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Abstract

Background. Automation in cardiac arrhythmia classification helps medical professionals make accurate
decisions about the patient’s health.

Objectives. The aim of this work was to design a hybrid classification model to classify cardiac arrhythmias.

Material and methods. The design phase of the classification model comprises the following stages:
preprocessing of the cardiac signal by eliminating detail coefficients that contain noise, feature extrac-
tion through Daubechies wavelet transform, and arrhythmia classification using a collaborative decision
from the K nearest neighbor classifier (KNN) and a support vector machine (SVM). The proposed model
is able to classify 5 arrhythmia classes as per the ANSI/AAMI EC57: 1998 classification standard. Level 1
of the proposed model involves classification using the KNN and the classifier is trained with examples
from all classes. Level 2 involves classification using an SVM and is trained specifically to classify overlapped
classes. The final classification of a test heartbeat pertaining to a particular class is done using the proposed
KNN/SVM hybrid model.

Results. The experimental results demonstrated that the average sensitivity of the proposed model was
92.56%, the average specificity 99.35%, the average positive predictive value 98.13%, the average F-score
94.5%, and the average accuracy 99.78%.

Conclusions. The results obtained using the proposed model were compared with the results of discriminant,
tree, and KNN classifiers. The proposed model is able to achieve a high classification accuracy.
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Introduction

Cardiovascular disease is a leading cause of global
mortality. Hence, there is a need to develop automation
strategies for the management of sudden cardiac death.!
The objective of this work is to automate cardiac arrhyth-
mia classification. An abnormality in the normal rhythm
of a heartbeat causes arrhythmia. The ANSI/AAMIEC57:
1998 classification standard categorizes arrhythmias into
5 classes, namely: non-ectopic beat (N), supra-ventricular
ectopic beat (S), ventricular ectopic beat (V), fusion beat
(F), and unknown beat (Q). The diagnosis of a specific class
of arrhythmia is done by careful monitoring of a long-term
electrocardiograph (ECG) signal. Automation in ECG ar-
rhythmia classification is very essential in order to make
a fast and accurate decision about the arrhythmia class.
The key requirements of an automated system are reduced
complexity, fast decision making, and less memory. Sev-
eral research projects have been carried out for automa-
tion in arrhythmia classification. In general, the algorithm
used for automated classification includes (i) preprocess-
ing, (ii) feature extraction, and (iii) feature classification.
The preprocessing of recorded ECG signals is done in order
to eliminate the important noises that degrade the clas-
sifier performance, such as baseline wandering, motion
artifact, power line interference, and high frequency noise.
Currently, researchers use many filtering techniques like
morphological filtering, integral coefficient band stop fil-
tering, finite impulse response filtering, 5-20 Hz band pass
filtering, median filtering, and wavelet-based denoising
for preprocessing.2~"%2>

Commonly extracted ECG features include (i) temporal
features of heartbeat, such as the P-Q interval, the QRS
interval, the S-T interval, the Q-R interval, the R-S in-
terval, and the R—R interval between adjacent heartbeats,
(ii) amplitude-based features, such as P peak amplitude,
Q peak amplitude, R peak amplitude, S peak amplitude,
and T peak amplitude, (iii) wavelet transform-based fea-
tures that include Haar wavelets, Daubechies wavelets, and
discrete Meyer wavelets at various decomposition levels
of 4, 6,and 8, and (iv) Stockwell transform-based features,
including statistical features taken from a complex matrix
of Stockwell transform, time-frequency contour and time-
max amplitude contour.

A support vector machine (SVM),a probabilistic neural
network (PNN), a multilayer perceptron neural network
(MLPNN), a linear discriminant classifier, a mixture
of experts, and unsupervised clustering are commonly
used by researchers for the classification of ECG arrhyth-
mia.>69-16:21.24-26 Pa rameters such as accuracy, sensitivity,
and specificity are used in the literature for evaluating
the performance of a classifier. Most of the research works
reported more than 90% average accuracy, average sensitiv-
ity, and average specificity taken over all 5 classes. However,
the classifier outputs very poor sensitivity when the sensi-
tivity of individual classes is considered. The reason is that,
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in a medical scenario, the number of training examples
for each class of ECG arrhythmia may not be uniform. Usu-
ally, the normal class of heart beats dominates the entire
population, which leads to biased classification towards
classes with larger examples.

Some of the common limitations in the literature are

listed as follows:

1. Time interval features are used in many automated
systems.>>”8 Hidden information in the ECG signal
cannot be completely recovered from those time do-
main features.

