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Abstract

Background. The assessment of motor functionis vital in post-stroke rehabilitation protocols, and it is impera-
tive to obtain an objective and quantitative measurement of motor function. There are some innovative machine
learning algorithms that can be applied in order to automate the assessment of upper extremity motor function.

Objectives. To perform a systematic review and meta-analysis of the efficacy of machine learning algorithms
for assessing upper limb motor function in post-stroke patients and compare these algorithms to clinical
assessment.

Materials and methods. The protocol was registered in the International Prospective Register of Systematic
Reviews (PROSPERO) database. The review was carried out according to the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines and the Cochrane Handbook for Systematic
Reviews of Interventions. The search was performed using 6 electronic databases. The meta-analysis was
performed with the data from the correlation coefficients using a random model.

Results. Thenitial search yielded 1626 records, but only 8 studies fully met the eligibility criteria. The stud-
ies reported strong and very strong correlations between the algorithms tested and clinical assessment.
The meta-analysis revealed a lack of homogeneity (1= 85.29%, Q = 48.15), which is attributable to the het-
erogeneity of the included studies.

Conclusions. Automated systems using machine leaming algorithms could support therapists in assess-
ing upper extremity motor function in post-stroke patients. However, to draw more robust conclusions,
methodological designs that minimize the risk of bias and increase the quality of the methodology of future
studies are required.
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Introduction

According to the World Health Organization (WHO),
15 million people worldwide suffer a stroke every year.! Of
these, approx. 5 million are left with a disability that limits
their capacity to perform daily activities. They are also
prone to becoming depressed or stressed due to limitations
of their motor functions.?

Because of these conditions, patients have to partici-
pate in rehabilitation programs aimed at improving their
quality of life. These programs support them in regain-
ing motor function in the areas affected by the stroke.?
First, it is necessary to assess the degree of impairment
to properly select the best therapeutic options.* There are
numerous motor assessment tests to evaluate the degree
of upper limb disability, including the Fugl-Meyer As-
sessment® and the Wolf Motor Function Test.® In general,
each test consists of a series of tasks to be performed
by the patient, and the therapist evaluates those tasks
using measures based on their observations. However,
motor assessments require prior training of the examin-
ers; therefore, in many cases, the evaluation tends to be
subjective.” To avoid this problem, there is a great in-
terest in the development of automated systems aimed
at achieving objective and quantitative assessments for
rehabilitation after strokes. Automated quantitative as-
sessment systems can be used with home-based systems
that assist patients in evaluating improvements during
home-based exercise programs.

Thanks to technological advances, significant progress
has been made in recent years in measuring and analyzing
vital signs and human movement through artificial intel-
ligence (AI).8-1° Furthermore, Al has provided a technical
basis for the automation of many processes,!! such as reha-
bilitation'? and evaluation of upper limb motor function.

Objectives

Based on these points, the main objective of this study
was to perform a systematic review and meta-analysis
of the efficacy of machine learning algorithms in assess-
ing upper limb motor function in post-stroke patients, and
compare these algorithms to clinical assessment.

Materials and methods
Study protocol and record

The systematic review was conducted according
to the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines!® and the Co-
chrane Handbook for Systematic Reviews of Interventions.*
In addition, the review protocol was published in the In-
ternational Prospective Register of Systematic Reviews

J. Ambros-Antemate et al. Machine learning algorithms and motor impairment

(PROSPERO) with the registration number PROSPERO
2021 CRD42021257217 (https://www.crd.york.ac.uk/pros-
pero/display_record.php?ID=CRD42021257217).

Eligibility criteria, information sources
and search strategy

The articles included assessed upper limb motor func-
tion in post-stroke patients through machine learning algo-
rithms compared to standard clinical assessment. The out-
comes of interest were diagnostic accuracy, specificity,
and/or sensitivity. Articles were excluded if they assessed
motor function to predict patient recovery time; case series
and literature reviews were also excluded. The patient-
intervention-comparison-outcome (PICO) strategy was
used to identify the key words used (Table 1). The elec-
tronic search was performed in May 2021 and updated
in October 2021. The information sources and algorithms
used in each database are shown in Table 1.

