Safety and efficacy of acetylcholinesterase inhibitors for Alzheimer's disease: A systematic review and meta-analysis

Yaqi Gao^{1,2,A,D-F}, Yulin Liu^{1,B,C}, Yanfang Li^{1,B,E}

- ¹ College of Nursing, Hebi Polytechnic, Henan, China
- ² College of Health Care, Sehan University, Yeongam, South Korea
- A research concept and design; B collection and/or assembly of data; C data analysis and interpretation;
- D writing the article; E critical revision of the article; F final approval of the article

Advances in Clinical and Experimental Medicine, ISSN 1899-5276 (print), ISSN 2451-2680 (online)

Adv Clin Exp Med. 2024;33(11):1179-1187

Address for correspondence

Yaqi Gao

E-mail: yaqigao01@hotmail.com

Funding sources

This study was supported by the Project in High-Tech Research Centre for home care products for the elderly patients with dementia and disability in Hebi (project No. Heke (2021)45-14), and by the Young Backbone Teacher's Project of Henan Higher Vocational School (project No. 2020GZGG121).

Conflict of interest

None declared

Received on March 20, 2023 Reviewed on April 23, 2023 Accepted on November 28, 2023

Published online on March 1, 2024

Abstract

Alzheimer's disease (AD) affects millions of people worldwide. The most commonly used drugs are acetylcholinesterase inhibitors, i.e., donepezil, galantamine and rivastigmine, which increase levels of acetylcholine. However, the exact efficacy and safety of acetylcholinesterase inhibitors in the treatment of AD is still unclear. The main objective of the current study was to determine the exact safety and efficacy profile of acetylcholinesterase inhibitors in the treatment of AD by conducting a systematic review and meta-analysis of clinical trials according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We conducted a web-based literature search of PubMed and clinical trial websites using relevant keywords. Data were extracted from eligible records and pooled as mean difference (MD) or risk ratio (RR) values with their 95% confidence interval (95% CI) using Review Manager software (v. 5.3 for Windows). Heterogeneity was calculated using χ^2 and I^2 tests. The standard mean difference (SMD) was -0.33 [-0.52, -0.13] for donepezil, -0.48 [-0.58, -0.38] for galantamine and -0.65 [-1.06, -0.23] for rivastigmine, indicating a significant effect of these drugs on cognitive outcomes. Here we show the significant effects of all available acetylcholinesterase inhibitors on cognitive function in patients with AD. However, further studies are needed to draw valid conclusions about the effects of acetylcholinesterase inhibitors on functional outcomes and adverse events.

Key words: Alzheimer's disease, galantamine, donepezil, rivastigmine, acetylcholinesterase inhibitors

Cite as

Gao Y, Liu Y, Li Y. The safety and efficacy of acetylcholinesterase inhibitors for Alzheimer's disease: A systematic review and meta-analysis. *Adv Clin Exp Med*. 2024;33(11):1179—1187. doi:10.17219/acem/176051

DOI

10.17219/acem/176051

Copyright

Copyright by Author(s)
This is an article distributed under the terms of the
Creative Commons Attribution 3.0 Unported (CC BY 3.0)
(https://creativecommons.org/licenses/by/3.0/)

Introduction

Alzheimer's disease (AD) is a neurodegenerative disease that affects millions of peoples across the globe. Many researchers have documented the abnormal aggregation of β -amyloid in the brains of patients with AD. This abnormal aggregation leads to the activation of various inflammatory and oxidative stress signaling pathways, ultimately leading to neuronal degeneration. Structural and functional abnormalities have been observed in specific regions of the brain, particularly the hippocampus and prefrontal cortex, in patients with AD. $^{1-3}$ Mitochondrial dysfunctions also play a significant role in the neurodegenerative diseases, including AD. Tanaka et al. reviewed the functions of mitochondria in the central nervous system (CNS) and their alterations in neurodegenerative diseases. 4

In normal brain physiology, there is a balance between excitatory and inhibitory neurotransmitters. The major excitatory neurotransmitter in the CNS is glutamate, while the major inhibitory neurotransmitter is gamma-amino-butyric acid (GABA). Glutamate acts on NMDA receptors, while GABA acts on GABA receptors. In neurodegenerative diseases, levels of excitatory neurotransmitters increase, leading to excitotoxicity.⁵

There are a number of mechanisms involved in the pathogenesis of AD. Oxidative stress is one of the major mechanisms involved in the development of AD. Under normal physiological conditions, reactive oxygen species (ROS), reactive nitrogen species (RNS), etc., are generated in mitochondria and scavenged by endogenous antioxidant enzymes such as glutathione, superoxide dismutase (SOD), catalase, etc. Overall, there is balance between generation of reactive species and anti-oxidant enzymes. However, the imbalance (increase in level of reactive species and decrease in level of endogenous antioxidant enzymes) results in the activation of oxidative stress signaling pathways.^{6,7}

Increased oxidative stress results in the alteration of the mitochondrial membrane potential. 8,9 The altered mitochondrial potential causes increased expression of apoptotic proteins such as BAX and decreased expression of antiapoptotic proteins such as Bcl-2. This imbalance activates the caspase-dependent and caspase-independent pathways, which ultimately leads to cell death. $^{10-15}$

Reports in the literature have indicated cognitive dysfunctions in patients with AD.^{15–20} The exact etiology of AD is unclear; however, it is known that there is an impairment of central cholinergic neurons in patients with AD.²¹ Common AD-associated neuropsychiatric symptoms include depression, anxiety, agitation, aggression, and apathy.^{22–24} Currently, very few drugs are available for the AD treatment. The majority of available drugs inhibit the enzyme cholinesterase, which is responsible for degradation of acetylcholine into choline and acetic acid. Inhibition of cholinesterase results in the increased level of acetylcholine. The well-known cholinesterase inhibitors

used to treat AD are donepezil, rivastigmine and galantamine. ²⁵ These have been used alone and in combination with memantine. ²⁶ However, the exact efficacy and safety of acetylcholinesterase inhibitors in the treatment of AD is still unclear.