2. Few researchers have used the entire data set
of MIT_BIH arrhythmia database for experimenta-
tion. A random selection of only a few records from
the entire database may not provide the actual result
of their proposed system.257-9:23.24.28

3. A few research works did not follow a standard clas-
sification scheme, such as the ANSI/AAMI EC57:
1998 standard.21213.16.23.24

4. Classes with major and minor training examples
are treated equally in almost all projects, and this
may lead to biased results towards major classes.
The distinction between ventricular ectopic beats
and supra-ventricular ectopic beats should be consid-
ered very important because some drugs for supra-
ventricular ectopic beats can worsen the clinical state
if the rhythm is a ventricular ectopic beat.

5. Class N and class S show a highly overlapped pattern.
No special care is taken to overcome this issue.

This work eliminates the above limitations by extract-

ing features from the time-frequency representation
of an ECG signal through wavelet transform. The entire
dataset of a benchmark database (i.e., the MIT_BIH ar-
rhythmia database) is used and the proposed model ad-
heres to the classification standard. The proposed model
trains the classifier in such a way that the classifier better
predicts the minority class using a hybrid approach.

Material and methods

The MIT_BIH arrhythmia database was used in this
work. It contains 48 half-h excerpts of 2-channel am-
bulatory ECG recordings which were obtained from
47 subjects studied by the BIH arrhythmia laboratory.
The recordings were digitized at 360 samples per second
per channel with 11-bit resolution over a 10-mV range.
The reference annotations for each beat were included
in the database. Four records containing paced beats
(102, 104, 107, and 217) were removed from the analysis
as specified by the AAMI. The total number of heart
beats in each class is given in Table 1. Figure 1 shows
the architecture of the proposed work. The entire ex-
periments were carried out using Matlab R2012a (Math-
Works, Natick, USA). The details of the methodology
followed are summarized below.
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Table 1. Number of heartbeats in each class

Heartbeat type N S V F Q
Full database 87643 2646 6792 794 15

N — non-ectopic beat; S — supra-ventricular ectopic beat; V — ventricular
ectopic beat; F — fusion beat; Q — unknown beat.
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Fig. 1. Architecture of the proposed work

Predicted result

Data preprocessing

The records contain continuous ECG recordings of a du-
ration of 30 min. The raw ECG signals include baseline
wander, motion artifact, and power line interference noise.
The discrete wavelet transform (DWT) is used for denois-
ing the ECG signal and for extracting the important fea-
tures from the original ECG signal.?>?” The DWT cap-
tures both temporal and frequency information. The DWT
of the original ECG signal is computed by successive high
pass and low pass filtering of that signal. This can be math-
ematically represented as follows in equations (1) and (2),

(1) Yyeulkl = D7 = _ x[n] g[2k —n]
(2) Vi [kl = > 7 = _ x[n] h[2k—n]

where x[n] is the original ECG signal samples, g and h are
the impulse responses of the high pass and low pass filters,
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respectively, and are the outputs of the high pass and low
pass filters after sub-sampling by 2. This procedure is re-
peated until the required decomposition level is reached.
The low frequency component is called approximation and
the high frequency component is called detail.

In this work, the raw ECG signals sampled at 360 Hz
were decomposed into approximation and detail sub
bands up to level 9 using Daubechies (‘db8’) wavelet basis
function.’ The first and second level detail coefficients
were made zero and were not used for reconstruction
of the denoised signal, since most of the ECG informa-
tion is contained within the 40-Hz frequency range and
sub bands at the first and second levels contain the fre-
quency ranges 90-180 Hz and 45-90 Hz, respectively.
Moreover, power line interference noise occurs at 50 Hz
or 60 Hz. Baseline wander noise occurs in the frequency
range of <0.5 Hz, and therefore, the level 9 approxima-
tion sub band in the frequency range of 0-0.351 Hz was
not used for reconstruction. The denoised signal was
obtained by applying inverse DWT to the required detail
coefficients of levels 3, 4, 5, 6, 7, 8, and 9. The coefficients
of detail sub bands 1 and 2 and the approximation sub
band 9 were made 0.

After denoising, the continuous ECG waveform was
segmented into individual heartbeats. This segmentation
is done by identifying the R peaks using the Pan-Tompkins
algorithmand by considering the 99 samples before the R
peak and the 100 samples after the R peak.!® This choice
of 200 samples, including the R peak for segmentation,
was made because it constitutes one cardiac activity with
P, QRS, and T waves. Figure 2 shows a segment of a re-
corded ECG waveform of patient No. 123 before and after
preprocessing.