Selection process

Three authors (JFAA, ARF and RRR) independently re-
viewed the registries obtained by the search. Duplicate
records were removed using Mendeley Desktop v. 1.19.8
Reference Manager (Elsevier, Amsterdam, the Nether-
lands).!> Studies that met the eligibility criteria by read-
ing the title and abstract were retrieved in full text. Any
disagreement was addressed by another reviewer (LAF)
who made the final decision. The selection process is sum-
marized in the PRISMA flowchart (Fig. 1).

Data collection process and data items

The relevant data of the included articles were collected
in a standardized Microsoft Excel 2019 spreadsheet (Mi-
crosoft Corp., Redmond, USA). The data included study
design, characteristics of the population, type of machine
learning algorithm, data acquisition device, reference test,
relative sensitivity, relative specificity, and confidence
intervals. Three reviewers were responsible for data ex-
traction (MVT, JGG and LAFM). When there were dis-
agreements, the reviewers held discussions until reaching
a consensus. The researchers of the original articles were
contacted via e-mail for missing or additional details.

Assessment of risk of bias and quality
of the included studies

Three reviewers (EPCM, EPC and ARF) assessed the risk
of bias of the included studies following Chapter 8 of the Co-
chrane Handbook for Systematic Reviews of Interventions.'*
Additionally, the reviewers performed a quality assessment
of the studies using the modified QUADAS-2 tool (Table 2),'¢
which encompasses the following 5 domains: sample se-
lection, index test, reference standard, flow rate, and time.
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Table 1. Patient, intervention, comparison, outcome (PICO) strategy and algorithms used for the systematic review

Population

Intervention
Comparison

Outcomes
Study design
Eligibility criteria

Electronic databases
Focused question

Number of registers found for each
database

PubMed; October 16, 2020
32 records

Google Scholar; October 16, 2020
1390 records

|IEEE Xplore; December 1, 2020
4 records

ScienceDirect; December 15, 2020
39 records

Taylor & Francis Online; December 18, 2020
29 records

Wiley Online Library; December 22, 2020
132 records

Post-stroke patients with hemiparesis of the upper-limb motor impairments.

Algorithms of machine learning.

Clinical evaluation assessment: Fugl-Meyer assessment, Wolf Motor Function Test, Modified Ashworth Scale,
Chedoke-McMaster Stroke, or Motor Assessment Scale.

Diagnostic: Accuracy, specificity or sensibility.

Randomized clinical trial, non-randomized clinical trial, case-control study, or cohort study.

Studies published in English and Spanish.

PubMed, IEEE Xplore, ScienceDirect, Taylor & Francis Online, Wiley Online Library, and Google Scholar.

Is there any evidence for the application of machine learning algorithms in the assessment of upper-limb
motor impairments in patients with post-stroke hemiparesis?

Algorithms used for search strategy adapted for each database

(“machine learning” OR “learning, machine” OR “transfer learning” OR “learning, transfer” OR “neural network”
OR“deep learning” OR “knowledge bases” OR “hierarchical learning” OR “expert systems” OR “fuzzy logic” OR
‘computer vision” OR “artificial intelligence” OR “support vector machine”) AND (‘motor” OR “motor function”
OR“activities, motor” OR “activity, motor” OR “motor activities”) AND (“evaluation” OR “assessment” OR
“quantify” OR "quantitative” OR “scoring”) AND (“extremities, upper” OR “upper extremities” OR “membrum
superius”OR “upper limb" OR “limb, upper” OR “limbs, upper” OR “upper limbs" OR “extremity, upper” OR
“upper-limb”) AND (“stroke” OR “cerebrovascular accident”)

“machine learning” AND “motor function” AND (‘evaluation” OR “assessment” OR “‘quantitative”) AND “upper
limb” AND “stroke”

“machine learning” AND “motor function” AND (“evaluation” OR “assessment” OR “quantitative”) AND “upper
limb” AND “stroke”