Objectives

The main objective of this study was to determine the exact safety and efficacy profile of acetylcholinesterase inhibitors in the treatment of AD by conducting systematic review and meta-analysis of clinical studies according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The overall estimate measure was calculated in terms of standard mean difference (SMD) for continuous data, whereas the odds ratio (OR) or relative risk was calculated for dichotomous data to examine overall safety and efficacy of acetylcholinesterase inhibitors in clinical trials.

Materials and methods

Search strategy

Relevant studies were searched in PubMed from inception to October 2022. The followings MeSH terms were used: "Alzheimer disease" or "AD," "donepezil," "galantamine," and "rivastigmine," with a proper use of Boolean operators.

Selection criteria

The studies were selected based on inclusion and exclusion criteria. The inclusion criteria were as follows: 1) double-blind randomized clinical trials (RCTs) testing at least 1 acetylcholinesterase inhibitor; 2) treatment duration at least 52 weeks; 3) one of the cognitive, functional changes or adverse events were reported. Both sexes and all age groups were included. Non-randomized clinical trials, case reports, case series, narrative reviews, and meta-analyses were excluded. Studies published in languages other than English were also excluded. Two authors (YG and YL) screened the studies based on titles and abstracts. The full text of selected studies was downloaded into a folder. The quality assessment of each study was also assessed to reduce the risk of bias in the estimate of effects.

Data extraction

Data from selected studies were extracted by 2 authors (YG and YL) into a suitable Excel spreadsheet. The columns of Excel spreadsheets were as follows: authors and type of the study.

Data analysis

All data were analyzed using Rev Man 5 (Cochrane Collaboration, London, UK). For continuous data, the overall estimate was calculated as the SMD with 95% confidence interval (95% CI). For dichotomous data, overall estimate was calculated as ORs. The SMD was preferred to the mean difference (MD) due to variations among scales used for cognitive and functional outcomes between the studies. Dichotomous data were in terms of adverse events; therefore, OR was preferred. Heterogeneity was assessed using the Cochran's Q statistic and I² tests. The random effects model was used due to variations among included studies. The inverse variance method was used for continuous data and the Mantel–Haenszel method was used for dichotomous data.

Results

Selection of studies

A total of 2,300 studies were found in PubMed, which were further screened based on inclusion and exclusion criteria. A total of 16 studies were selected for quantitative

analysis regarding efficacy of acetylcholinesterase inhibitors, while 15 studies were found relevant regarding safety of acetylcholinesterase inhibitors. Of the 16 studies, 6 were related to donepezil, $^{27-32}\,6$ were related to galantamine $^{33-37}$ and the remaining 4 studies were related to rivastigmine. $^{38-42}$ Among the 15 studies related to safety, $9^{17-31,43-46}$ were related to donepezil and the remaining 6 were related to galantamine. $^{33-38}$ The flow of study selection is presented in Fig. 1. The characteristics of the included studies are provided in Table 1.

Efficacy of acetylcholinesterase inhibitors

The efficacy of individual acetylcholinesterase inhibitors is compiled below.

Donepezil

Cognitive function

The SMD was found to be -0.33 [-0.52, -0.13], indicating a significant effect of donepezil on cognitive outcome. The forest plot along with the pooled effect, i.e., SMD, is presented in Fig. 2A. The heterogeneity between studies was 38%, as indicated by the I^2 statistic.

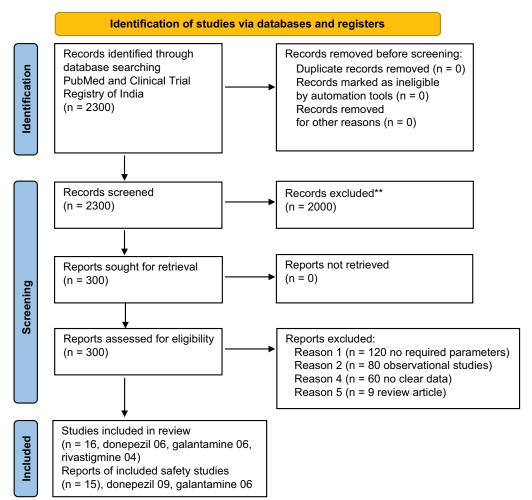


Fig. 1. Selection of studies as per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines

Table 1. Characteristics of included studies

Authors and year of publication	Location	Age years (M ±SD)	Total sample size	Disease severity	Duration [weeks]
Haig et al., 2014 ²⁸	USA	70.3 ±7.94 (placebo) 70.5 ±8.31 (drug)	63 (placebo) 60 (drug)	mild to moderate	12
Johannsen et al., 2006 ²⁹	Denmark	71.4 ±9.3 74.1 ±7.6	103 (placebo) 99 (drug)	mild to moderate	12
Maher-Edward et al., 2011 ³⁰	UK	71.6 ±6.72 (placebo) 71.1 ±8.39	61 (placebo) 67 (drug)	mild to moderate	24
Seltzer, 2004 ³¹	USA	73.3 ±8.8 (placebo) 73.3 ±9.6	57 (placebo) 96 (drug)	mild to moderate	24
Tune et al., 2003 ³²	USA	72.2 ±9.57 (placebo) 73.7 ±5.25 (drug)	14 (placebo) 14 (drug)	mild to moderate	24
Brodaty et al., 2005 ³³	Australia	-	296 (placebo) 296 (drug)	mild to moderate	6 months
Raskind et al., 2000 ³⁴	USA	-	207 (placebo) 202 (drug)	mild to moderate	6 months
Rockwood, 2001 ³⁵	USA, Canada, UK, South Africa, Australia, and New Zealand	74.6 ±0.68 75.2 ±0.45	120 (placebo) 239 (drug)	patients with probable Alzheimer's disease	3 months
Gault et al., 2016 ⁴⁴	USA	73.2 ±7.39 (placebo) 75.1 ±7.75 (drug)	104 (placebo) 76 (drug)	mild to moderate	24
Jia et al., 2017 ⁴⁵	China	70.0 ±9.57 71.6 ±8.56	156 (placebo) 157 (drug)	severe	24
Tariot et al., 2001 ⁴⁶	USA	85.9 ±9.25 85.4 ±8.5	105 (placebo) 103 (drug)	mild to moderate	24
Black et al., 2007 ⁴⁷	Canada	78.0 ±8.04 (placebo) 78.0 ±8.20	167 (placebo) 176 (drug)	severe	24
Gault et al., 2015 ⁴⁸	USA	73.6 ±8.23 73.9 ±7.92	68 (placebo) 68 (drug)	mild to moderate	12
Homma et al., 2008 ⁴⁹	Japan	79.7 ±7.5 76.9 ±7.9	102 (placebo) 92 (drug)	severe	24
Winblad et al., 2006 ⁵⁰	Sweden	85.3 ±5.9 84.5 ±6.0	120 (placebo) 128 (drug)	severe	24
Feldman et al., 2001 ⁵¹	Canada	74.0 ±11 73.2 ±10	146 (placebo) 144 (drug)	moderate to severe	24

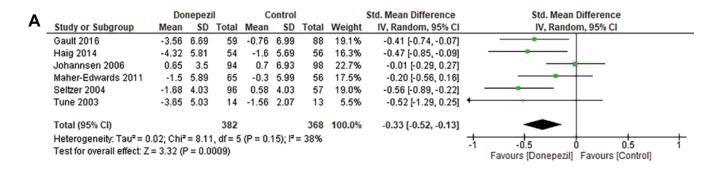
M \pm SD – mean \pm standard deviation.

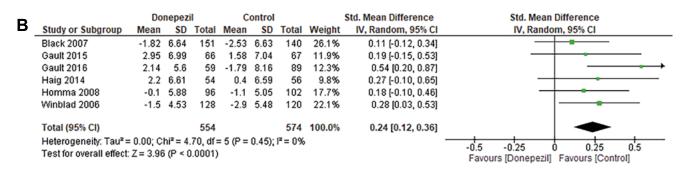
Functional outcome

The effects of donepezil on the functional outcomes were also found to be significant compared to the control group, as indicated by the SMD values, i.e., 0.24 [0.12, 0.36]. The forest plot together with the pooled effect is shown in Fig. 2B. No heterogeneity between studies was found, as indicated by the I^2 statistic.

Adverse events

The overall OR was found to be 1.22 [0.98, 1.52], indicating a non-significant association of donepezil with adverse events. The forest plot together with the pooled effect is shown in Fig. 2C. No heterogeneity between studies was found.


Galantamine


Cognitive function

The SMD was found to be -0.48 [-0.58, -0.38], indicating a significant improvement in cognitive functions in patients with AD compared to the control group. The forest plot together with pooled effect is shown in Fig. 3A. The heterogeneity between studies was 29%, as indicated by the I^2 statistic.

Functional outcomes

The effect of galantamine on functional outcome was not significant, as indicated by the SMD, i.e., 0.17 [-0.08, 0.43]. The forest plot together with the pooled effect is shown in Fig. 3B. However, the heterogeneity between studies was very high (83%) (Fig. 3B).^{29,47,48}

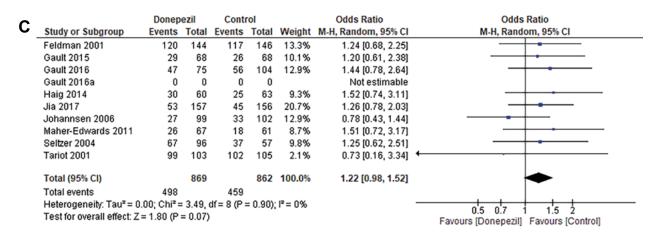
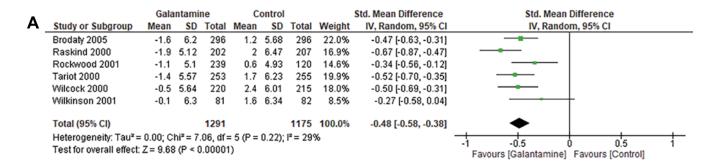
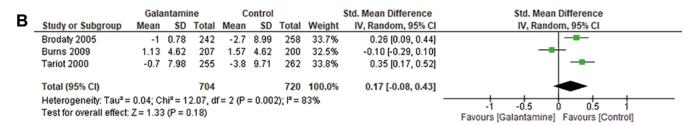


Fig. 2. Effect of donepezil. A. Forest plot + pooled effect on cognitive outcomes, standard mean difference (SMD) with 95% confidence interval (95% CI); B. Forest plot + pooled effect on functional outcomes, SMD with 95% CI; C. Forest plot + pooled effect on adverse events, odds ratio (OR) with 95% CI

Adverse events

The overall OR was found to be 2.34 [1.35, 4.08], indicating a significant association. The forest plot together with the pooled effect is shown in Fig. 3C. The heterogeneity between studies was 73%, as indicated by the I^2 statistic.