Feature extraction

The entire database (97,890 heartbeats) is divided into
10 sets, each containing 9,789 heartbeats. Nine sets are
used for training (88,101 heartbeats) and 1 set for testing
(9,789 heartbeats). From each heartbeat, wavelet-based
features are extracted by using Daubechies wavelet
(‘db4’). A Daubechies wavelet with level 4 decomposi-
tion was selected in this project after making perfor-
mance comparisons with a discrete Meyer wavelet and
other levels of Daubechies wavelets, including ‘db2’ and
‘db6’. A total of 107 features were produced by the 4
level approximation sub-band and another 107 features
by the 4" level detail sub-band. Principal component
analysis (PCA) was applied to reduce redundant informa-
tion on the extracted features and to reduce the dimen-
sionality. After dimensionality reduction was applied
separately to the approximation and detail sub-bands,
a total of 12 features were obtained. The choice of 6 fea-
tures from each sub-band was made since there is no sig-
nificant improvement in classification when more than
6 features are used.



730
1_3_ T T T T T T T T T T =
1.2
11
z o
4
4 09
5
o
0.8 U’ u u
0.7 g
0.6
1 1 1 1 1 1 1 1 1 1
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
SAMPLE NUMBER
18 T T T T T T
17} —/\/\M/_
16 1 1 1 1 1 1
] 5 10 15 20 sl 30 3E
0.01 T T T T T
DD‘] 1 1 1 1 1
n] 1000 2000 3000 4000 A000 BO00
0.1 T T T T T
L e R R e mman e S
_D‘] 1 1 1 1 1
] A00 1000 1500 2000 2500 3000
05 T T T T T
] 1, J N 1 J N k l l 1 l J [ l_ i R J.| 4
SRR RARARSRENES
_DS 1 1 1 1 1 1
n] 200 400 w00 800 1000 1200 1400
1 T T T T T T
o~ -
_1 1 1 1 1 1 1
] 100 200 300 400 00 B00 700

Fig. 2. A segment of an ECG waveform before and after preprocessing

R. Rajagopal, V. Ranganathan. A model for cardiac arrhythmia classification

- I I I I
u] a0 100 150 200 2480

_ 1 1 1 1 1 1
u] 20 40 60 g0 100 120 140 180 180 200

DS 1 1 1 1 1 1 1 1 1
10 20 30 40 a0 B0 70 80 90 100
05 T T T T T
DS 1 1 1 1 1
10 20 30 40 a0 B0
0.5 T T T T T T
ol \A/\’\/\W
_DS 1 1 1 1 1 1
5 10 15 20 25 30 35
1 . : . . .
@ oy
F] ol O B B AR B .
06 .
04 i
Z 02 .
o ), ¥ ' T It I.J .
g D Jh. .
2 0z
=g} i
04 i
06 .
08 .
q . ‘ . . .
0 2000 4000 6000 £000 10000 12000

SAMPLE NUMBER

A - raw ECG signal; B — approximation subband level 9 and detail subband levels 1-4 (bottom left corner); C — detail subband levels 5-9 (top right corner);

D - preprocessed ECG waveforms with R peaks detected.

Training of classifiers

The training and testing matrix was computed, in which
each row represents an ECG heartbeat and the features oc-
cupy the columns. The KNN (with distance metrics such
as Euclidean, correlation, Mahalanobis, standardized Euclid-
ean, and Spearman), tree, and discriminant (linear and qua-
dratic) classifiers are trained with a training matrix 88,101 x
12 in size, which includes training examples from all 5 classes.
The sensitivity, specificity, accuracy, positive predictivity, and
E-score of those classifiers in classifying ECG arrhythmias
were compared. The classifier that produced the best sensitiv-
ity and F-score was selected at level 1 of the proposed model.
The radial basis function SVM was used at level 2 of the pro-
posed model and was trained with examples from the entire
class S and down-sampled examples from class N. Random
down-sampling of class N is done in order to match the sam-
ple size of class S (2,646 x 12). The reason for this design
is that samples from classes S and N are highly overlapped

and many class S samples are wrongly predicted as class N
at level 1 because of the large number of class N training
examples (87,643 x 12). More weight is given to a decision
from the SVM classifier while determining a test heartbeat
to be other than class S. The advantage of the SVM classifier
is that it performs well on datasets that have many attributes,
even when there are few training examples available. But
the drawback of SVM is its limitation in speed and size during
both training and testing. Because of this limitation, SVM
is not used for the training and classification of all classes.
SVM is used only to make a final decision of a highly over-
lapped minority class. A description of the classifiers used
is discussed in the following sections.

