precision, recall, F1-score, confusion
matrix, and receiver operating characteristic (ROC) curves.

Validation of biomarkers gene expression
and clinical association

The expression levels of potential biomarkers in ccRCC
and normal kidney tissue were validated using the TCGA
dataset, which includes 523 ccRCC samples and 100 normal
kidney samples, employing Gene Expression Profiling In-
teractive Analysis (GEPIA) (http://gepia.cancer-pku.cn).?2*
Additionally, the correlation between the expression levels
of potential biomarkers and the survival of ccRCC patients
was analyzed using GEPIA.

Statistical analyses

Inthe GEPIA, the significant difference between the 2 groups
was compared using Student’s t-test. The correlation between
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gene expression and both overall survival (OS) and disease-
free survival (DFS) in ccRCC patients was evaluated using
Kaplan—Meier analysis, accompanied by a log-rank test
and hazard ratio (HR) calculation. Statistical significance
was considered to be p < 0.05. In the box plots, the central
line represents the median value of the data. The boxes
extended from the 1% quartile (Q1) to the 3'¢ quartile (Q3),
representing the interquartile range (IQR). The whiskers
extended to the most extreme data points within 1.5 times
the IQR from Q1 and Q3. Data points beyond this range
were considered outliers.

Results
Identification of common DEGs in ccRCC

Differentially expressed genes were identified by com-
paring ccRCC and normal kidney tissues from 3 GEO
datasets: GSE53757, GSE40435 and GSE11151. The selec-
tion criteria were an adjusted p < 0.05 and an absolute
log fold change >1.0. Based on these criteria, 2,917 DEGs
were identified in GSE11151, 1,521 in GSE40435 and 6,665
in GSE53757. Specifically, GSE11151 had 1,180 upregulated
and 1,737 downregulated genes; GSE40435 had 680 upreg-
ulated and 841 downregulated genes; and GSE53757 had
3,124 upregulated and 3,541 downregulated genes (Fig. 1,
Table 1).

Table 1. Number of differentially expressed genes (DEGs) in 3 ccRCC
datasets

GEO ‘ ‘ Upregulated Downregulated
accession genes genes
GSE11151 2917 1,180 1,737
GSE40435 1,521 680 841
GSE53757 6,665 3,124 3,541

ccRCC - clear cell renal cell carcinoma.

We further identified the common DEGs using a Venn
diagram (Fig. 2). There were 274 common DEGs across
all 3 datasets (GSE11151, GSE40435 and GSE53757). This
identification of common DEGs could potentially help
to identifying potential candidate biomarkers for ccRCC.

Identification of potential secreted DEGs
in ccRCC

The list of human secretome proteins from The Hu-
man Protein Atlas, which includes 1,665 human-secreted
proteins, was used to identify which DEGs potentially
encode secreted proteins. A Venn diagram was used
to determine the secreted proteins among the 274 com-
mon DEGs (Fig. 3). We identified 44 DEGs that poten-
tially encode secreted proteins, including ADM, AN-
GPT2, ANGPTL4, ANXAI, ANXA2, APOCI, CIQA,


https://www.proteinatlas.org
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html
https://scikit-learn.org
https://scikit-learn.org
https://scikit-learn.org/1.5/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/1.5/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/1.5/modules/generated/sklearn.model_selection.GridSearchCV.html
http://gepia.cancer-pku.cn
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Fig. 1. Volcano plots demonstrating differentially expressed genes in 3 Gene Expression Omnibus (GEO) datasets (GSE11151, GSE40435 and GSE53757).
The X-axis represents the log2 fold change, and the Y-axis represents the negative logarithm (base 10) of the p-value. Significantly upregulated genes are

indicated in red, downregulated genes in blue, and nonsignificant genes in grey.

GSE - GEO accession number. A p-value < 0.05 was considered statistical significance.