“machine learning” AND “motor function” AND (“evaluation” OR “assessment” OR “quantitative”) AND “upper
limb” AND “stroke”

“machine learning” AND “motor function” AND (“evaluation” OR “assessment” OR “quantitative”) AND “upper
limb” AND “stroke”

“machine learning” AND “motor function” AND (“evaluation” OR “assessment” OR “quantitative”) AND “upper
limb” AND “stroke”

Identification of news studies in databases and registers

Fig. 1. Preferred
Reporting Items
for Systematic

- Reviews and Meta-

s Records removed before screening Analyses (PRISMA)
= Records identified from: Duplicate records (n=11) flow diagram
& Databases (n = 6) > Records mar.ked as ineligible of the selection
= Registers (n = 1626) by automation tools (n = 0) process
5 Records removed for other reasons (n = 0) of the studies
= included

! in the systematic

Records screened R Records excluded review
(n=189) e (n=1426)

@ v
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Table 2. QUADAS-2 modification

Domain name |

1. Patient selection 2.Was a case-control design avoided?

3. Were the exclusions made avoided?

2. Index test

3. Benchmark

4. Flow and Times
3. Were all patients included in the analysis?

1. Patient selection

2. Index test

3. Benchmark

the question was referred?

Risk of bias

1. Was a random or a consecutive sample of patients enrolled?

1. s there a sample calculation and the minimum necessary number of patients used?*
2. Was it previously specified if a threshold was used to define the positivity or negativity of the index test?

1. Is the reference test likely to correctly assess the target condition?
2. Were the reference test results interpreted without knowledge of the index test results?

1. Was there an appropriate interval between the index test and the reference test?
2. Was the same reference test applied to all individuals?

Applicability
Is there a concern that the application or interpretation of the test being assessed does not match the review question?
Is there a concern that driving the index test or interpretation does not match the review question?

Is there a concern that the target condition, classified as such through the reference test, differs from the population to which

J. Ambros-Antemate et al. Machine learning algorithms and motor impairment

Questions

* This element was modified.

In case of disagreements in the assessment of risk of bias,
the differences were resolved by consensus of the research

group.
Summary of results

A formal narrative synthesis concerning the accuracy
of the machine learning algorithms to determine the level
of upper limb impairment was performed.

Meta-analysis

In order to assess the accuracy of the machine learning
algorithms in determining the level of upper limb impair-
ment, correlation coefficients were explored. The meta-
analysis was performed using the metafor package (v. 3.0-2)
of the R software program (R Development Core Team, 2011;
R Foundation for Statistical Computing, Vienna, Austria)
with the data from the correlation coefficients, using a ran-
dom model. In addition, a test for funnel plot asymmetry and
a likelihood ratio test for publication bias were performed
using the metafor and weight packages, respectively.

Results
Selection and characteristics of the studies

The initial search yielded 1626 records. Eleven duplicate
records were eliminated, leaving 1615 records that were
reviewed by title and abstract. As a result of this review,
189 records related to the research question were identi-
fied. Of these, 13 full-text studies were assessed, but only
8 met the eligibility criteria (Fig. 1). All articles had an ob-
servational study design.

Results of the individual studies
Data acquisition

The researchers used different modalities for data ac-
quisition in the included studies. Some researchers applied
more than one device, while others used a single device.
Of these, the most common was surface electromyogra-
phy (SEMG), followed by electroencephalography (EEG),
Microsoft Kinect, inertial measurement unit (IMU), ac-
celerometer, flex sensors, and cell phone.

For sSEMG, data are obtained through noninvasive elec-
trodes, which measure the time and intensity of the electri-
cal signals from the muscles. Among the included studies,
Wang et al.,'” Li et al.'® and Zhou et al."” used this device.