K nearest neighbor classifier

KNN is an instance-based simple classification algo-
rithm. For a training data set of N points and its cor-
responding labels, given by {(x1, v1), (X2, y2)-.. (Xxn, V™))
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where (x;, y;) represents a data pair ‘i’ with x;” as the input
feature vector and ‘y;" as its corresponding target class
label, the most likely class of test beat X’ is determined
by finding the K closest training points to it. The predic-
tion of a class is determined by majority vote. The distance
is taken as the weighting factor for voting. The main ad-
vantage in selecting the KNN classifier is that complex
tasks can be learned using simple procedures by local ap-
proximation. The training process for KNN only consists
of storing feature vectors and their corresponding labels.
It also works well on classes with different characteristics
for different subsets.?

Tree-based classifier

The decision tree algorithm works by selecting the best
attribute to split the data and expand the leaf nodes
of the tree until the stopping criterion is met. After build-
ing the tree, tree pruning is performed to reduce the size
of the decision tree. This is done in order to avoid over-
fitting and to improve the generalization capability of de-
cision trees. The class of a test heartbeat is determined
by following the branches of the tree until a leaf node
is reached. The class of that leaf node is then assigned
to the test heartbeat. The advantage of this algorithm is its
simplicity and good performance for larger data sets. Gini’s
diversity index is used as the split criterion in this work.

Discriminant classifier

The algorithm creates a new variable from one or more
linear combinations of input variables. Linear discrimi-
nant analysis is done by calculating the sample mean
of each class. Sample covariance is calculated by sub-
tracting the sample mean of each class from the observa-
tions of that class, and taking the empirical covariance
matrix of the result. In the linear discriminant model, only
the means vary for each class, but the covariance matrix
remains the same. For quadratic discriminant analysis,
both the mean and covariance of each class varies.

Support vector machine

The support vector machine (SVM) constructs a hyper
plane in such a way that the margin of separation between
positive examples (minority class S) and negative exam-
ples (majority class N) is maximized. Since classes S and
N overlap very much, the hyper plane cannot be linearly
separable and cannot be constructed without a classifica-
tion error. For such overlapped patterns, SVM performs
nonlinear mapping of the input vector into a high dimen-
sional feature space. An optimal hyper plane is constructed
for separation of these newly mapped features. The hy-
per plane is constructed in such a way that it minimizes
the probability of a classification error. For a training set
X with N number of training examples, if {(x;, d;)} is the it"
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training example, where x; is the input vector for the ith ex-
ample and d; is its corresponding target output, q; is the ith
Lagrange multiplier, K(x, x;) is the inner product kernel,
and b is the bias, then the optimal separating hyper plane
is defined as in Equation (3):

() fx)=>" a d K(x,x)+b

A radial basis function SVM was used in this work in-
stead of polynomial and two-layer perceptron because
of its higher discrimination ability. The inner product ker-
nel K(x, x;) of a radial basis function with width o is given
by equation (4):
-1

2/«2

(4) K(x, %) = exp(—— llx—x/F)

The performance of the proposed model was evaluated
using performance metrics such as sensitivity, specificity,
positive predictivity, F-score, and accuracy. These met-
rics are computed by calculating true positive (TP), true
negative (TN), false positive (FP), and false negative (FN)
counts and are defined as follows: sensitivity = TP / (TP
+ FN), specificity = TN / (TN + FP), positive predictiv-
ity="TP /(TP + FP), F-score = 2TP / (2TP + FP +FN), and
accuracy = (TP + TN) / (TP + FP + EN +TN). The process
is repeated 10 times so that each set is used once for test-
ing. The overall performance of the classifier is computed
by taking the average of all 10 folds.

Results and discussion

The reliability of a classifier in accurately predicting
the test heartbeat’s class is measured mainly by the sen-
sitivity and F-score. The reason for not considering accu-
racy is that even a poor classifier can show good accuracy
in favoring a class with more training examples. It can be
observed from Fig. 3 that a discriminant classifier with
linear and quadratic function produces consistently less
sensitivity than KNN and tree classifiers. The KNN with
Euclidean distance metric produces the highest sensitivity.