Rivastigmine


Cognitive function

The overall estimate, i.e., SMD, was found to be -0.65 [-1.06, -0.23], indicating a significant improvement in cognitive functions in the rivastigmine group compared to the control group. The forest plot together with the pooled effect is shown in Fig. 4. The heterogeneity between studies was very high, i.e., 92% (I^2 statistic).

We did not find sufficient studies for meta-analysis regarding functional outcomes and adverse events related to rivastigmine.

Overall, the results of our meta-analysis showed that all available acetylcholinesterase inhibitors, i.e., donepezil, galantamine and galantamine, significantly improved cognitive functions in patients with AD. However, the results for galantamine and rivastigmine should be considered with caution due to high heterogeneity of the included studies. Therefore, physicians could consider any of the available acetylcholinesterase inhibitors to improve cognitive function in patients with AD. Nonetheless, only the donepezil group showed a significant improvement in functional outcome. There is also insufficient data on rivastigmine in terms of functional outcomes and adverse events.

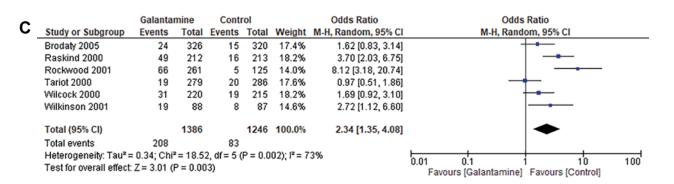


Fig. 3. Effect of galantamine. A. Forest plot + pooled effect on cognitive outcomes, standard mean difference (SMD) with 95% confidence interval (95% CI); B. Forest plot + pooled effect on functional outcomes, SMD with 95% CI; C. Forest plot + pooled effect on adverse events, odds ratio (OR) with 95% CI

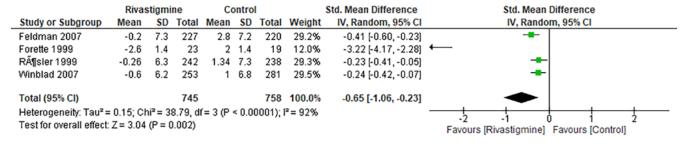


Fig. 4. Effect of rivastigmine on cognitive outcomes (forest plot + pooled effect), standard mean difference (SMD) with 95% confidence interval (95% CI)

Discussion

Despite significant advances in our understanding of the CNS structure and function, the discovery and clinical development of novel medications for many CNS disorders has proven difficult.^{53–58} Alzheimer's disease is a CNS disorder that worsens over time.^{59,60}

The diagnosis of AD relies mainly on behavioral assessment. Many studies are ongoing to identify specific peripheral biomarkers.⁶¹ The etiology of AD is also unclear.⁶² In AD, cells that produce and use acetylcholine are

damaged. Acetylcholinesterase is one of the important enzymes that breakdowns acetylcholine into acetic acid and choline in the synaptic cleft. Acetylcholine is a major neurotransmitter that has many important roles, including cognition. It has been observed that the level of acetylcholine is decreased in patients with AD. Tacrine, donepezil, galantamine, and rivastigmine are

well-known acetylcholinesterase inhibitors approved for the management of patients with AD. However, tacrine has been withdrawn from the market due to its adverse reactions, particularly hepatotoxicity. Recently, monoclonal antibodies have also been approved for the treatment of AD, but their exact role is unclear. The efficacy and safety of acetylcholinesterase is also not known so far. Therefore, there is need of updated meta-analysis to find out exact profile of these inhibitors. Meta-analysis is a quantitative analysis that helps to draw a valid conclusion from clinical studies which helps the clinicians to make the right treatment decision. $^{68-70}$

We conducted a meta-analysis of clinical studies to determine the exact role of acetylcholinesterase inhibitors in the treatment of AD. We have found significant differences between the donepezil and placebo groups, between the galantamine and placebo groups and between the rivastigmine and placebo groups. The results of the current meta-analysis have shown significant improvement in cognitive functions of patients with AD in the donepezil, galantamine and rivastigmine groups compared with the control groups. To the best of our knowledge, very few meta-analyses have been conducted so far to examine the efficacy and safety profile of available acetylcholinesterase inhibitors. Kobayashi et al. have conducted a Bayesian network metaanalysis to compare the efficacy and safety of cholinesterase inhibitors in patients with mild-to-moderate AD.71 The results of the analysis also indicated the significant efficacy of acetylcholinesterase inhibitors on cognitive functions of patients with mild-to-moderate AD. The effects on functional outcome and adverse events are different across the acetylcholinesterase inhibitors. Donepezil has shown a significant effect on functional outcome in patients with AD, whereas galantamine has shown nonsignificant effects. Furthermore, donepezil was not significantly associated with adverse events, whereas galantamine was significantly associated with adverse events. The meta-analysis of RCTs of galantamine in schizophrenia was conducted by Koola et al. and reported significant cognitive improvement.⁷²

The results of a meta-analysis conducted by Lanctôt et al. reported modest efficacy of acetylcholinesterase inhibitors and significantly higher rates of adverse events and treatment discontinuation. Cognitive outcomes were reported from randomized, double-blind, placebo-controlled, parallel-group trials of currently marketed cholinesterase inhibitors (ChEIs; donepezil, rivastigmine and galantamine) administered at therapeutic doses for at least 12 weeks. The proportions of participants who responded, experienced adverse events, discontinued treatment for any reason, or discontinued treatment due to adverse events were determined. Treatment with ChEIs produces a small but considerable therapeutic effect, as well as small but considerably increased rates of adverse events and treatment discontinuation. 73 Dou et al. conducted a network meta-analysis to compare the safety and efficacy of ChEIs and memantine in AD. The results of their analysis indicated a beneficial effect of acetylcholinesterase inhibitors on cognition, function and global changes, but not on neuropsychiatric symptoms. They observed that the severity of the disease and its clinical symptoms may have a major impact on the treatment selection.⁷⁴