Fig. 2. Common DEGs in ccRCC across 3 Gene Expression Omnibus

(GEO) datasets. The Venn diagram displays the overlap of DEGs among

the 3 datasets. Numbers within the sections indicate the count of DEGs
specific to 1 dataset or shared among multiple datasets. DEGs in GSE11151,
GSE40435 and GSE53757 are represented in green, blue and red,
respectively. The bar chart shows the total number of DEGs in each dataset

DEGs - differentially expressed genes; ccRCC - clear cell renal cell
carcinoma; GSE - GEO accession number.

CIQC, C3, CCL20, CD14, CHSY1, COL4A1, CTHRCI,
CXCL10, CXCL9, EMILIN2, GNLY, GZMA, GZMH,
IGFBP3, INHBB, ISG15, LAMA4, LAMCI, LGALSI,

Fig. 3. Potentially secreted DEGs in ccRCC. The Venn diagram illustrates
the overlap between the secreted gene list from The Human Protein
Atlas (HPA_Secrete) and the common DEGs in ccRCC. The green

circle represents the HPA_Secrete, with 1,665 genes. The blue circle
represents the common DEGs in ccRCC, with 274 genes. The intersection
of the 2 circles shows 44 potential secreted DEGs in ccRCC

DEGs - differentially expressed genes; ccRCC - clear cell renal cell carcinoma.

LOX, LY86, LY96, LYZ, NPTX2, OLFML2B, PLA2G7,
PTHLH, RNASE6, RNASET2, SPARC, SRGN, STC2,
TIMPI, TNFAIP6, VASH1, VEGFA, and VWF. The over-
lap of the DEGs with the secretome database indicates
that these 44 genes are strong candidates for secreted
biomarkers for ccRCC.
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Feature selection

The 44 DEGs that potentially encode secreted proteins
in ccRCC were subjected to feature selection using the RFE
technique based on the RandomForestClassifier. Various
numbers of gene sets (1, 2, 3, 5, 10, 20, and 44 genes) were se-
lected during the feature selection process. The RFE results
indicated that sets of 3 and 5 genes resulted in the great-
est accuracy (97.5%) (Table 2). However, we were able
to achieve an accuracy of 96.3% using only 2 genes, namely
insulin-like growth factor binding protein 3 (/GFBP3) and
lectin, galactoside-binding, soluble, 1 (LGALSI), which
we used to construct classification models.

The expression of IGFBP3 and
LGALS1 in ccRCC patients based
on the GEO dataset

The expression levels of IGFBP3 and LGALSI were
measured in adjacent non-tumor renal tissues and ccRCC
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tissues using the GSE40435 dataset. The pair plot revealed
distinct clustering by tissue type, indicating a potential
correlation between the expression levels of these genes
and tissue classification (Fig. 4A). Additionally, the box
plot showed that both /IGFBP3 and LGALSI expression
levels were significantly elevated in ccRCC tissues com-
pared to adjacent non-tumor renal tissues (Fig. 4B). These
findings suggested that IGFBP3 and LGALSI may serve
as potential biomarkers for distinguishing ccRCC tissues
from adjacent non-tumor renal tissues.

The performance of the classification
model based on the expression levels
of IGFBP3 and LGALS1

We evaluated the perfo rmance of 7 supervised machine
learning algorithms, including Decision Trees, Random
Forests, Logistic Regression, K-nearest Neighbors, Gauss-
ian Naive Bayes, Support Vector Machines, and Multi-
layer Perceptrons, using the expression levels of IGFBP3

Fig. 4. Expression levels of IGFBP3 and LGALST in adjacent non-tumor renal tissues and ccRCC tissues. A. A pair plot displays the distribution and correlation
of IGFBP3 and LGALS1 expression levels in adjacent non-tumor renal tissues (blue, Class 0) and ccRCC tissues (orange, Class 1); B. Box plots display

the expression levels of IGFBP3 and LGALST between adjacent non-tumor renal tissues (Class 0) and ccRCC tissues (Class 1). In the box plots, the central

line indicated the median, the box represented the interquartile range (IQR; Q1 to Q3) and the whiskers extended to 1.5 times the IQR from the quartiles.