Zhang et al. used EEG, which involves placing electrodes
on the scalp. Each electrode sends a signal to a device called
an electroencephalograph, which displays the rhythmic
fluctuation of the brain’s electrical activity (brain waves)
in real time.?°

An IMU is an electronic device that measures and re-
ports velocity, orientation and, in some models, gravitational
forces. Data are obtained from a combination of accelerom-
eters, gyroscopes and magnetometers. Inertial measure-
ment units are small devices that are placed noninvasively
on the patient’s skin to obtain motion data in 3 dimensions.
Among the included studies, Li et al.!® used an MPU-9250
device (InvenSense, San Jose, USA), while Zhang et al.?!
used an MPU-6050 device (Xsens Technologies, Los
Angeles, USA).

Kim et al. used Microsoft Kinect (Microsoft Corp., Red-
mond, USA).?? This device has cameras for motion and
depth detection. It was initially developed as a video game
device for Microsoft Xbox console; it tracks players’ move-
ments while they interact with a game. The Kinect consists
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of an infrared light projector and a red-green-blue (RGB)
video camera. The reflected infrared light is converted
into depth data and calibrated with RGB data to distin-
guish shapes.

Yu et al. used an ADXL345 accelerometer and flex
sensors.?®> An accelerometer is an electronic device that
measures the vibration or acceleration of the move-
ment of a structure. The force generated by the vibration
or change in motion (acceleration) is detected, and an elec-
trical charge is generated that is proportional to the force
exerted on it. Accelerometers also play an important role
in determining orientation and direction. Flex sensors are
small strips composed of polymeric ink with embedded
conductive particles; their function is to measure the re-
sistivity when the sensor is flexed. Subsequently, the resis-
tance value is converted into joint rotation angles.

Finally, Song et al. used an accelerometer and gyroscope
integrated into a cell phone (iPhone 7, running an iOS
11.2.5 operating system; Apple Inc., Cupertino, USA).2*
Through this device, the researchers obtained the position
and location of the hand in 3 dimensions.

Machine learning algorithms

The machine learning algorithms used for the assess-
ment of motor function are briefly described below.

The machine learning algorithms using supervised learn-
ing included the support vector machine (SVM), which was
employed by Wang et al.'” and Zhou et al.' Support vector
machine is a learning-based method for solving classifi-
cation and regression problems. This algorithm is a deci-
sion function based on the hyperplane concept, a bound-
ary that distinguishes several points in different classes
and separates them.?® In the same sense, Wang et al. used
the backpropagation neural network (BPNN).1” This algo-
rithm applies the concept of gradient descent. Given an ar-
tificial neural network and an error function, this method
calculates the gradient of the error function concerning
the weights of the neural network. Wang et al.'” and Zhou
et al.’? applied the random forest (RF) algorithm, which
is a set of decision trees that are independent of each other.
The advantage of the RF algorithm is that it can be used for
both classification and regression problems, which consti-
tute the majority of the current machine learning systems.

Continuing with supervised learning algorithms, Zhang
et al. employed the convolutional neural network (CNN).20
This type of neural network processes its layers by emu-
lating the visual cortex of the human eye to recognize
different features in the inputs. Convolutional neural
network incorporates several specialized hidden layers
into a hierarchy. The first layers can detect simple pat-
terns, such as lines, curves and others; this is then special-
ized to deeper layers that recognize increasingly complex
shapes. In the same way, Li et al. applied the least absolute
shrinkage and selection operator (LASSO), which is a re-
gression analysis method used to model the relationship
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between a dependent variable (which can be a vector) and
one or more explanatory variables.!® On the other hand,
Kim et al. applied the artificial neural network (ANN),
which is a computational learning system that uses a net-
work of functions to understand and translate data input
(usually patterns and relationships) into a desired out-
put.?2 The concept of artificial neural network was in-
spired by human biology and how neurons in the human
brain interconnect to understand human sensory inputs.
Likewise, Zhou et al. applied linear discriminant analysis
(LDA), which is based on the rule of maximum a posteriori
probability and Bayesian principles, to find a linear combi-
nation of features that characterize or separate 2 or more
classes of objects or events.!”