As only studies that show a substantial difference are usually published, some completed researches were not released and therefore could not be included in the meta-analysis, which could lead to publication bias. Meta-analyses of other treatments, such as like glucagon-like peptide-1 receptor agonists and negative allosteric modulators of 5-hydroxytryptamine 2A receptors, were also conducted by the researchers across the globe. 75,76

Our meta-analysis showed that all 3 acetylcholinesterase inhibitors now in use, i.e., donepezil, galantamine and galantamine, significantly enhance patients' cognitive abilities. However, given to the substantial heterogeneity among the included trials, caution should be exercised in interpreting the results of galantamine and rivastigmine. To improve cognition of patients with AD, physicians can prescribe any of the currently approved acetylcholinesterase inhibitors. However, patients in the donepezil group showed considerable improvement in functional outcomes. Functional outcomes and adverse events are not adequately covered by the available data on rivastigmine. Therefore, in our opinion, based on current clinical evidence, among the available acetylcholinesterase inhibitors, donepezil should be considered by the physicians in the management of patients with AD unless contraindicated.

Limitations

We included only studies published in English. We also searched only 1 database, i.e., PubMed, for relevant studies. The heterogeneity among studies was quite high. There is a risk of publication bias in all the meta-analyses presented, but this could not be determined due to the small number of studies. The analysis was based on the strength of the drugs; dosage forms were not analyzed due to data unavailability. All available acetylcholinesterase inhibitors are effective in improving cognitive function, but further RCTs are required to find out the exact effects of available acetylcholinesterase inhibitors on functional outcomes or other AD parameters.

Conclusions

A meta-analysis of clinical data was conducted for the current study to determine the precise function of acetylcholinesterase inhibitors in the management of AD. We observed significant differences between the donepezil and placebo groups, the galantamine and placebo groups, and the rivastigmine and placebo groups. According to the current meta-analysis, donepezil, galantamine and rivastigmine significantly improved the cognitive abilities of patients with AD when compared to control groups. Based on current clinical evidence, donepezil has shown

significant improvement in cognitive and functional outcomes. We also found non-significant association of donepezil with adverse events. However, more RCTs are required to test the effects of galantamine and rivastigmine, particularly on functional outcomes and adverse events.

ORCID iDs

References

- Battaglia S, Thayer JF. Functional interplay between central and autonomic nervous systems in human fear conditioning. *Trends Neurosci*. 2022;45(7):504–506. doi:10.1016/j.tins.2022.04.003
- Battaglia S, Orsolini S, Borgomaneri S, Barbieri R, Diciotti S, Di Pellegrino G. Characterizing cardiac autonomic dynamics of fear learning in humans. Psychophysiology. 2022;59(12):e14122. doi:10.1111/psyp.14122
- Yan W, Peng YR, Van Zyl T, et al. Cell atlas of the human fovea and peripheral retina. Sci Rep. 2020;10(1):9802. doi:10.1038/s41598-020-66092-9
- Tanaka M, Szabó Á, Spekker E, Polyák H, Tóth F, Vécsei L. Mitochondrial impairment: A common motif in neuropsychiatric presentation? The link to the tryptophan–kynurenine metabolic system. *Cells*. 2022;11(16):2607. doi:10.3390/cells11162607
- Battaglia S, Di Fazio C, Vicario CM, Avenanti A. Neuropharmacological modulation of N-methyl-D-aspartate, noradrenaline and endocannabinoid receptors in fear extinction learning: Synaptic transmission and plasticity. *Int J Mol Sci.* 2023;24(6):5926. doi:10.3390/ijms24065926
- Praticò D. Evidence of oxidative stress in Alzheimer's disease brain and antioxidant therapy: Lights and shadows. *Ann NY Acad Sci.* 2008; 1147(1):70–78. doi:10.1196/annals.1427.010
- Perry G, Raina AK, Nunomura A, Wataya T, Sayre LM, Smith MA. How important is oxidative damage? Lessons from Alzheimer's disease. Free Radic Biol Med. 2000;28(5):831–834. doi:10.1016/S0891-5849(00) 00158-1
- 8. Kshirsagar S, Sawant N, Morton H, Reddy AP, Reddy PH. Protective effects of mitophagy enhancers against amyloid beta-induced mitochondrial and synaptic toxicities in Alzheimer disease. *Hum Mol Genet*. 2022;31(3):423–439. doi:10.1093/hmg/ddab262
- Perez Ortiz JM, Swerdlow RH. Mitochondrial dysfunction in Alzheimer's disease: Role in pathogenesis and novel therapeutic opportunities. Br J Pharmacol. 2019;176(18):3489–3507. doi:10.1111/bph.14585
- Erekat NS. Apoptosis and its therapeutic implications in neurodegenerative diseases. Clin Anat. 2022;35(1):65–78. doi:10.1002/ca.23792
- Dhiman A, Sharma R, Singh RK. Target-based anticancer indole derivatives and insight into structure–activity relationship: A mechanistic review update (2018–2021). *Acta Pharm Sin B*. 2022;12(7):3006–3027. doi:10.1016/j.apsb.2022.03.021
- Bamberger ME, Landreth GE. Inflammation, apoptosis, and Alzheimer's disease. Neuroscientist. 2002;8(3):276–283. doi:10.1177/1073858402 008003013
- Obulesu M, Lakshmi MJ. Apoptosis in Alzheimer's disease: An understanding of the physiology, pathology and therapeutic avenues. Neurochem Res. 2014;39(12):2301–2312. doi:10.1007/s11064-014-1454-4
- Takuma K, Yan SS, Stern DM, Yamada K. Mitochondrial dysfunction, endoplasmic reticulum stress, and apoptosis in Alzheimer's disease. J Pharmacol Sci. 2005;97(3):312–316. doi:10.1254/jphs.CPJ04006X
- Bayer AU, Keller ON, Ferrari F, Maag KP. Association of glaucoma with neurodegenerative diseases with apoptotic cell death: Alzheimer's disease and Parkinson's disease. Am J Ophthalmol. 2002;133(1):135–137. doi:10.1016/S0002-9394(01)01196-5
- Stern Y, Hesdorffer D, Sano M, Mayeux R. Measurement and prediction of functional capacity in Alzheimer's disease. *Neurology*. 1990; 40(1):8–14. doi:10.1212/WNL.40.1.8
- Chen ST, Sultzer DL, Hinkin CH, Mahler ME, Cummings JL. Executive dysfunction in Alzheimer's disease: Association with neuropsychiatric symptoms and functional impairment. J Neuropsychiatry Clin Neurosci. 1998;10(4):426–432. doi:10.1176/jnp.10.4.426