Outliers were plotted as individual points

IGFBP-3 — insulin-like growth factor binding protein 3; LGALST - lectin, galactoside-binding, soluble, 1; ccRCC - clear cell renal cell carcinoma.

Table 2. Performance of different feature sets in the feature selection process using RFE

Precision
Features Accuracy [%]
normal ccRCC

44 96.3 0.96 0.97
20 96.3 0.96 0.97
10 96.3 0.96 097
5 97.5 0.96 1.00
3 97.5 0.96 1.00
2 96.3 0.96 097
1 914 0.93 0.89

Recall F1-score
normal ccRCC normal ccRCC
0.98 0.94 0.97 0.96
0.98 0.94 0.97 0.96
0.98 0.94 0.97 0.96
1.00 0.94 0.98 0.97
1.00 0.94 0.98 0.97
0.98 0.94 0.97 0.96
091 0.91 092 0.90

RFE - recursive feature elimination; ccRCC - clear cell renal cell carcinoma.
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Table 3. Classification performance of optimized decision tree and random forest models based on IGFBP3 and LGALS1

Precision [%] Recall [%] F1-score [%]
Model Accuracy [%]
normal ccRCC normal ccRCC normal ccRCC
DT 98.04 0.98 0.96 1.00 1.00 0.96 0.98 0.98
RF 98.04 0.98 0.96 1.00 1.00 0.96 0.98 098

IGFBP3 - insulin-like growth factor binding protein 3; LGALS1 — lectin, galactoside-binding, soluble, 1; DT — decision tree; RF — random forest; AUC — area
under the curve; ccRCC - clear cell renal cell carcinoma.

Fig. 5. Classification performance of 7 supervised machine learning
algorithms. The bar chart demonstrates the accuracy scores

of 7 supervised machine learning algorithms for classifying ccRCC.

The decision tree and random forest algorithms achieved the highest
accuracy scores, indicated by the red bars, while the other algorithms are
represented by white bars

ccRCC - clear cell renal cell carcinoma.

and LGALSI. All algorithms demonstrated high accuracy,
ranging from 96% to 98%. The Decision Tree and Random
Forest models achieved the highest accuracy scores (Fig. 5).
Consequently, these 2 models were selected for further
optimization using GridSearchCV. After optimization,
both models exhibited high performance, with an accuracy
0f98.04% and an area under the ROC curve (AUC) of 0.98
(Table 3, Fig. 6).

Fig. 6. Results from hyperparameter
tuning of decision tree and random
forest models. A. The confusion
matrices show the performance

of the decision tree and random
forest models after hyperparameter
tuning; B. The ROC curves for

the decision tree and random
forest models. Both models
achieved a high AUC score of 0.98,
indicating excellent performance

in distinguishing between

the adjacent non-tumor renal tissues
(Class 0) and ccRCC tissues (Class 1)

ROC - receiver operating
characteristic; AUC — area under

the curve; ccRCC - clear cell renal cell
carcinoma.
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Validation of potential secreted
biomarkers expression and clinical
association based on the TCGA dataset

The expression levels of IGFBP3 and LGALSI were con-
firmed using the TCGA dataset using the GEPIA online
tool. Both /IGFBP3 and LGALSI were differentially ex-
pressed in kidney renal clear cell carcinoma (KIRC) sam-
ples, showing significantly higher expression compared
to normal kidney tissue (Fig. 7).

The results of the survival analysis based on the TCGA
dataset indicated that high IGFBP3 expression levels
were associated with significantly reduced OS and DFS
in ccRCC patients. Similarly, we found that high expression
of LGALSI correlated with a trend of decreased OS and
significantly affected DFS in ccRCC patients (Fig. 8A,B).

Discussion

Our bioinformatics analyses of 3 ccRCC datasets from
the GEO identified 274 common DEGs. We then used
the list of secreted proteins from the Human Protein At-
las to identify 44 potential secreted biomarkers for ccRCC.