Figure 4 shows the specificity of all classifiers in each
of the 10 folds. The discriminant classifier produces
the least specificity. The KNN classifier produces the high-
est specificity. Figure 5 shows the F-score of all classifiers
in all 10 folds. The discriminant classifier with a linear
function produces the lowest F-score. The tree classifier
and the quadratic discriminant classifier produce a near-
ly uniform F-score, while the KNN classifier achieves
the highest F-score.

The KNN with Euclidean distance metric achieves
the highest accuracy compared to other classifiers and
is shown in Fig. 6.

Table 2 shows the average classification results of all clas-
sifiers at level 1. One can see from Table 2 that the KNN
with Euclidean distance metric and 4 neighbors produces
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Fig. 3. Results of sensitivity for 10 different folds of KNN, tree,
and discriminant classifiers

KNN-E4 — K-nearest neighbour classifier with Euclidean distance 4;

KNN-E3 - K-nearest neighbour classifier with Euclidean distance 3;
KNN-COR - K-nearest neighbour classifier with correlation distance metric;
KNN-MAH - K-nearest neighbour classifier with Mahalanobis distance
metric; KNN-SE — K-nearest neighbour classifier with standardized Euclidean
distance metric; KNN-SP — K-nearest neighbour classifier with Spearman
distance metric; TREE — tree classifier; DIS-QUA — discriminant classifier with
quadratic function; DIS-LIN — discriminant classifier with linear function.
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Fig. 4. Results of specificity for 10 different folds of KNN, tree,
and discriminant classifiers

KNN-E4 — K-nearest neighbour classifier with Euclidean distance 4;

KNN-E3 - K-nearest neighbour classifier with Euclidean distance 3;
KNN-COR - K-nearest neighbour classifier with correlation distance metric;
KNN-MAH - K-nearest neighbour classifier with Mahalanobis distance
metric; KNN-SE — K-nearest neighbour classifier with standardized Euclidean
distance metric; KNN-SP — K-nearest neighbour classifier with Spearman
distance metric; TREE - tree classifier; DIS-QUA — discriminant classifier with
quadratic function; DIS-LIN - discriminant classifier with linear function.

a better sensitivity, specificity, positive predictivity,
F-score, and accuracy than the other 2 classifiers which
were considered. Hence, KNN is used at level 1 of the pro-
posed model. KNN with 3 neighbors also produces compa-
rable results to KNN with 4 neighbors. Compared to KNN
with 4 neighbors, the KNN classifier with 3 neighbors has
a greater discrimination capability for class S.

From the confusion matrix obtained from tenfold
cross validation using different classifiers, it was found
that a high number of class S heartbeats are misclassified

Fig. 5. Results of F-score for 10 different folds of KNN, tree,
and discriminant classifiers

KNN-E4 — K-nearest neighbour classifier with Euclidean distance 4;

KNN-E3 - K-nearest neighbour classifier with Euclidean distance 3;
KNN-COR - K-nearest neighbour classifier with correlation distance metric;
KNN-MAH - K-nearest neighbour classifier with Mahalanobis distance
metric; KNN-SE — K-nearest neighbour classifier with standardized Euclidean
distance metric; KNN-SP — K-nearest neighbour classifier with Spearman
distance metric; TREE - tree classifier; DIS-QUA — discriminant classifier with
quadratic function; DIS-LIN — discriminant classifier with linear function.
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Fig. 6. Results of accuracy for 10 different folds of KNN, tree,
and discriminant classifiers

KNN-E4 — K-nearest neighbour classifier with Euclidean distance 4;

KNN-E3 - K-nearest neighbour classifier with Euclidean distance 3;
KNN-COR - K-nearest neighbour classifier with correlation distance metric;
KNN-MAH - K-nearest neighbour classifier with Mahalanobis distance
metric; KNN-SE — K-nearest neighbour classifier with standardized Euclidean
distance metric; KNN-SP — K-nearest neighbour classifier with Spearman
distance metric; TREE - tree classifier; DIS-QUA — discriminant classifier with
quadratic function; DIS-LIN — discriminant classifier with linear function.

as normal class N. This is because of the close resemblance
of class S to the normal class and because the number
of training examples for class N is higher than class S.
A sample confusion matrix of the KNN classifier with
4 neighbors at level 1 is shown in Table 3.