- Perry RJ, Hodges JR. Relationship between functional and neuropsychological performance in early Alzheimer disease. Alzheimer Dis Assoc Didord. 2000;14(1):1–10. doi:10.1097/0002093-200001000-00001
- Caro J, Ward A, Ishak K, et al. To what degree does cognitive impairment in Alzheimer's disease predict dependence of patients on caregivers? BMC Neurol. 2002;2(1):6. doi:10.1186/1471-2377-2-6
- Pereira FS, Yassuda MS, Oliveira AM, Forlenza OV. Executive dysfunction correlates with impaired functional status in older adults with varying degrees of cognitive impairment. *Int Psychogeriatr.* 2008; 20(6):1104. doi:10.1017/S1041610208007631
- Inestrosa NC, Sagal JP, Colombres M. Acetylcholinesterase interaction with Alzheimer amyloid β. Subcell Biochem. 2005;38:299–317. doi:10.1007/0-387-23226-5
- Pless A, Ware D, Saggu S, Rehman H, Morgan J, Wang Q. Understanding neuropsychiatric symptoms in Alzheimer's disease: Challenges and advances in diagnosis and treatment. Front Neurosci. 2023;17: 1263771. doi:10.3389/fnins.2023.1263771
- Fan P, Miranda O, Qi X, Kofler J, Sweet RA, Wang L. Unveiling the enigma: Exploring risk factors and mechanisms for psychotic symptoms in Alzheimer's disease through electronic medical records with deep learning models. *Pharmaceuticals*. 2023;16(7):911. doi:10.3390/ph16070911
- 24. Liu M, Xie X, Xie J, et al. Early-onset Alzheimer's disease with depression as the first symptom: A case report with literature review. Front Psychiatry. 2023;14:1192562. doi:10.3389/fpsyt.2023.1192562
- Doody RS, Stevens JC, Beck C, et al. Practice parameter: Management of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2001;56(9):1154–1166. doi:10.1212/WNL.56.9.1154
- Koola MM. Galantamine-memantine combination in the treatment of Alzheimer's disease and beyond. *Psychiatry Res.* 2020;293:113409. doi:10.1016/j.psychres.2020.113409
- Rogers SL, Friedhoff LT. The efficacy and safety of donepezil in patients with Alzheimer's disease: Results of a US multicentre, randomized, double-blind, placebo-controlled trial. *Dementia*. 1996;7(6): 293–303. doi:10.1159/000106895
- 28. Haig GM, Pritchett Y, Meier A, et al. A randomized study of H3 antagonist ABT-288 in mild-to-moderate Alzheimer's dementia. *J Alzheimers Dis*. 2014;42(3):959–971. doi:10.3233/JAD-140291
- Johannsen P, Salmon E, Hampel H, et al. Assessing therapeutic efficacy in a progressive disease: A study of donepezil in Alzheimer's disease. CNS Drugs. 2006;20(4):311–325. doi:10.2165/00023210-20062 0040-00005
- Maher-Edwards G, Dixon R, Hunter J, et al. SB-742457 and donepezil in Alzheimer disease: A randomized, placebo-controlled study. Int J Geriatr Psychiatry. 2011;26(5):536–544. doi:10.1002/gps.2562
- 31. Seltzer B. Efficacy of donepezil in early-stage Alzheimer disease: A randomized placebo-controlled trial. *Arch Neurol*. 2004;61(12):1852. doi:10.1001/archneur.61.12.1852
- 32. Tune L, Tiseo PJ, Ieni J, et al. Donepezil HCI (E2020) maintains functional brain activity in patients with Alzheimer disease: Results of a 24-week, double-blind, placebo-controlled study. *Am J Geriatr Psychiatry*. 2003;11(2):169–177. doi:10.1097/00019442-200303000-00007
- Brodaty H, Corey-Bloom J, Potocnik FCV, Truyen L, Gold M, Damaraju CRV. Galantamine prolonged-release formulation in the treatment of mild to moderate Alzheimer's disease. *Dement Geriatr Cogn Disord*. 2005;20(2–3):120–132. doi:10.1159/000086613
- Raskind MA, Peskind ER, Wessel T, Yuan W; the Galantamine USA