The RFE technique, based on the RandomForestClas-
sifier, highlighted a smaller subset of 2 genes that pro-
vided high classification accuracy, including /[GFBP3 and
LGALSI. Decision Tree and Random Forest models based
on the expression levels of IGFBP3 and LGALSI demon-
strated particularly high classification accuracy, under-
scoring their potential in diagnosing ccRCC patients.
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Currently, several potential secreted biomarkers for
diagnosing ccRCC have been identified. Carbonic an-
hydrase IX (CA9) is considered one of the promising
biomarkers for ccRCC. Serum levels of CA9 were sig-
nificantly higher in ¢ccRCC patients than in those with
non-CCRCC and benign tumours.?> A similar finding
was reported in 2018, in which plasma CA9 was evalu-
ated in patients with ccRCC compared with patients
with benign tumors and healthy controls.2® However,
the diagnostic performance of secreted CA9 in ¢ccRCC
remains unclear. Yang et al. identified 3 potential serum
biomarkers for ccRCC using matrix-assisted laser desorp-
tion/ionization time-of-flight mass spectrometry. These
biomarkers demonstrated a mean sensitivity of 88.38%
and a mean specificity of 91.67%.%” In 2017, Raf kinase
inhibitor protein and phosphor Rafkinase inhibitor were
also identified as potential urinary biomarkers for ccRCC
using a proteomics technique with an AUC of 0.93.28
In addition, Bao et al. identified hub genes associated
with ¢cRCC from GEO dataset (GSE47352). They found
that hub genes could distinguish ccRCC from paired nor-
mal tissue with an AUC ranging from 0.517 to 0.945.%
Compared to the performance of currently established
biomarkers for ccRCC diagnosis, the present study used
a combination of bioinformatics and machine learning
algorithms based on the expression levels of IGFBP3 and
LGALSI to achieve a notably higher diagnostic accuracy
0f 98.04% and an AUC of 0.98. Our results demonstrated
the value of machine learning in achieving higher accu-
racy and consistency, which could lead to improved early
detection and patient outcomes.

Fig. 7. Expression of IGFBP3

and LGALST in the The Cancer
Genome Atlas (TCGA) dataset.
Box plots display the expression
levels of IGFBP3 and LGALS1

in kidney renal clear cell
carcinoma (KIRG; red plot)
tissues and non-tumor renal
tissues (gray plot). In the box
plots, the central line indicated
the median, the box represented
the interquartile range (IQR;

Q1 to Q3) and the whiskers
extended to 1.5 times the IQR
from the quartiles. Outliers were
shown as individual points

IGFBP-3 — insulin-like growth
factor binding protein 3;

LGALST - lectin, galactoside-
binding, soluble, 1. *p < 0.05.
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Fig. 8. Impact of IGFBP3 and LGALS1 expression on survival in ccRCC patients. The overall survival (A) and the disease-free survival (B) of ccRCC patients
based on IGFBP3 and LGALST expression levels. Patients were divided into high- and low-expression groups

IGFBP-3 — insulin-like growth factor binding protein 3; LGALST - lectin, galactoside-binding, soluble, 1, ccRCC - clear cell renal cell carcinoma; HR — hazard ratio.

Transcriptomic data from the GEO and TCGA databases
revealed high expression levels of IGFBP3 and LGALSI
in ccRCC tissue compared to normal kidney tissue. In ad-
dition, high expression of these genes was associated with
shorter OS and DFS in ccRCC patients, underscoring their
potential utility as diagnostic markers and prognostic
indicators.

In cancer cells, IGFBP3 regulates cell proliferation and
apoptosis through both IGF-dependent and indepen-
dent mechanisms. IGFBP3 depletion suppresses glioma
cell growth by inducing DNA damage and apoptosis.