Finally, Zhang et al. applied the K-nearest neighbor
(KNN), which classifies an unknown sample by initially
calculating the distance from that sample to all training
samples.?! This algorithm is used to rank values by look-
ing for the “most similar” (closest) data points learned
in the training stage and estimating new points based
on that ranking. Similarly, Yu et al. used extreme learn-
ing machine (ELM).?® This algorithm includes several
hidden neurons in which the input weights are randomly
assigned. In this type of network, data only go in one di-
rection through a series of layers. It is implemented fully
automatically without iterative tuning, and, in theory, no
user intervention is required. Likewise, Song et al. applied
the decision tree (DT).2* This algorithm is the most fre-
quently used in classification and regression problems,
in which categorical or continuous input and output vari-
ables are used. Decision tree is composed of a root node,
several internal nodes and several terminal nodes. The goal
of the tree is to make the optimal choice at the end of each
node. The name itself suggests that this technique uses
a flowchart as a tree structure to show the predictions
that result from a series of splits based on the features
of the inputs.

Correlation with clinical analysis

In the included studies, the algorithms that showed
avery strong correlation with the Fugl-Meyer Assessment
test were CNN,2° DT,2* SVM,'° and ELM.2 The algorithms
that presented a strong correlation were the framework
with the union of SVM, BPNN, and RF,'” LASSO,'® and
ANN.2? Finally, the KNN algorithm presented a strong cor-
relation with the Brunnstrom evaluation scale (Table 3).2!

Risk of bias and quality assessment

At the QUADAS-2 assessment, 100% of the included
studies showed a high risk of bias, whereas the applicabil-
ity section showed a low risk of bias in 100% of the stud-
ies. In addition, 87.5% of the studies did not describe how
the patients in the sample were enrolled; therefore, domain
1 showed a high risk of bias (Fig. 2).
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Table 3. Characteristics of the individual studies and their results

Machine learning

J. Ambros-Antemate et al. Machine learning algorithms and motor impairment

Data acquisition

device e s

Study ID Population algorithm/reference test
Patients with stroke:
malen=9 SVM
female n = 6; BPNN
17 '
kg eizell Healthy subjects: RF
male n=10 FMA-UE
femalen=5
Patients with chronic stroke:
% n=12 CNN
Zhang etal. Healthy subjects: FMA-UE
n=14
Patients with chronic stroke:
Li et al® n=18; LASSO
' Healthy subjects: FMA-UE
n=16
Kim ot a2 Patients with chronic stroke: ANN
' n=41 FMA-UE
Patients with chronic stroke:
P n=21; KNNs
ATEig)Etels Healthy subjects: Brunnstrom stages
n=38
YU et al?? Patients with chronic stroke: ELM
' n=24 FMA-UE
Song et al 2* Patients with chronic stroke: DT
. n=10 FMA-UE
Patients with chronic stroke: SYM
19 n=6 LDA
Zhouetal Healthy subjects: RF
n=11 FMA-UE

Correlation with FMA-UE
Pearson correlation = —0.87, p < 0.0001
True positive rate:

SVM = 0.9982
BPNN = 0.9749
RF =0.9583
Sensitivity and specificity: no data

Correlation with FMA-UE
electroencephalo- Pearson correlation
graphy =0.9921, p < 0.0001
Sensitivity and specificity: no data
Correlation with FMA-UE
Pearson correlation = 0.8736,
p =nodata
Sensitivity and specificity: no data
Correlation with FMA-UE

Pearson correlation = 0.799, p < 0.0001
Sensitivity and specificity: no data

surface electro-
myography

Inertial Measurement
Unit MPU-9250;
surface electro-

myography

Microsoft Kinect

Inertial Measurement Correlation with the Brunnstrom stages
Unit of recovery r=0.862, p < 0.001
MPU-6050 Sensitivity and specificity: no data

Accelerometer Correlation with FMA-UE

ADXL345; Coefficient of determination = 0.918, p = no data

flex sensor Sensitivity and specificity: no data
Correlation with FMA-UE

cell phone Pearson correlation = 0.97, p < 0.01

Sensitivity and specificity: no data

Correlation with FMA-UE
Pearson correlation = 0.93, p < 0.05
Sensitivity and specificity: no data

surface electro-
myography

SVM = support vector machine; BPNN - backpropagation neural network; RF — random forest; CNN - convolutional neural network; LASSO - least absolute
shrinkage and selection operator; ANN - artificial neural network; KNNs — K-nearest neighbors; ELM — extreme learning machine; DT - decision tree;
LDA - linear discriminant analysis; FMA-UE - Fugl-Meyer Assessment for Upper Extremity.