 Study Group. Galantamine in AD: A 6-month randomized, placebo-controlled trial with a 6-month extension. *Neurology*. 2000; 54(12):2261–2268. doi:10.1212/WNL.54.12.2261
- 35. Rockwood K. Effects of a flexible galantamine dose in Alzheimer's disease: A randomised, controlled trial. *J Neurol Neurosurg Psychiatry*. 2001;71(5):589–595. doi:10.1136/jnnp.71.5.589
- Tariot PN, Solomon PR, Morris JC, et al. A 5-month, randomized, placebo-controlled trial of galantamine in AD. *Neurology*. 2000;54(12): 2269–2276. doi:10.1212/WNL.54.12.2269
- Wilcock GK, Lilienfeld S, Gaens E. Efficacy and safety of galantamine in patients with mild to moderate Alzheimer's disease: Multicentre randomised controlled trial. BMJ. 2000;321(7274):1445–1445. doi:10.1136/bmj.321.7274.1445

- 38. Wilkinson D, Murray J; the Galantamine Research Group. Galantamine: A randomized, double-blind, dose comparison in patients with Alzheimer's disease. *Int J Geriat Psychiatry*. 2001;16(9):852–857. doi:10.1002/qps.409
- 39. Feldman HH, Lane R; on behalf of the Study 304 Group. Rivastigmine: A placebo controlled trial of twice daily and three times daily regimens in patients with Alzheimer's disease. *J Neurol Neurosurg Psychiatry*. 2007;78(10):1056–1063. doi:10.1136/jnnp.2006.099424
- 40. Forette F, Anand R, Gharabawi G. A phase II study in patients with Alzheimer's disease to assess the preliminary efficacy and maximum tolerated dose of rivastigmine (Exelon®). *Eur J Neurol*. 1999;6(4): 423–429. doi:10.1046/j.1468-1331.1999.640423.x
- Rosler M, Anand R, Cicin-Sain A, et al. Efficacy and safety of rivastigmine in patients with Alzheimer's disease: International randomised controlled trial. *BMJ*. 1999;318(7184):633–640. doi:10.1136/bmj.318. 7184.633
- 42. Winblad B, Grossberg G, Frolich L, et al. IDEAL: A 6-month, double-blind, placebo-controlled study of the first skin patch for Alzheimer disease. *Neurology*. 2007;4(4 Suppl 1):S14–S22. doi:10.1212/01.wnl. 0000281847.17519.e0
- 43. Feldman H, Gauthier S, Hecker J, Vellas B, Subbiah P, Whalen E. A 24-week, randomized, double-blind study of donepezil in moderate to severe Alzheimer's disease. *Neurology*. 2001;57(4):613–620. doi:10.1212/WNL.57.4.613
- 44. Gault LM, Lenz RA, Ritchie CW, et al. ABT-126 monotherapy in mildto-moderate Alzheimer's dementia: Randomized double-blind, placebo and active controlled adaptive trial and open-label extension. *Alzheimers Res Ther.* 2016;8(1):44. doi:10.1186/s13195-016-0210-1
- 45. Jia J, Wei C, Jia L, et al. Efficacy and safety of donepezil in Chinese patients with severe Alzheimer's disease: A randomized controlled trial. *J Alzheimers Dis.* 2017;56(4):1495–1504. doi:10.3233/JAD-161117
- Tariot PN, Cummings JL, Katz IR, et al. A randomized, double-blind, placebo-controlled study of the efficacy and safety of donepezil in patients with Alzheimer's disease in the nursing home setting. JAm Geriatr Soc. 2001;49(12):1590–1599. doi:10.1111/j.1532-5415.2001. 49266 x
- Black SE, Doody R, Li H, et al. Donepezil preserves cognition and global function in patients with severe Alzheimer disease. *Neurology*. 2007;69(5):459–469. doi:10.1212/01.wnl.0000266627.96040.5a
- 48. Gault LM, Ritchie CW, Robieson WZ, Pritchett Y, Othman AA, Lenz RA. A phase 2 randomized, controlled trial of the α7 agonist ABT-126 in mild-to-moderate Alzheimer's dementia. Alzheimers Dement (N Y). 2015;1(1):81–90. doi:10.1016/j.trci.2015.06.001
- Homma A, Imai Y, Tago H, et al. Donepezil treatment of patients with severe Alzheimer's disease in a Japanese population: Results from a 24-week, double-blind, placebo-controlled, randomized trial. *Dement Geriatr Cogn Disord*. 2008;25(5):399–407. doi:10.1159/ 000122961
- Winblad B, Kilander L, Eriksson S, et al. Donepezil in patients with severe Alzheimer's disease: Double-blind, parallel-group, placebocontrolled study. *Lancet*. 2006;367(9516):1057–1065. doi:10.1016/ S0140-6736(06)68350-5
- Burns A, Bernabei R, Bullock R, et al. Safety and efficacy of galantamine (Reminyl) in severe Alzheimer's disease (the SERAD study): A randomised, placebo-controlled, double-blind trial. *Lancet Neurol*. 2009;8(1):39–47. doi:10.1016/S1474-4422(08)70261-8
- 52. Tariot P. Current status and new developments with galantamine in the treatment of Alzheimer's disease. *Exp Opin Pharmacother*. 2001; 2(12):2027–2049. doi:10.1517/14656566.2.12.2027
- Singh RK, Devi S, Prasad DN. Synthesis, physicochemical and biological evaluation of 2-amino-5-chlorobenzophenone derivatives as potent skeletal muscle relaxants. *Arab J Chem.* 2015;8(3):307–312. doi:10.1016/j.arabjc.2011.11.013
- Singh RK, Prasad DN, Bhardwaj TR. Synthesis in vitro/in vivo evaluation and in silico physicochemical study of prodrug approach for brain targeting of alkylating agent. *Med Chem Res*. 2013;22(11):5324–5336. doi:10.1007/s00044-013-0537-0
- Singh RK, Prasad DN, Bhardwaj TR. Synthesis, physicochemical and kinetic studies of redox derivative of bis(2-chloroethylamine) as alkylating cytotoxic agent for brain delivery. *Arab J Chem.* 2015;8(3):380–387. doi:10.1016/j.arabjc.2012.11.005