Furthermore, suppression of IGFBP3 markedly increased
the survival of brain-tumor-bearing mice.?° Suppression
of the IGFBP3-AKT/STAT3/MAPK-Snail signaling path-
way by cyclovirobuxine resulted in a reduction of cell
viability, proliferation, angiogenesis, migration, and inva-
sion in ccRCC cells.?! Overexpression of IGFBP3 has been
reported in several cancers, including breast cancer and
nasopharyngeal carcinoma.3?33 IGFBP3 expression is as-
sociated with adverse outcomes such as metastasis, poor
responses to chemoradiotherapy and decreased survival
rates in cancer patients?*-3> Moreover, serum IGFBP3
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is an independent prognostic risk factor in esophageal
squamous cell carcinoma and esophagogastric junction
adenocarcinoma.?®3” Qverexpression of IGFBP3 has also
been reported in ccRCC. A study by Braczkowski et al.
demonstrated /GFBP3 overexpression in ¢ccRCC com-
pared to adjacent non-cancerous kidney tissues using
a quantitative reverse transcription polymerase chain
reaction (RT-qPCR) assay.®® The distribution of IGFBP3
genotypes was significantly associated with the histo-
logical grade and clinical stage of ccRCC patients.® This
information suggests that IGFBP3 could serve as a diag-
nostic and prognostic biomarker for ccRCC.

LGALSI, also known as galectin-1, is involved in vari-
ous processes associated with cancer development
and progression, including tumor transformation, cell
cycle regulation, apoptosis, adhesion, migration, and
inflammation.*®* Huang et al. reported that the sup-
pression of LGALSI led to reduced cell invasion, clo-
nogenic ability, epithelial-mesenchymal transition, and
angiogenesis in renal cancer cell lines by upregulating
C-X-C chemokine receptor type 4 through nuclear fac-
tor kappa B (NF-kB) activation.*’> Similarly, a report
from 2014 highlighted that LGALSI plays a critical role
in promoting the migration and invasion of ccRCC cells
by activating the hypoxia-inducible factors/mammalian
target of rapamycin signaling pathway.*®> Overexpres-
sion of LGALSI is correlated with tumor aggressiveness,
including growth, cell migration, invasion, metastasis,
and poor prognosis in several cancers such as hepa-
tocellular carcinoma (HCC), upper urinary urothelial
carcinoma, ovarian cancer, and squamous cervical can-
cer.**18 The potential of LGALSI as a serum biomarker
has also been demonstrated in several cancers. Elevated
plasma levels of galectin-1 have been found in pancre-
atic cancer,? classical Hodgkin lymphoma®® and serous
ovarian carcinoma. High serum levels of galectin-1 are
associated with metastasis in epithelial ovarian cancer®!
and colorectal cancer.’? In ¢ccRCC, LGALSI expression
was significantly associated with higher clinical grade
and stage®® and favorable outcomes from anti-PD1 treat-
ment.>* These results indicate the potential of using
LGALSI as a prognostic marker and therapeutic target
in ccRCC patients.

The results of our integrated bioinformatics and ma-
chine learning analysis indicate that IGFBP3 and LGALSI
are promising potential secreted biomarkers for the diag-
nosis of ccRCC.

Limitations

It is important to acknowledge the limitations of this
study. The findings were derived from publicly available
datasets from the GEO and the TCGA databases. The se-
lection of these datasets may introduce potential biases,
as they may not fully represent the broader patient popu-
lation. Furthermore, the generalizability of our results
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may be constrained by variations in sample collection,
processing methods and demographic factors across dif-
ferent studies. Accordingly, further research is planned
to validate these findings in independent cohorts using
serum or urine of ccRCC patients compared to healthy
controls, with the objective of ensuring robustness and
applicability to clinical settings.

Conclusions

The use of bioinformatics and machine learning enabled
the identification of IGFBP3 and LGALSI as potential se-
creted biomarkers for ccRCC. The classification models
based on IGFBP3 and LGALS1 demonstrated the capacity
to effectively differentiate ccRCC patients from healthy
controls. Furthermore, the expression levels of IGFBP3 and
LGALS1 were found to be useful not only for the diagno-
sis of ccRCC but also as prognostic biomarkers to predict
patient outcomes.
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