Meta-analysis

The results of the meta-analysis suggest that there
is a correlation between clinical assessment (Fugl-Meyer
Assessment and Brunnstrom’s evaluation scale) and ma-
chine learning algorithms in the evaluation of upper limb
motor function (Fisher’s z, (95% confidence interval (95%
CI)) = 1.62 (1.24—2.00), p < 0.001). In addition, the absence
of homogeneity was observed (12 = 85.29%, Q = 48.15),
which is attributable to the heterogeneity of the stud-
ies. The result of the test for funnel plot asymmetry was
z = 1.1914, p = 0.2335, limit estimate (as sei = 0): b = 0.7919
(95% CI: -0.6242-2.2080), as shown in Fig. 3A,B. In ad-
dition, a likelihood ratio test was conducted comparing
the adjusted model, including the selection to its unad-
justed random-effects counterpart. The Vevea and Hedges
weight-function model resulted in a likelihood ratio
of x2 = 0.3062, p = 0.58. Taken together, this suggests that
there was no publication bias.

Discussion

A wide variety of machine learning algorithms are de-
scribed in this systematic review. Out of the 8 included
studies, 6 (75.0%) used only one algorithm to assess mo-
tor function; 3 of these presented a very strong correla-
tion2*2324 and 3 showed a strong correlation!®?22 between
the algorithms for motor assessment and clinical assess-
ment. Two (25.0%) of the studies employed 3 algorithms:
Zhou et al. showed a very strong correlation'® and Wang
et al. reported a strong correlation!'” between motor as-
sessment algorithms and clinical evaluation. The evidence
is not conclusive concerning whether better results are ob-
tained with the exclusive use of a single algorithm or with
a combination of algorithms. This is contrary to Wang
et al., who are in favor of combined use.l”

In machine learning, the number of samples required for
training the machine learning model depends on the com-
plexity of both the problem to be solved and the algorithm
developed.?® Although there is no established minimum
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Fig. 3. Meta-analysis. A. Forest plot; B. Funnel plot, reference line (RL)

RE - random effects; 95% Cl — 95% confidence interval.

number of training samples,?” there are experiments that
have indicated that increasing the size of the dataset im-
proves performance.?’?° Therefore, once the algorithm
starts to detect patterns, it is best to increase the sample
size. Of the included studies, 4 did not report the number
of samples used for training,!3212224 while the rest reported
using 992, 1080,'7 1680,%% and 19602° samples; however,
they did not justify the sample size used.

Data acquisition was performed using various sen-
sors in the training of the algorithm and the evalua-
tion of the upper limb motor function. Some are read-
ily available (cell phone?* and inertial sensors!®21:23),
while others are specialized equipment that would limit
their use to healthcare units (electromyography*’~* and
electroencephalography??).
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The gold standard for evaluating motor function is clini-
cal assessment, for which various assessment tools are
available. These tools assess either general motor func-
tion (Medical Research Council (MRC) Scale and Fugl-
Meyer Assessment) or specific areas of impairment (upper
limb function, trunk function, gait ability, and spasticity).
In this regard, the MRC Scale, the Frenchay Arm Test,
and the Action Research Arm Test (ARAT) are specific
to the upper limb motor function.3°

The Fugl-Meyer Assessment is a performance-based
index of the stroke-specific impairment.® It is designed
to assess motor functioning, sensation, balance, joint range
of motion, and joint pain in patients with post-stroke hemi-
plegia. It is the most commonly used scale in clinical as-
sessments of the upper limb.3233 Thus, 87.5% of the studies
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used the Fugl-Meyer Assessment for Upper Extremity
(FMA-UE). The only study that did not use the FMA-UE
was the study by Zhang et al.,?! who used the Brunnstrom’s
evaluation scale.3* It rates the recovery stage of the upper
and lower extremities and hands in levels. The stages are
classified from I to VI of recovery, whereby I indicates that
the patient has low or absent movement, and VI indicates
that the patient can perform voluntary movements.