Moreover, the number of training examples for class
N (78,879 heartbeats) is much greater than class S (2,381
heartbeats) training examples. This may be the reason
why the KNN with 3 neighbors can classify class S better
than the KNN with 4 neighbors. For other classes, KNN
with 4 neighbors performed well. To achieve better results,
the SVM classifier is used along with KNN. SVM is trained
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Table 2. Average classification results of tenfold cross validation
for classifiers at level 1

g o 9

>l .2 22| 8| S

Classifier é “:Ej qg,' S' ,_:_") %

g|z&|se| €| ©

a & :% = E g
KNN-Euclidean 4 92.14 | 9924 | 9856 | 9448 | 99.77
KNN-Euclidean 3 92.07 | 9923 | 9853 | 9443 | 99.76
KNN-correlation 84.53 | 99.07 | 9792 | 8716 | 99.71
KNN-Mahalanobis 91.05 | 9921 | 9474 | 9239 @ 99.72
KNN-standardized Euclidean | 91.11 | 99.22 | 9497 | 9253 | 99.73
KNN-Spearman 8445 9819 @ 89.09 8523 9930
Tree classifier 7780 | 9815 | 83.72 | 7898 | 99.28
Discriminant-linear 7242 9320 6087 | 6141 98.28
Discriminant-quadratic 7256 | 9727 | 9268 | 7497 | 99.06

Table 3. Confusion matrix (KNN 4 fold 2)

n =9789 (where
'n'is the total

number of test Predicted

samples in fold 2)

arrhythmia class

S 234 1 0
\% 0 674 2
F 0 0 76
N 13 2 1

Q 0 0 0

Table 5. Sensitivity and F-score of class S before and after using
the proposed model

Fold Sensitivity of class S F-Score of class S
number | KNN-EUC4 | Proposed | KNN-EUC4 | Proposed
Fold 1 88.68 90.56 9216 9230
Fold 2 88.30 91.32 9140 93.07
Fold 3 85.28 8754 90.58 90.62
Fold 4 88.67 91.69 9233 92.74
Fold 5 88.67 90.56 91.79 9213
Fold 6 85.66 88.30 89.90 90.00
Fold 7 92.07 9358 94.02 93.23
Fold 8 8943 90.56 9275 9213
Fold 9 90.18 91.69 93.35 9257
Fold 10 92.07 94.33 93.84 93.80

KNN-EUC 4 - K-nearest neighbour classifier with Euclidean distance 4.

Sensitivity and F-score results before
and after the usage of the proposed
model are shown in Table 5. It is clear
that the sensitivity of class S improves
considerably through this hybrid model.

0 The performance of other classes re-

- 9 mains unaltered and the classification
, 0 performance of class N gets slightly re-
duced by an average sensitivity percent-

3 0 age of 0.09 and an average F-score per-
8748 0 centage of 0.01. Class N is the normal
0 2 class and the problem of normal class

N — non-ectopic beat; S — supra-ventricular ectopic beat; V — ventricular ectopic beat; F — fusion

beat; Q — unknown beat.

Table 4. Confusion matrix (proposed model fold 2)

n = 9789 (where
'n'is the total
number of test
samples in fold 2)

Predicted

arrhythmia class

S 242 1 0

\% 0 674 2
Actual

F 0 0 76

N 13 2 1

Q 0 0 0

misclassified as class S is less compared
to a class S beat misclassified as normal
class N. Hence, the proposed model im-
proves sensitivity in the prediction of all
heartbeat classes.

Conclusions

Q
2 0 In this paper, a hybrid classifica-
; 0 tion model is proposed which inherits
) o the abilities of both SVM and KNN. In-
stead of using a simple classifier as KNN
8/48 0 for predicting highly overlapped classes,
0 2 this mixed model improves the sensitiv-

N — non-ectopic beat; S — supra-ventricular ectopic beat; V — ventricular ectopic beat; F — fusion

beat; Q — unknown beat.

to classify class S from class N. The classification result
of KNN with Euclidean distance metric (4 and 3 neighbors)
was compared with the predicted result of Support vector
machine (SVM). A test heartbeat is concluded to be class S
ifatleast 2 classifiers predict it as class S. A sample confusion
matrix of the proposed hybrid model is shown in Table 4.

ity of minority classes, which is domi-
nated by the majority class. SVM is spe-
cifically trained to classify overlapped
classes. At the same time, the low
complex KNN classifier is trained to classify all 5 classes.
Hence, the final decision of a test heartbeat is done us-
ing classifiers at both levels of the hierarchy. The perfor-
mance of this model is supported by experimental results
on the entire MIT/BIH arrhythmia database. Future work
will experiment with other combinations of classifiers.
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