- Singh RK, Prasad DN, Bhardwaj TR. Design, synthesis and in vitro cytotoxicity study of benzodiazepine-mustard conjugates as potential brain anticancer agents. *J Saudi Heart Assoc*. 2017;21(Suppl 1): S86–S93. doi:10.1016/j.jscs.2013.10.004
- Singh RK, Prasad DN, Bhardwaj TR. Design, synthesis, chemical and biological evaluation of brain targeted alkylating agent using reversible redox prodrug approach. *Arab J Chem.* 2017;10(3):420–429. doi:10.1016/j.arabjc.2013.12.008
- Tanaka M, Török N, Vécsei L. Novel pharmaceutical approaches in dementia. In: Riederer P, Laux G, Nagatsu T, Le W, Riederer C, eds. NeuroPsychopharmacotherapy. Cham, Switzerland: Springer International Publishing; 2022:2803–2820. doi:10.1007/978-3-030-62059-2_444
- 59. Bayraktar Y, Isik E, Isik I, et al. Analyzing of Alzheimer's disease based on biomedical and socio-economic approach using molecular communication, artificial neural network, and random forest models. *Sustainability*. 2022;14(13):7901. doi:10.3390/su14137901
- Orso B, Lorenzini L, Arnaldi D, et al. The role of hub and spoke regions in theory of mind in early Alzheimer's disease and frontotemporal dementia. *Biomedicines*. 2022;10(3):544. doi:10.3390/biomedicines 10030544
- Török N, Tanaka M, Vécsei L. Searching for peripheral biomarkers in neurodegenerative diseases: The tryptophan–kynurenine metabolic pathway. Int J Mol Sci. 2020;21(24):9338. doi:10.3390/ijms21249338
- Tanaka M, Toldi J, Vécsei L. Exploring the etiological links behind neurodegenerative diseases: Inflammatory cytokines and bioactive kynurenines. Int J Mol Sci. 2020;21(7):2431. doi:10.3390/ijms21072431
- El-Tallawy HN, Saadeldin HM, Ezzeldin AM, et al. Genetic, clinical, and biochemical aspects of patients with Alzheimer disease. Egypt J Neurol Psychiatry Neurosurg. 2022;58(1):24. doi:10.1186/s41983-022-00455-z
- Tanaka M, Vécsei L. Editorial of Special Issue "Crosstalk between Depression, Anxiety, and Dementia: Comorbidity in Behavioral Neurology and Neuropsychiatry." Biomedicines. 2021;9(5):517. doi:10.3390 /biomedicines9050517
- 65. Carrera-González MDP, Cantón-Habas V, Rich-Ruiz M. Aging, depression and dementia: The inflammatory process. *Adv Clin Exp Med*. 2022;31(5):469–473. doi:10.17219/acem/149897
- 66. Kurkinen MT. Lecanemab (Leqembi) is not the right drug for patients with Alzheimer's disease. *Adv Clin Exp Med*. 2023;32(9):943–947. doi:10.17219/acem/171379
- 67. Kurkinen MT. Donanemab: Not two without a third. *Adv Clin Exp Med*. 2023;32(10):1085–1087. doi:10.17219/acem/172673
- Thakur M, Datusalia AK, Kumar A. Use of steroids in COVID-19 patients: A meta-analysis. Eur J Pharmacol. 2022;914:174579. doi:10.1016/j.eiphar.2021.174579
- Srivastava R, Kumar A. Use of aspirin in reduction of mortality of COVID-19 patients: A meta-analysis. *Int J Clin Pract*. 2021;75(11). doi:10.1111/ijcp.14515
- Vitalakumar D, Sharma A, Kumar A, Flora S. Neurological manifestations in COVID-19 patients: A meta-analysis. ACS Chem Neurosci. 2021;12(15):2776–2797. doi:10.1021/acschemneuro.1c00353
- 71. Kobayashi H, Ohnishi T, Nakagawa R, Yoshizawa K. The comparative efficacy and safety of cholinesterase inhibitors in patients with mild-to-moderate Alzheimer's disease: A Bayesian network meta-analysis. *Int J Geriat Psychiatry*. 2016;31(8):892–904. doi:10.1002/gps.4405
- Koola MM, Looney SW, Hong H, Pillai A, Hou W. Meta-analysis of randomized controlled trials of galantamine in schizophrenia: Significant cognitive enhancement. *Psychiatry Res.* 2020;291:113285. doi:10.1016/j.psychres.2020.113285
- Lanctôt KL, Herrmann N, Yau KK, et al. Efficacy and safety of cholinesterase inhibitors in Alzheimer's disease: A meta-analysis. Can Med Assoc J. 2003;169(6):557–564. PMID:12975222. PMCID:PMC191283.
- 74. Dou KX, Tan MS, Tan CC, et al. Comparative safety and effectiveness of cholinesterase inhibitors and memantine for Alzheimer's disease: A network meta-analysis of 41 randomized controlled trials. Alzheimers Res Ther. 2018;10(1):126. doi:10.1186/s13195-018-0457-9
- Bi Z, Wang L, Wang W. Evaluating the effects of glucagon-like peptide-1 receptor agonists on cognitive function in Alzheimer's disease: A systematic review and meta-analysis. Adv Clin Exp Med. 2023; 32(11):1223–1231. doi:10.17219/acem/161734
- Chen Y, Sun J, Yang Z, Bi H. Efficacy and safety of negative allosteric modulators of 5-hydroxytryptamine 2A receptors in the treatment of Alzheimer's disease psychosis: A systematic review and meta-analysis. Adv Clin Exp Med. 2023;32(10):1089–1098. doi:10.17219/acem/161159