As can be seen, the reported studies present at least
a strong correlation with standard clinical tests. Therefore,
the proposed evaluation systems have the potential to sup-
port therapists in the objective measurement of the up-
per limb motor function. Although the meta-analysis
found a good relationship between machine learning al-
gorithms and clinical assessment, it also showed a high
heterogeneity.

The literature proposes that home-based rehabilitation
can offer potential benefits,3>~3 such as performing the ex-
ercises according to the patient’s schedule, providing flex-
ibility of location and time, and receiving remote feedback
and follow-up by the therapist. The home-based rehabili-
tation is possible to implement by having motor function
evaluation systems, such as those presented in this review.

To the best of our knowledge, there are no systematic
reviews in the literature evaluating the correlation between
the clinical assessment of the upper limb motor function
and machine learning algorithms in post-stroke patients.

Duque et al. conducted a systematic review that included
studies focused on evaluating movement analysis in pa-
tients with stroke, Parkinson’s disease, spinal cord injury,
Huntington’s disease, multiple sclerosis, and cerebral palsy,
as well as in premature infants and the elderly.3® However,
their review did not perform the risk of bias assessment
or a meta-analysis. Furthermore, it only focused on de-
scribing the devices used for data acquisition and the ma-
chine learning algorithms.

There are narrative reviews regarding the use of cap-
ture sensors and machine learning to perform automated
assessments in home-based rehabilitation programs.3°
Caramiaux et al. described machine learning models for
motor learning and their adaptive capabilities.?* Moon
et al. conducted a scoping review to explore the use of ar-
tificial neural networks in neurorehabilitation in various
pathologies, including stroke, particularly in the predic-
tion of variables such as functional recovery and rehos-
pitalization.*! In the same vein, Sirsat et al. performed
a narrative review about the use of machine learning
in stroke patients, grouping them according to their use
for the identification of associated risk factors, diagnosis,
treatment, and prognosis.*? In summary, current reviews
studying the application of machine learning in stroke pa-
tients focus on its use as a plausible tool for prediction and
classification of neurological and motor impairments,
as well as the assessment of rehabilitation progress.

J. Ambros-Antemate et al. Machine learning algorithms and motor impairment

Limitations

For more than a decade, the number of publications
in basic science and clinical trials has grown exponentially.
Clinical trials are considered the best evidence of solv-
ing a health problem. Unfortunately, some basic science
results are not necessarily reflected in clinical practice.*®
Furthermore, several publications have divergent results
despite presenting characteristics that superficially seem
similar, or they use different variables to measure the im-
pact of the intervention.*#*> Hence the importance of ev-
idence-based medicine aimed at determining the validity
and analyzing the dataset of published studies through
systematic reviews.

This systematic review encountered limitations, such
as small sample sizes and a risk of bias in the included
studies. In addition, the results of the meta-analysis
showed high heterogeneity, probably due to the diversity
of the statistical tests used in the correlation and different
algorithms used in the studies. In addition, this review
was limited to analyzing studies focused on the evalua-
tion of the upper limb motor function, so studies analyz-
ing the lower limb motor function were not considered.
The exclusion of studies focused on the lower limbs could
lead to a limitation, since both limbs have similar ranges
of mobility; however, the inclusion of both limbs may have
increased the heterogeneity of the review.

Conclusions

The results of the studies included in this systematic
review show strong correlations between machine learn-
ing algorithms and clinical assessment scores of the up-
per limb. This correlation indicates a possible application
to assist therapists in improving the efficacy of individ-
ualized diagnosis of motor function in post-stroke pa-
tients. The algorithms also serve as feedback to facilitate
the training process for patient rehabilitation. Finally,
studies with a representative sample, low risk of bias and
better methodological quality are required to reach more
robust conclusions.
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